CRYSTAL-Mac
/
LLaVA-Plus-Codebase
/playground
/llava-plus-data
/grounding
/generate_question_eval.py
import os | |
import json | |
import time | |
from tqdm import tqdm | |
import fire | |
import openai | |
import concurrent.futures | |
import random | |
import json | |
import time | |
from collections import Counter | |
from functools import partial | |
from pycocotools.coco import COCO | |
import requests | |
from PIL import Image | |
import base64 | |
import json | |
import time | |
from io import BytesIO | |
import torchvision.transforms.functional as F | |
# vars | |
controller_address = "http://localhost:21001" | |
model_name = 'grounding_dino' | |
def get_openai_api(): | |
api_type = os.environ.get('API_TYPE', 'openai') | |
if api_type == 'azure': | |
api_key = os.environ.get('API_KEY', 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx') | |
engine = os.environ.get('ENGINE', 'gpt-35-turbo') | |
api_base = os.environ.get('API_BASE') | |
return { | |
'api_type': 'azure', | |
'api_version': '2023-03-15-preview', | |
'engine': engine, | |
'api_key': api_key, | |
'api_base': f'https://{api_base}.openai.azure.com', | |
} | |
else: | |
api_key = os.environ.get('API_KEY', 'sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx') | |
model = os.environ.get('MODEL', 'gpt-4') | |
return { | |
'model': model, | |
'api_key': api_key, | |
} | |
def ask_gpt(messages, max_retries=35, temperature=0.2, top_p=0.9, max_tokens=512): | |
if isinstance(messages, str): | |
messages = [{"role": "user", "content": messages}] | |
openai_kwargs = get_openai_api() | |
for i in range(max_retries): | |
try: | |
response = openai.ChatCompletion.create( | |
**openai_kwargs, | |
messages=messages, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
top_p=top_p, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop=None) | |
if os.getenv('DEBUG_PRINT'): | |
print(response['choices'][0]['message']['content']) | |
return response['choices'][0]['message']['content'] | |
except Exception as e: | |
if type(e) in [openai.error.InvalidRequestError, KeyError]: | |
print(type(e), e) | |
return None | |
print(type(e), e) | |
time.sleep(2) | |
continue | |
def R(x): | |
if isinstance(x, list): | |
return [R(i) for i in x] | |
elif isinstance(x, dict): | |
return {k: R(v) for k, v in x.items()} | |
elif isinstance(x, float): | |
return round(x, 2) | |
def load_image(image_path): | |
img = Image.open(image_path).convert('RGB') | |
# import ipdb; ipdb.set_trace() | |
# resize if needed | |
w, h = img.size | |
if max(h, w) > 800: | |
if h > w: | |
new_h = 800 | |
new_w = int(w * 800 / h) | |
else: | |
new_w = 800 | |
new_h = int(h * 800 / w) | |
# import ipdb; ipdb.set_trace() | |
img = F.resize(img, (new_h, new_w)) | |
return img | |
def encode(image: Image): | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
buffered.close() | |
return img_b64_str | |
def get_worker_addr(controller_addr, model_name): | |
# get worker_addr | |
# ret = requests.post(controller_addr + "/refresh_all_workers") | |
# ret = requests.post(controller_addr + "/list_models") | |
# models = ret.json()["models"] | |
# models.sort() | |
# print(f"Models: {models}") | |
ret = requests.post( | |
controller_addr + "/get_worker_address", json={"model": model_name} | |
) | |
worker_addr = ret.json()["address"] | |
del ret | |
# print(f"worker_addr: {worker_addr}") | |
return worker_addr | |
def generate_worker(captions_strs, objects_strs, examples, sample, image_dir): | |
# 1. captions_strs + objects_strs -> questions | |
# 2. questions -> grounding dino input | |
# 3. grounding dino input -> grounding dino output | |
# 4. captions_strs + objects_strs + questions + grounding dino output -> answer | |
# 1. captions_strs + objects_strs -> questions | |
messages = [ | |
{'role': 'system', 'content': """You are an AI visual assistant that can analyze a single image. You receive five sentences, each describing the same image you are observing. In addition, specific object locations within the image are given, along with detailed coordinates. These coordinates are in the form of bounding boxes, represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values correspond to the top left x, top left y, bottom right x, and bottom right y. | |
Generate a question that users may be interested to ask about the image. The question should ask the AI to detect some objects in the image. The question should be answerable by the given sentences and the given object locations. | |
The question should ask the AI to detect some objects in the image."""}, | |
{"role": "user", "content": examples[0]['captions']+'\n'+examples[0]['objects']}, | |
{"role": "assistant", "content": examples[0]['question']}, | |
{"role": "user", "content": examples[1]['captions']+'\n'+examples[1]['objects']}, | |
{"role": "assistant", "content": examples[1]['question']}, | |
{"role": "user", "content": captions_strs + '\n' + objects_strs} | |
] | |
question = ask_gpt(messages, temperature=0.9, top_p=0.95) | |
if question is None: | |
print("question is None, return None") | |
return None | |
# return | |
return { | |
"unique_id": str(time.time()) + '_' + str(sample['id']), | |
"image_id": sample['id'], | |
"image_file_name": sample['file_name'], | |
"image_path": os.path.join(image_dir, sample['file_name']), | |
"question": question, | |
} | |
def generate_data( | |
output_file, | |
sample_json, | |
overwrite=False, | |
num_workers=1, | |
num_examples=1000, | |
coco_caption_path="/comp_robot/liushilong/data/coco/annotations/captions_{split}2014.json", | |
coco_object_path="/comp_robot/liushilong/data/coco/annotations/instances_{split}2014.json", | |
image_dir="/comp_robot/liushilong/data/coco/{split}2014", | |
split='train', | |
seed=23123, | |
debug=False, | |
): | |
# load existing data | |
if not overwrite and os.path.exists(output_file): | |
print("Loading existing data...") | |
with open(output_file) as f: | |
existing_examples = [json.loads(line) for line in f] | |
print("Existing data loaded.") | |
if len(existing_examples) >= num_examples: | |
print("Enough examples, skip generating.") | |
return | |
print("Generating {} examples...".format(num_examples - len(existing_examples))) | |
num_examples = num_examples - len(existing_examples) | |
seed = seed + len(existing_examples) | |
# load coco annos | |
coco_cap = COCO(coco_caption_path.format(split=split)) | |
coco_obj = COCO(coco_object_path.format(split=split)) | |
image_dir = image_dir.format(split=split) | |
# load coco images | |
coco_images = coco_cap.loadImgs(coco_cap.getImgIds()) | |
coco_categories = coco_obj.loadCats(coco_obj.getCatIds()) | |
# random select 1000 images | |
random.seed(seed) | |
random.shuffle(coco_images) | |
coco_images = coco_images[:num_examples] | |
# load sample json | |
with open(sample_json) as f: | |
examples = json.load(f) | |
# generate data | |
print("Start generating data...") | |
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: | |
futures = {} | |
for sample_idx, sample in enumerate(coco_images): | |
# load samples | |
captions = coco_cap.loadAnns(coco_cap.getAnnIds(sample['id'])) | |
objects = coco_obj.loadAnns(coco_obj.getAnnIds(sample['id'])) | |
width, height = sample['width'], sample['height'] | |
for obj in objects: | |
obj['bbox'] = [obj['bbox'][0] / width, obj['bbox'][1] / height, obj['bbox'][2] / width, obj['bbox'][3] / height] | |
# xywh -> xyxy | |
obj['bbox'][2] += obj['bbox'][0] | |
obj['bbox'][3] += obj['bbox'][1] | |
obj['bbox'] = R(obj['bbox']) | |
captions_strs = "\n".join([cap['caption'].strip() for cap in captions]) | |
objects_strs = "\n".join([coco_obj.loadCats(obj['category_id'])[0]['name'] + ": " + str(obj['bbox']) for obj in objects]) | |
if debug: | |
generate_worker(captions_strs, objects_strs, examples, sample, image_dir) | |
continue | |
futures[executor.submit(generate_worker, captions_strs, objects_strs, examples, sample, image_dir)] = sample_idx | |
os.makedirs(os.path.dirname(output_file), exist_ok=True) | |
writer = open(output_file, 'a') | |
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)): | |
result = future.result() | |
if result is None: | |
time.sleep(0.1) | |
continue | |
writer.write(json.dumps(result) + '\n') | |
writer.flush() | |
writer.close() | |
def main(task, **kwargs): | |
globals()[task](**kwargs) | |
if __name__ == "__main__": | |
fire.Fire(main) |