|
""" |
|
A model worker executes the model. |
|
""" |
|
import sys, os |
|
sys.path.append(os.path.join(os.path.dirname(__file__), "..")) |
|
|
|
import argparse |
|
import asyncio |
|
import dataclasses |
|
import logging |
|
import json |
|
import os |
|
import sys |
|
import time |
|
from typing import List, Tuple, Union |
|
import threading |
|
import uuid |
|
|
|
from io import BytesIO |
|
import base64 |
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse, JSONResponse |
|
import numpy as np |
|
import requests |
|
from PIL import Image |
|
|
|
sys.path.append('Tag2Text') |
|
from Tag2Text.models import tag2text |
|
from Tag2Text import inference_ram |
|
import torchvision.transforms as TS |
|
|
|
try: |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
LlamaTokenizer, |
|
AutoModel, |
|
) |
|
except ImportError: |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
LLaMATokenizer, |
|
AutoModel, |
|
) |
|
from transformers import AutoProcessor, Blip2ForConditionalGeneration |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import uvicorn |
|
|
|
from serve.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG |
|
from serve.utils import build_logger, pretty_print_semaphore |
|
|
|
GB = 1 << 30 |
|
|
|
|
|
now_file_name = os.__file__ |
|
logdir = "logs/workers/" |
|
os.makedirs(logdir, exist_ok=True) |
|
logfile = os.path.join(logdir, f"{now_file_name}.log") |
|
|
|
worker_id = str(uuid.uuid4())[:6] |
|
logger = build_logger(now_file_name, logfile) |
|
global_counter = 0 |
|
|
|
model_semaphore = None |
|
|
|
|
|
def heart_beat_worker(controller): |
|
while True: |
|
time.sleep(WORKER_HEART_BEAT_INTERVAL) |
|
controller.send_heart_beat() |
|
|
|
|
|
class ModelWorker: |
|
def __init__( |
|
self, |
|
controller_addr, |
|
worker_addr, |
|
worker_id, |
|
no_register, |
|
model_path, |
|
model_names, |
|
device, |
|
): |
|
self.controller_addr = controller_addr |
|
self.worker_addr = worker_addr |
|
self.worker_id = worker_id |
|
if model_path.endswith("/"): |
|
model_path = model_path[:-1] |
|
self.model_names = model_names or [model_path.split("/")[-1]] |
|
self.device = device |
|
|
|
|
|
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...") |
|
self.ram_model = tag2text.ram(pretrained=model_path, |
|
image_size=384, |
|
vit='swin_l') |
|
self.ram_model.to(device) |
|
self.ram_model.eval() |
|
|
|
if not no_register: |
|
self.register_to_controller() |
|
self.heart_beat_thread = threading.Thread( |
|
target=heart_beat_worker, args=(self,) |
|
) |
|
self.heart_beat_thread.start() |
|
|
|
|
|
|
|
def register_to_controller(self): |
|
logger.info("Register to controller") |
|
|
|
url = self.controller_addr + "/register_worker" |
|
data = { |
|
"worker_name": self.worker_addr, |
|
"check_heart_beat": True, |
|
"worker_status": self.get_status(), |
|
} |
|
r = requests.post(url, json=data) |
|
assert r.status_code == 200 |
|
|
|
def send_heart_beat(self): |
|
logger.info( |
|
f"Send heart beat. Models: {self.model_names}. " |
|
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " |
|
f"global_counter: {global_counter}. " |
|
f"worker_id: {worker_id}. " |
|
) |
|
|
|
url = self.controller_addr + "/receive_heart_beat" |
|
|
|
while True: |
|
try: |
|
ret = requests.post( |
|
url, |
|
json={ |
|
"worker_name": self.worker_addr, |
|
"queue_length": self.get_queue_length(), |
|
}, |
|
timeout=5, |
|
) |
|
exist = ret.json()["exist"] |
|
break |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"heart beat error: {e}") |
|
time.sleep(5) |
|
|
|
if not exist: |
|
self.register_to_controller() |
|
|
|
def get_queue_length(self): |
|
if ( |
|
model_semaphore is None |
|
or model_semaphore._value is None |
|
or model_semaphore._waiters is None |
|
): |
|
return 0 |
|
else: |
|
return ( |
|
args.limit_model_concurrency |
|
- model_semaphore._value |
|
+ len(model_semaphore._waiters) |
|
) |
|
|
|
def get_status(self): |
|
return { |
|
"model_names": self.model_names, |
|
"speed": 1, |
|
"queue_length": self.get_queue_length(), |
|
} |
|
|
|
def load_image(self, image_path: str) -> Tuple[np.array, torch.Tensor]: |
|
|
|
|
|
if os.path.exists(image_path): |
|
image_source = Image.open(image_path).convert("RGB") |
|
else: |
|
|
|
image_source = Image.open(BytesIO(base64.b64decode(image_path))).convert("RGB") |
|
|
|
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]) |
|
transform = TS.Compose([ |
|
TS.Resize((384, 384)), |
|
TS.ToTensor(), normalize |
|
]) |
|
image_source = transform(image_source) |
|
return image_source |
|
|
|
def generate_stream_func(self, model, params, device): |
|
|
|
image_path = params["image"] |
|
|
|
|
|
image = self.load_image(image_path).unsqueeze(0).to(device) |
|
|
|
|
|
res = inference_ram.inference(image , self.ram_model) |
|
|
|
tags=res[0].replace(' |', ',') |
|
tags_chinese=res[1].replace(' |', ',') |
|
|
|
_, __, h, w = image.shape |
|
pred_dict = { |
|
"tags": tags, |
|
"tags_chinese": tags_chinese, |
|
"size": [h, w], |
|
} |
|
|
|
return pred_dict |
|
|
|
def generate_gate(self, params): |
|
try: |
|
|
|
ret = {"text": "", "error_code": 0} |
|
ret = self.generate_stream_func( |
|
self.ram_model, |
|
params, |
|
self.device, |
|
) |
|
except torch.cuda.OutOfMemoryError as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, |
|
} |
|
except (ValueError, RuntimeError) as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.INTERNAL_ERROR, |
|
} |
|
return ret |
|
|
|
@torch.inference_mode() |
|
def get_embeddings(self, params): |
|
try: |
|
tokenizer = self.tokenizer |
|
is_llama = "llama" in str( |
|
type(self.model) |
|
) |
|
is_chatglm = "chatglm" in str(type(self.model)) |
|
is_t5 = "t5" in str(type(self.model)) |
|
if is_llama: |
|
encoding = tokenizer.batch_encode_plus( |
|
params["input"], padding=True, return_tensors="pt" |
|
) |
|
input_ids = encoding["input_ids"].to(self.device) |
|
attention_mask = encoding["attention_mask"].to(self.device) |
|
model_output = self.model( |
|
input_ids, attention_mask, output_hidden_states=True |
|
) |
|
data = model_output.hidden_states[-1] |
|
mask = attention_mask.unsqueeze(-1).expand(data.size()).float() |
|
masked_embeddings = data * mask |
|
sum_embeddings = torch.sum(masked_embeddings, dim=1) |
|
seq_length = torch.sum(mask, dim=1) |
|
embedding = sum_embeddings / seq_length |
|
normalized_embeddings = F.normalize(embedding, p=2, dim=1) |
|
ret = { |
|
"embedding": normalized_embeddings.tolist(), |
|
"token_num": torch.sum(attention_mask).item(), |
|
} |
|
else: |
|
embedding = [] |
|
token_num = 0 |
|
for text in params["input"]: |
|
input_ids = tokenizer.encode(text, return_tensors="pt").to( |
|
self.device |
|
) |
|
if is_t5: |
|
model_output = self.model( |
|
input_ids, decoder_input_ids=input_ids |
|
) |
|
else: |
|
model_output = self.model(input_ids, output_hidden_states=True) |
|
if is_chatglm: |
|
data = (model_output.hidden_states[-1].transpose(0, 1))[0] |
|
elif is_t5: |
|
data = model_output.encoder_last_hidden_state[0] |
|
else: |
|
data = model_output.hidden_states[-1][0] |
|
data = F.normalize(torch.mean(data, dim=0), p=2, dim=0) |
|
embedding.append(data.tolist()) |
|
token_num += len(input_ids[0]) |
|
ret = { |
|
"embedding": embedding, |
|
"token_num": token_num, |
|
} |
|
except torch.cuda.OutOfMemoryError as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, |
|
} |
|
except (ValueError, RuntimeError) as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.INTERNAL_ERROR, |
|
} |
|
return ret |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
def release_model_semaphore(): |
|
model_semaphore.release() |
|
|
|
|
|
def acquire_model_semaphore(): |
|
global model_semaphore, global_counter |
|
global_counter += 1 |
|
if model_semaphore is None: |
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) |
|
return model_semaphore.acquire() |
|
|
|
|
|
def create_background_tasks(): |
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(release_model_semaphore) |
|
return background_tasks |
|
|
|
|
|
|
|
@app.post("/worker_generate") |
|
async def api_generate(request: Request): |
|
params = await request.json() |
|
await acquire_model_semaphore() |
|
output = worker.generate_gate(params) |
|
release_model_semaphore() |
|
return JSONResponse(output) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def api_get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
|
|
|
|
|
|
@app.post("/model_details") |
|
async def model_details(request: Request): |
|
return {"context_length": worker.context_len} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21009) |
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21009") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
|
|
parser.add_argument( |
|
"--model-path", type=str, default="ram_swin_large_14m.pth" |
|
) |
|
|
|
parser.add_argument( |
|
"--model-names", |
|
default="ram", |
|
type=lambda s: s.split(","), |
|
help="Optional display comma separated names", |
|
) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--limit-model-concurrency", type=int, default=5) |
|
parser.add_argument("--stream-interval", type=int, default=2) |
|
parser.add_argument("--no-register", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
|
|
worker = ModelWorker( |
|
args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.no_register, |
|
args.model_path, |
|
args.model_names, |
|
args.device, |
|
) |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|