crystal-technologies's picture
Upload 234 files
a560a5f
"""
A model worker executes the model.
"""
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), ".."))
import argparse
import asyncio
import dataclasses
import logging
import json
import os
import sys
import time
from typing import List, Tuple, Union
import threading
import uuid
from io import BytesIO
import base64
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import numpy as np
import requests
from PIL import Image
sys.path.append('Tag2Text')
from Tag2Text.models import tag2text
from Tag2Text import inference_ram
import torchvision.transforms as TS
try:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
AutoModel,
)
except ImportError:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LLaMATokenizer,
AutoModel,
)
from transformers import AutoProcessor, Blip2ForConditionalGeneration
import torch
import torch.nn.functional as F
import uvicorn
from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG
from serve.utils import build_logger, pretty_print_semaphore
GB = 1 << 30
now_file_name = os.__file__
logdir = "logs/workers/"
os.makedirs(logdir, exist_ok=True)
logfile = os.path.join(logdir, f"{now_file_name}.log")
worker_id = str(uuid.uuid4())[:6]
logger = build_logger(now_file_name, logfile)
global_counter = 0
model_semaphore = None
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class ModelWorker:
def __init__(
self,
controller_addr,
worker_addr,
worker_id,
no_register,
model_path,
model_names,
device,
):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
self.model_names = model_names or [model_path.split("/")[-1]]
self.device = device
# load model
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
self.ram_model = tag2text.ram(pretrained=model_path,
image_size=384,
vit='swin_l')
self.ram_model.to(device)
self.ram_model.eval()
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,)
)
self.heart_beat_thread.start()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status(),
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(
f"Send heart beat. Models: {self.model_names}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}. "
f"worker_id: {worker_id}. "
)
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url,
json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length(),
},
timeout=5,
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if (
model_semaphore is None
or model_semaphore._value is None
or model_semaphore._waiters is None
):
return 0
else:
return (
args.limit_model_concurrency
- model_semaphore._value
+ len(model_semaphore._waiters)
)
def get_status(self):
return {
"model_names": self.model_names,
"speed": 1,
"queue_length": self.get_queue_length(),
}
def load_image(self, image_path: str) -> Tuple[np.array, torch.Tensor]:
if os.path.exists(image_path):
image_source = Image.open(image_path).convert("RGB")
else:
# base64 coding
image_source = Image.open(BytesIO(base64.b64decode(image_path))).convert("RGB")
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = TS.Compose([
TS.Resize((384, 384)),
TS.ToTensor(), normalize
])
image_source = transform(image_source)
return image_source
def generate_stream_func(self, model, params, device):
# get inputs
image_path = params["image"]
# load image and run models
image = self.load_image(image_path).unsqueeze(0).to(device)
# tagging:
res = inference_ram.inference(image , self.ram_model)
tags=res[0].replace(' |', ',')
tags_chinese=res[1].replace(' |', ',')
_, __, h, w = image.shape
pred_dict = {
"tags": tags,
"tags_chinese": tags_chinese,
"size": [h, w], # H,W
}
return pred_dict
def generate_gate(self, params):
try:
ret = {"text": "", "error_code": 0}
ret = self.generate_stream_func(
self.ram_model,
params,
self.device,
)
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
@torch.inference_mode()
def get_embeddings(self, params):
try:
tokenizer = self.tokenizer
is_llama = "llama" in str(
type(self.model)
) # vicuna support batch inference
is_chatglm = "chatglm" in str(type(self.model))
is_t5 = "t5" in str(type(self.model))
if is_llama:
encoding = tokenizer.batch_encode_plus(
params["input"], padding=True, return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
model_output = self.model(
input_ids, attention_mask, output_hidden_states=True
)
data = model_output.hidden_states[-1]
mask = attention_mask.unsqueeze(-1).expand(data.size()).float()
masked_embeddings = data * mask
sum_embeddings = torch.sum(masked_embeddings, dim=1)
seq_length = torch.sum(mask, dim=1)
embedding = sum_embeddings / seq_length
normalized_embeddings = F.normalize(embedding, p=2, dim=1)
ret = {
"embedding": normalized_embeddings.tolist(),
"token_num": torch.sum(attention_mask).item(),
}
else:
embedding = []
token_num = 0
for text in params["input"]:
input_ids = tokenizer.encode(text, return_tensors="pt").to(
self.device
)
if is_t5:
model_output = self.model(
input_ids, decoder_input_ids=input_ids
)
else:
model_output = self.model(input_ids, output_hidden_states=True)
if is_chatglm:
data = (model_output.hidden_states[-1].transpose(0, 1))[0]
elif is_t5:
data = model_output.encoder_last_hidden_state[0]
else:
data = model_output.hidden_states[-1][0]
data = F.normalize(torch.mean(data, dim=0), p=2, dim=0)
embedding.append(data.tolist())
token_num += len(input_ids[0])
ret = {
"embedding": embedding,
"token_num": token_num,
}
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
app = FastAPI()
def release_model_semaphore():
model_semaphore.release()
def acquire_model_semaphore():
global model_semaphore, global_counter
global_counter += 1
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
return model_semaphore.acquire()
def create_background_tasks():
background_tasks = BackgroundTasks()
background_tasks.add_task(release_model_semaphore)
return background_tasks
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_model_semaphore()
output = worker.generate_gate(params)
release_model_semaphore()
return JSONResponse(output)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/model_details")
async def model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21009)
parser.add_argument("--worker-address", type=str, default="http://localhost:21009")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument(
"--model-path", type=str, default="ram_swin_large_14m.pth"
)
parser.add_argument(
"--model-names",
default="ram",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_names,
args.device,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")