File size: 8,314 Bytes
a560a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
A model worker executes the model.
"""
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))

import argparse
import asyncio
import dataclasses
import logging
import json
import os
import sys
import time
from typing import List, Tuple, Union
import threading
import uuid

from io import BytesIO
import base64

from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import numpy as np
import requests
from PIL import Image

from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler

try:
    from transformers import (
        AutoTokenizer,
        AutoModelForCausalLM,
        LlamaTokenizer,
        AutoModel,
    )
except ImportError:
    from transformers import (
        AutoTokenizer,
        AutoModelForCausalLM,
        LLaMATokenizer,
        AutoModel,
    )
from transformers import AutoProcessor, Blip2ForConditionalGeneration

import torch
import torch.nn.functional as F
import uvicorn

from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG
from serve.utils import build_logger, pretty_print_semaphore

GB = 1 << 30


now_file_name = os.__file__
logdir = "logs/workers/"
os.makedirs(logdir, exist_ok=True)
logfile = os.path.join(logdir, f"{now_file_name}.log")

worker_id = str(uuid.uuid4())[:6]
logger = build_logger(now_file_name, logfile)
global_counter = 0

model_semaphore = None

def encode(image: Image):
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    img_b64_str = base64.b64encode(buffered.getvalue()).decode()
    return img_b64_str


def heart_beat_worker(controller):
    while True:
        time.sleep(WORKER_HEART_BEAT_INTERVAL)
        controller.send_heart_beat()


class ModelWorker:
    def __init__(
        self,
        controller_addr,
        worker_addr,
        worker_id,
        no_register,
        model_path,
        model_names,
        device,
    ):
        self.controller_addr = controller_addr
        self.worker_addr = worker_addr
        self.worker_id = worker_id
        self.model_names = model_names
        self.device = device

        # # load model
        # logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
        # self.processor = AutoProcessor.from_pretrained(model_path)
        # self.model = Blip2ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16) 
        # self.model.eval()
        # self.model.to(device)
        model_id = "runwayml/stable-diffusion-v1-5"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

        self.pipe = pipe

        if not no_register:
            self.register_to_controller()
            self.heart_beat_thread = threading.Thread(
                target=heart_beat_worker, args=(self,)
            )
            self.heart_beat_thread.start()

    def resize(self, image:Image, resize_w:int, resize_h:int):
        image = image.resize((resize_w, resize_h))
        return image
    

    def register_to_controller(self):
        logger.info("Register to controller")

        url = self.controller_addr + "/register_worker"
        data = {
            "worker_name": self.worker_addr,
            "check_heart_beat": True,
            "worker_status": self.get_status(),
        }
        r = requests.post(url, json=data)
        assert r.status_code == 200

    def send_heart_beat(self):
        logger.info(
            f"Send heart beat. Models: {self.model_names}. "
            f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
            f"global_counter: {global_counter}. "
            f"worker_id: {worker_id}. "
        )

        url = self.controller_addr + "/receive_heart_beat"

        while True:
            try:
                ret = requests.post(
                    url,
                    json={
                        "worker_name": self.worker_addr,
                        "queue_length": self.get_queue_length(),
                    },
                    timeout=5,
                )
                exist = ret.json()["exist"]
                break
            except requests.exceptions.RequestException as e:
                logger.error(f"heart beat error: {e}")
            time.sleep(5)

        if not exist:
            self.register_to_controller()

    def get_queue_length(self):
        if (
            model_semaphore is None
            or model_semaphore._value is None
            or model_semaphore._waiters is None
        ):
            return 0
        else:
            return (
                args.limit_model_concurrency
                - model_semaphore._value
                + len(model_semaphore._waiters)
            )

    def get_status(self):
        return {
            "model_names": self.model_names,
            "speed": 1,
            "queue_length": self.get_queue_length(),
        }

    def generate_stream_func(self, model, params, device):
        prompt = params["prompt"]

        # run
        images = self.pipe(prompt, num_inference_steps=20).images
        image = images[0]

        # save image
        # images[0].save("test.jpg")

        pred_dict = {
            "edited_image": encode(image),
        }

        return pred_dict

    def generate_gate(self, params):
        try:

            ret = {"text": "", "error_code": 0}
            ret = self.generate_stream_func(
                None,
                params,
                self.device,
            )
        except torch.cuda.OutOfMemoryError as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
            }
        except (ValueError, RuntimeError) as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.INTERNAL_ERROR,
            }
        return ret



app = FastAPI()


def release_model_semaphore():
    model_semaphore.release()


def acquire_model_semaphore():
    global model_semaphore, global_counter
    global_counter += 1
    if model_semaphore is None:
        model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
    return model_semaphore.acquire()


def create_background_tasks():
    background_tasks = BackgroundTasks()
    background_tasks.add_task(release_model_semaphore)
    return background_tasks



@app.post("/worker_generate")
async def api_generate(request: Request):
    params = await request.json()
    await acquire_model_semaphore()
    output = worker.generate_gate(params)
    release_model_semaphore()
    return JSONResponse(output)


@app.post("/worker_get_status")
async def api_get_status(request: Request):
    return worker.get_status()





@app.post("/model_details")
async def model_details(request: Request):
    return {"context_length": worker.context_len}


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=21307)
    parser.add_argument("--worker-address", type=str, default="http://localhost:21307")
    parser.add_argument(
        "--controller-address", type=str, default="http://localhost:21001"
    )

    parser.add_argument(
        "--model-path", type=str, default="Salesforce/blip2-opt-2.7b"
    )

    parser.add_argument(
        "--model-names",
        default="stable-diffusion,sd",
        type=lambda s: s.split(","),
        help="Optional display comma separated names",
    )
    parser.add_argument("--device", type=str, default="cuda")
    parser.add_argument("--limit-model-concurrency", type=int, default=5)
    parser.add_argument("--stream-interval", type=int, default=2)
    parser.add_argument("--no-register", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")


    worker = ModelWorker(
        args.controller_address,
        args.worker_address,
        worker_id,
        args.no_register,
        args.model_path,
        args.model_names,
        args.device,
    )
    uvicorn.run(app, host=args.host, port=args.port, log_level="info")