File size: 13,101 Bytes
a560a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import os
import json
import time
from tqdm import tqdm
import fire
import openai
import concurrent.futures
import random
import json
import time
from collections import Counter
from functools import partial
from pycocotools.coco import COCO
import requests
from PIL import Image
import base64
import json
import time
from io import BytesIO
import torchvision.transforms.functional as F
# vars
controller_address = "http://localhost:21001"
model_name = 'grounding_dino'
def get_openai_api():
# Set to your API key
return {
'api_type': '',
'api_version': '2023-03-15-preview',
'engine': "",
'api_key': "",
'api_base': '',
}
def ask_gpt(messages, max_retries=35, temperature=0.2, top_p=0.9, max_tokens=512):
if isinstance(messages, str):
messages = [{"role": "user", "content": messages}]
openai_kwargs = get_openai_api()
for i in range(max_retries):
try:
response = openai.ChatCompletion.create(
**openai_kwargs,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=0,
presence_penalty=0,
stop=None)
if os.getenv('DEBUG_PRINT'):
print(response['choices'][0]['message']['content'])
return response['choices'][0]['message']['content']
except Exception as e:
if type(e) in [openai.error.InvalidRequestError, KeyError]:
print(type(e), e)
return None
print(type(e), e)
time.sleep(2)
continue
def R(x):
if isinstance(x, list):
return [R(i) for i in x]
elif isinstance(x, dict):
return {k: R(v) for k, v in x.items()}
elif isinstance(x, float):
return round(x, 2)
def load_image(image_path):
img = Image.open(image_path).convert('RGB')
# import ipdb; ipdb.set_trace()
# resize if needed
w, h = img.size
if max(h, w) > 800:
if h > w:
new_h = 800
new_w = int(w * 800 / h)
else:
new_w = 800
new_h = int(h * 800 / w)
# import ipdb; ipdb.set_trace()
img = F.resize(img, (new_h, new_w))
return img
def encode(image: Image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
buffered.close()
return img_b64_str
def get_worker_addr(controller_addr, model_name):
# get worker_addr
# ret = requests.post(controller_addr + "/refresh_all_workers")
# ret = requests.post(controller_addr + "/list_models")
# models = ret.json()["models"]
# models.sort()
# print(f"Models: {models}")
ret = requests.post(
controller_addr + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
del ret
# print(f"worker_addr: {worker_addr}")
return worker_addr
def generate_worker(captions_strs, objects_strs, examples, sample, image_dir):
# 1. captions_strs + objects_strs -> questions
# 2. questions -> grounding dino input
# 3. grounding dino input -> grounding dino output
# 4. captions_strs + objects_strs + questions + grounding dino output -> answer
# 1. captions_strs + objects_strs -> questions
messages = [
{'role': 'system', 'content': """You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
Generate a question that users may be interested to ask about the image. The question should ask the AI to detect some objects in the image. The question should be answerable by the given sentences and the given object locations.
The question should ask the AI to detect some objects in the image."""},
{"role": "user", "content": examples[0]['captions']+'\n'+examples[0]['objects']},
{"role": "assistant", "content": examples[0]['question']},
{"role": "user", "content": examples[1]['captions']+'\n'+examples[1]['objects']},
{"role": "assistant", "content": examples[1]['question']},
{"role": "user", "content": captions_strs + '\n' + objects_strs}
]
question = ask_gpt(messages, temperature=0.9, top_p=0.95)
if question is None:
print("question is None, return None")
return None
# 2. questions -> grounding dino input
messages = [
{'role': 'system', 'content': """You are an AI visual assistant that can help to extract information from an a sentence.
You will be given a question about detecting something in an image. Please extract the main object name from the question. Using '.' to concat multiple object names."""},
{"role": "user", "content": examples[0]['question']},
{"role": "assistant", "content": examples[0]['grounding_dino_input']},
{"role": "user", "content": examples[1]['question']},
{"role": "assistant", "content": examples[1]['grounding_dino_input']},
{"role": "user", "content": "Please detect the green car in the image."},
{"role": "assistant", "content": "green car"},
{"role": "user", "content": question}
]
grounding_dino_input = ask_gpt(messages, temperature=0.9, top_p=0.95)
if grounding_dino_input is None:
print("grounding_dino_input is None, return None")
return None
# 3. grounding dino input -> grounding dino output
# get grounding dino output
worker_addr = get_worker_addr(controller_address, model_name)
headers = {"User-Agent": "GSAM Client"}
# img_path = os.path.join(args.image_dir, image['image_id'])
img_path = os.path.join(image_dir, sample['file_name'])
img = load_image(img_path)
img_arg = encode(img)
ret = requests.post(
worker_addr + "/worker_generate",
json={
"image": img_arg,
"caption": grounding_dino_input,
"box_threshold": 0.3,
"text_threshold": 0.25,
},
headers=headers,
).json()
if os.getenv('DEBUG_PRINT'):
print(ret)
ret.pop("size")
grounding_dino_output = ret
# 4. captions_strs + objects_strs + questions + grounding dino output -> answer
q_temp = "caption: {cap}\ngrounding dino input: {gdin}\ngrounding dino output: {gdout}\nquestion: {q}\n"
messages = [
{'role': 'system', 'content': """You are an AI visual assistant that can analyze a single image.
You receive five sentences, each describing the same image you are observing.
Then you receive the output of the grounding dino model, with its corresponding input of grounding dino. The output is a list of objects detected in the image, with their corresponding bounding boxes. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y.
Then you receive the question asked by the user.
Answer the question based on the given information with your best.
Do not reveal the input information of the image. DO NOT say that you are given the captions and the objects in the image, JUST answer the question as if you are seeing the image for the first time."""},
{'role': 'user', 'content': q_temp.format(cap=examples[0]['captions'], gdin=examples[0]['grounding_dino_input'], gdout=examples[0]['grounding_dino_output'], q=examples[0]['question'])},
{'role': 'assistant', 'content': examples[0]['answer']},
{'role': 'user', 'content': q_temp.format(cap=examples[1]['captions'], gdin=examples[1]['grounding_dino_input'], gdout=examples[1]['grounding_dino_output'], q=examples[1]['question'])},
{'role': 'assistant', 'content': examples[1]['answer']},
{'role': 'user', 'content': q_temp.format(cap=captions_strs, gdin=grounding_dino_input, gdout=grounding_dino_output, q=question)},
]
answer = ask_gpt(messages, temperature=0.9, top_p=0.95)
if answer is None:
print("answer is None, return None")
return None
# return
return {
"unique_id": str(time.time()) + '_' + str(sample['id']),
"image_id": sample['id'],
"image_file_name": sample['file_name'],
"image_path": os.path.join(image_dir, sample['file_name']),
"captions": captions_strs,
"objects": objects_strs,
"question": question,
"grounding_dino_input": grounding_dino_input,
"grounding_dino_output": grounding_dino_output,
"answer": answer,
}
def generate_data(
output_file,
sample_json,
overwrite=False,
num_workers=1,
num_examples=1000,
coco_caption_path="/comp_robot/liushilong/data/coco/annotations/captions_{split}2014.json",
coco_object_path="/comp_robot/liushilong/data/coco/annotations/instances_{split}2014.json",
image_dir="/comp_robot/liushilong/data/coco/{split}2014",
split='train',
seed=23123,
debug=False,
reference_json=None,
):
# load existing data
if not overwrite and os.path.exists(output_file):
print("Loading existing data...")
with open(output_file) as f:
existing_examples = [json.loads(line) for line in f]
print("Existing data loaded.")
if len(existing_examples) >= num_examples:
print("Enough examples, skip generating.")
return
print("Generating {} examples...".format(num_examples - len(existing_examples)))
num_examples = num_examples - len(existing_examples)
seed = seed + len(existing_examples)
# load coco annos
coco_cap = COCO(coco_caption_path.format(split=split))
coco_obj = COCO(coco_object_path.format(split=split))
image_dir = image_dir.format(split=split)
# load coco images
coco_images = coco_cap.loadImgs(coco_cap.getImgIds())
coco_categories = coco_obj.loadCats(coco_obj.getCatIds())
# filter annos with reference json
# load reference json
if reference_json is not None:
if seed != 20520:
seed = 20520
Warning("seed is not 20520, set seed to 20520!")
with open(reference_json) as f:
reference_examples = json.load(f)
print("Loaded reference json, {} examples".format(len(reference_examples)))
reference_ids = list(set([int(item['id']) for item in reference_examples]))
coco_images = [item for item in coco_images if int(item['id']) in reference_ids]
print("Filtered coco images with reference json, {} -> {}".format(len(reference_ids), len(coco_images)))
# import ipdb; ipdb.set_trace()
# random select 1000 images
random.seed(seed)
random.shuffle(coco_images)
coco_images = coco_images[:num_examples]
# load sample json
with open(sample_json) as f:
examples = json.load(f)
# generate data
print("Start generating data...")
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = {}
for sample_idx, sample in enumerate(coco_images):
# load samples
captions = coco_cap.loadAnns(coco_cap.getAnnIds(sample['id']))
objects = coco_obj.loadAnns(coco_obj.getAnnIds(sample['id']))
width, height = sample['width'], sample['height']
for obj in objects:
obj['bbox'] = [obj['bbox'][0] / width, obj['bbox'][1] / height, obj['bbox'][2] / width, obj['bbox'][3] / height]
# xywh -> xyxy
obj['bbox'][2] += obj['bbox'][0]
obj['bbox'][3] += obj['bbox'][1]
obj['bbox'] = R(obj['bbox'])
captions_strs = "\n".join([cap['caption'].strip() for cap in captions])
objects_strs = "\n".join([coco_obj.loadCats(obj['category_id'])[0]['name'] + ": " + str(obj['bbox']) for obj in objects])
if debug:
generate_worker(captions_strs, objects_strs, examples, sample, image_dir)
continue
futures[executor.submit(generate_worker, captions_strs, objects_strs, examples, sample, image_dir)] = sample_idx
os.makedirs(os.path.dirname(output_file), exist_ok=True)
writer = open(output_file, 'a')
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
result = future.result()
if result is None:
time.sleep(0.1)
continue
writer.write(json.dumps(result) + '\n')
writer.flush()
writer.close()
def main(task, **kwargs):
globals()[task](**kwargs)
if __name__ == "__main__":
fire.Fire(main) |