CRYSTAL-Mac / LLaVA-Plus-Codebase /serve /grounded_sam_worker.py
crystal-technologies's picture
Upload 234 files
a560a5f
"""
A model worker executes the model.
"""
import sys, os
from groundingdino.util import box_ops
from segment_anything import build_sam
from segment_anything.predictor import SamPredictor
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import argparse
import asyncio
import dataclasses
import logging
import json
import os
import sys
import time
from typing import List, Tuple, Union
import threading
import uuid
from io import BytesIO
import base64
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import numpy as np
import requests
from PIL import Image
from demo.inference_on_a_image import get_grounding_output
from groundingdino.util.inference import load_model, predict
import groundingdino.datasets.transforms as T
import pycocotools.mask as mask_util
try:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
AutoModel,
)
except ImportError:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LLaMATokenizer,
AutoModel,
)
import torch
import torch.nn.functional as F
import uvicorn
from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG
from serve.utils import build_logger, pretty_print_semaphore
GB = 1 << 30
now_file_name = os.__file__
logdir = "logs/workers/"
os.makedirs(logdir, exist_ok=True)
logfile = os.path.join(logdir, f"{now_file_name}.log")
worker_id = str(uuid.uuid4())[:6]
logger = build_logger(now_file_name, logfile)
global_counter = 0
model_semaphore = None
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(
self,
controller_addr,
worker_addr,
worker_id,
no_register,
model_path,
model_config,
model_names,
sam_path,
device,
grounding_dino_server=None,
sam_server=None,
):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
self.model_names = model_names
self.model_config = model_config
self.device = device
self.grounding_dino_server = grounding_dino_server
if grounding_dino_server is None:
raise NotImplementedError("grounding_dino_server is None, we only support grounding_dino_server now.")
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
self.model = load_model(
model_config_path=model_config,
model_checkpoint_path=model_path,
device=device,
)
self.model.to(device)
self.model.eval()
else:
self.model = None
# get grounding dino addr
if grounding_dino_server.startswith("http"):
grounding_dino_server_addr = grounding_dino_server
else:
controller_addr = self.controller_addr
ret = requests.post(controller_addr + "/refresh_all_workers")
ret = requests.post(controller_addr + "/list_models")
models = ret.json()["models"]
models.sort()
print(f"Models: {models}")
ret = requests.post(
controller_addr + "/get_worker_address", json={"model": grounding_dino_server}
)
grounding_dino_server_addr = ret.json()["address"]
print(f"grounding_dino_server_addr: {grounding_dino_server_addr}")
self.grounding_dino_server_addr = grounding_dino_server_addr
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,)
)
self.heart_beat_thread.start()
self.transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# load sam model
self.sam_server = sam_server
if sam_server is None:
self.sam = build_sam(checkpoint=sam_path)
self.sam.to(device=device)
self.sam_predictor = SamPredictor(self.sam)
self.sam_server_addr = None
else:
self.sam = None
self.sam_predictor = None
# get grounding dino addr
if sam_server.startswith("http"):
sam_server_addr = sam_server
else:
time.sleep(3)
controller_addr = self.controller_addr
ret = requests.post(controller_addr + "/refresh_all_workers")
ret = requests.post(controller_addr + "/list_models")
models = ret.json()["models"]
models.sort()
print(f"Models: {models}")
ret = requests.post(
controller_addr + "/get_worker_address", json={"model": sam_server}
)
sam_server_addr = ret.json()["address"]
print(f"sam_server_addr: {sam_server_addr}")
self.sam_server_addr = sam_server_addr
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status(),
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(
f"Send heart beat. Models: {self.model_names}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}. "
f"worker_id: {worker_id}. "
)
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url,
json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length(),
},
timeout=5,
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if (
model_semaphore is None
or model_semaphore._value is None
or model_semaphore._waiters is None
):
return 0
else:
return (
args.limit_model_concurrency
- model_semaphore._value
+ len(model_semaphore._waiters)
)
def get_status(self):
return {
"model_names": self.model_names,
"speed": 1,
"queue_length": self.get_queue_length(),
}
def load_image(self, image_path: str) -> Tuple[np.array, torch.Tensor]:
if os.path.exists(image_path):
image_source = Image.open(image_path).convert("RGB")
else:
# base64 coding
image_source = Image.open(BytesIO(base64.b64decode(image_path))).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = self.transform(image_source, None)
return image, image_transformed
def generate_stream_func(self, model, params, device):
# get inputs
text_prompt = params["caption"]
image_path = params["image"]
box_threshold = params["box_threshold"]
text_threshold = params["text_threshold"]
image_np, image = self.load_image(image_path)
if self.grounding_dino_server is not None:
headers = {"User-Agent": "G-SAM Client"}
pred_dict = requests.post(
self.grounding_dino_server_addr + "/worker_generate",
headers=headers,
json=params,
).json()
boxes = pred_dict["boxes"]
logits = pred_dict["logits"]
phrases = pred_dict["phrases"]
h, w = pred_dict["size"]
else:
# load image and run models
boxes, logits, phrases = predict(
model=model,
image=image,
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device
)
boxes = boxes.tolist()
# round to 2 decimal places
boxes = [[round(x, 2) for x in box] for box in boxes]
logits = logits.tolist()
logits = [round(x, 2) for x in logits]
h, w, _ = image_np.shape
pred_dict = {
"boxes": boxes,
"logits": logits,
"phrases": phrases,
"size": [h, w], # H,W
}
# add sam output
if len(boxes) > 0:
if self.sam_server_addr is None:
boxes_tensor = torch.Tensor(boxes).to(device)
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes_tensor) * torch.Tensor([w, h, w, h]).to(device)
self.sam_predictor.set_image(image_np)
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_xyxy, image_np.shape[:2]).to(device)
# import ipdb; ipdb.set_trace()
masks, _, _ = self.sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
masks = masks[:, 0] # B, H, W
# encoder masks to strs
maskrls_list = []
for mask in masks:
mask_rle = mask_util.encode(np.array(mask[:, :, None].cpu(), order="F"))[0]
mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
maskrls_list.append(mask_rle)
else:
headers = {"User-Agent": "G-SAM Client"}
params['boxes'] = boxes
pred_dict_sam = requests.post(
self.sam_server_addr + "/worker_generate",
headers=headers,
json=params,
).json()
maskrls_list = pred_dict_sam['masks_rle']
else:
maskrls_list = []
pred_dict['masks_rle'] = maskrls_list
return pred_dict
def generate_gate(self, params):
try:
ret = {"text": "", "error_code": 0}
ret = self.generate_stream_func(
self.model,
params,
self.device,
)
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
app = FastAPI()
def release_model_semaphore():
model_semaphore.release()
def acquire_model_semaphore():
global model_semaphore, global_counter
global_counter += 1
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
return model_semaphore.acquire()
def create_background_tasks():
background_tasks = BackgroundTasks()
background_tasks.add_task(release_model_semaphore)
return background_tasks
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_model_semaphore()
output = worker.generate_gate(params)
release_model_semaphore()
return JSONResponse(output)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/model_details")
async def model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21293)
parser.add_argument("--worker-address", type=str, default="http://localhost:21293")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument(
"--model-path", type=str, default="groundingdino_swint_ogc.pth"
)
parser.add_argument(
"--model-config", type=str, default="GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
)
parser.add_argument(
"--sam-path", type=str, default="sam_vit_h_4b8939.pth"
)
parser.add_argument(
"--model-names",
default="grounding_dino+sam,grounded_sam",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
parser.add_argument("--grounding-dino-server", type=str, default="grounding_dino")
parser.add_argument("--sam-server", type=str, default="sam")
args = parser.parse_args()
logger.info(f"args: {args}")
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_config,
args.model_names,
args.sam_path,
args.device,
args.grounding_dino_server,
args.sam_server,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")