CRYSTAL-Mac / LLaVA-Plus-Codebase /serve /instructpix2pix_worker.py
crystal-technologies's picture
Upload 234 files
a560a5f
"""
A model worker executes the model.
"""
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import argparse
import asyncio
import dataclasses
import logging
import json
import os
import sys
import time
from typing import List, Tuple, Union
import threading
import uuid
from io import BytesIO
import base64
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import numpy as np
import requests
from PIL import Image
from demo.inference_on_a_image import get_grounding_output
from groundingdino.util.inference import load_model, predict
import groundingdino.datasets.transforms as T
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
try:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
AutoModel,
)
except ImportError:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LLaMATokenizer,
AutoModel,
)
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import torch
import torch.nn.functional as F
import uvicorn
from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG
from serve.utils import build_logger, pretty_print_semaphore
GB = 1 << 30
now_file_name = os.__file__
logdir = "logs/workers/"
os.makedirs(logdir, exist_ok=True)
logfile = os.path.join(logdir, f"{now_file_name}.log")
worker_id = str(uuid.uuid4())[:6]
logger = build_logger(now_file_name, logfile)
global_counter = 0
model_semaphore = None
def encode(image: Image):
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
return img_b64_str
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(
self,
controller_addr,
worker_addr,
worker_id,
no_register,
model_path,
model_names,
device,
):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
self.model_names = model_names
self.device = device
# # load model
# logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
# self.processor = AutoProcessor.from_pretrained(model_path)
# self.model = Blip2ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
# self.model.eval()
# self.model.to(device)
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
self.pipe = pipe
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,)
)
self.heart_beat_thread.start()
def resize(self, image:Image, resize_w:int, resize_h:int):
image = image.resize((resize_w, resize_h))
return image
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status(),
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(
f"Send heart beat. Models: {self.model_names}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}. "
f"worker_id: {worker_id}. "
)
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url,
json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length(),
},
timeout=5,
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if (
model_semaphore is None
or model_semaphore._value is None
or model_semaphore._waiters is None
):
return 0
else:
return (
args.limit_model_concurrency
- model_semaphore._value
+ len(model_semaphore._waiters)
)
def get_status(self):
return {
"model_names": self.model_names,
"speed": 1,
"queue_length": self.get_queue_length(),
}
def load_image(self, image_path: str) -> Tuple[np.array, torch.Tensor]:
if os.path.exists(image_path):
image_source = Image.open(image_path).convert("RGB")
else:
# base64 coding
image_source = Image.open(BytesIO(base64.b64decode(image_path))).convert("RGB")
return image_source
def generate_stream_func(self, model, params, device):
# get inputs
image_path = params["image"]
prompt = params["prompt"]
# load image and run models
image = self.load_image(image_path)
# resize to 512, 512
w, h = image.size
image = self.resize(image, 512, 512)
# run
images = self.pipe(prompt, image=image, num_inference_steps=30, image_guidance_scale=1).images
image = images[0]
# re-resize
image = self.resize(image, w, h)
# save image
# images[0].save("test.jpg")
pred_dict = {
"edited_image": encode(image),
}
return pred_dict
def generate_gate(self, params):
try:
ret = {"text": "", "error_code": 0}
ret = self.generate_stream_func(
None,
params,
self.device,
)
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
app = FastAPI()
def release_model_semaphore():
model_semaphore.release()
def acquire_model_semaphore():
global model_semaphore, global_counter
global_counter += 1
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
return model_semaphore.acquire()
def create_background_tasks():
background_tasks = BackgroundTasks()
background_tasks.add_task(release_model_semaphore)
return background_tasks
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_model_semaphore()
output = worker.generate_gate(params)
release_model_semaphore()
return JSONResponse(output)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/model_details")
async def model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21306)
parser.add_argument("--worker-address", type=str, default="http://localhost:21306")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument(
"--model-path", type=str, default="Salesforce/blip2-opt-2.7b"
)
parser.add_argument(
"--model-names",
default="instruct-pix2pix,ip2p",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_names,
args.device,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")