crystal-technologies's picture
Upload 303 files
de4ade4
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0
import logging
import os
from typing import Tuple, Union
import datasets as hf_datasets
import torch
from composer.utils import dist, get_file, parse_uri
from omegaconf import DictConfig
from torch.utils.data import DataLoader
from transformers import PreTrainedTokenizerBase
from llmfoundry.data.finetuning.collator import Seq2SeqFinetuningCollator
from llmfoundry.data.finetuning.tasks import dataset_constructor
from llmfoundry.data.packing import BinPackWrapper
log = logging.getLogger(__name__)
# HuggingFace hardcodes the ignore index to -100
_HF_IGNORE_INDEX = -100
def build_finetuning_dataloader(cfg: DictConfig,
tokenizer: PreTrainedTokenizerBase,
device_batch_size: int) -> DataLoader:
"""Builds a finetuning dataloader for training or evaluating.
The underlying dataset can be built through one of two code paths:
1. As a HuggingFace dataset, via `datasets.load_dataset(...)`
2. As a streaming dataset
You will need to set slightly different dataset config fields depending
on which you intend to use, as explained below.
Args:
cfg (DictConfig): An omegaconf dictionary used to configure the loader:
cfg.name (str): The type of dataloader to build. Must = "finetuning".
---
*** HuggingFace dataset config fields ***
cfg.dataset.hf_name (str, optional): The name of the HuggingFace dataset
to use. Can also be a remote http(s) directory or object store bucket
containing the file {split}.jsonl in the format (prompt, response),
in which case the builder will create a HuggingFace dataset.
cfg.dataset.hf_kwargs (DictConfig, optional): Additional kwargs to
pass to `datasets.load_dataset`, which can be used to load
a dataset from local files.
cfg.dataset.preprocessing_fn (str, optional): The name/import path of
the preprocessing function to use for formatting the data examples.
If ``None`` (default), the builder will use the preprocessing function
registered under `hf_name` (see `tasks.py`), if one exists,
otherwise it will skip preprocessing.
If `preprocessing_fn` corresponds to a registered preprocessing
function in `tasks.py`, the builder will use that.
Otherwise, it will interpret `preprocessing_fn` as a
"import.path:function_name" import path; e.g., it will call
`from import.path import function_name` and use the imported
function as the preprocessing function.
*** Streaming dataset config fields ***
cfg.dataset.remote (str, optional): Location of a MDS-formatted
streaming dataset to use. Setting this will tell the builder
to create a streaming dataset rather than a HuggingFace dataset.
cfg.dataset.local (str, optional): Local path where remote data
will be streamed to. Only valid if `cfg.dataset.remote` has
also been set.
*** Shared dataset configs fields ***
cfg.dataset.max_seq_len (int): The maximum length of sequences
in the batch. See :class:`Seq2SeqFinetuningCollator` docstring
for details.
cfg.dataset.decoder_only_format (bool): Whether to format the
examples for a decoder-only model. See :class:`Seq2SeqFinetuningCollator`
docstring for details.
cfg.dataset.allow_pad_trimming (bool, optional): Whether to allow
the collator to trim padding. See :class:`Seq2SeqFinetuningCollator`
docstring for details. Default: ``False``.
cfg.dataset.packing_ratio (float, optional): If provided, this invokes
a collator wrapper that packs `device_batch_size*packing_ratio`
raw examples into `device_batch_size` packed examples. This helps
minimize padding while preserving sequence integrity.
This adds `sequence_id` to the batch, which indicates which unique
sequence each token belongs to.
Note: Using this feature will not change device_batch_size but it
will determine the number of raw examples consumed by the dataloader
per batch. Some examples may be discarded if they do not fit when
packing.
Select `packing_ratio` **carefully** based on the dataset
statistics, `max_seq_len`, and tolerance for discarding samples!
The packing code in `../packing.py` provides a script that can help
you choose the best `packing_ratio`.
cfg.dataset.shuffle (bool): Whether to shuffle the dataset.
___
See :class:`StreamingFinetuningDataset` for info on other standard config
options within `cfg.dataset` that will be passed as kwargs if
using the streaming codepath.
---
See :class:`DataLoader` for standard argument options to the pytorch
dataloader, such as `cfg.drop_last`, `cfg.num_workers`, etc.
tokenizer (transformers.PreTrainedTokenizer): The tokenizer used to
prepare the data from raw text. Any missing sentinel tokens will
be added by the collator.
device_batch_size (int): The size of the batches (number of examples)
that the dataloader will produce.
Returns:
A pytorch dataloader
Note:
You can run the script inside `../packing.py` to quickly test the
padding/waste rates for different `cfg.dataset.packing_ratio` choices,
given a starting workload YAML.
"""
_validate_config(cfg.dataset)
# Use EOS as the pad token if none exists
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
dataset = None # for pyright
if cfg.dataset.get('remote') is not None:
dataset = dataset_constructor.build_from_streaming(
tokenizer=tokenizer,
local=cfg.dataset.local,
remote=cfg.dataset.get('remote', None),
split=cfg.dataset.get('split', None),
download_retry=cfg.dataset.get('download_retry', 2),
download_timeout=cfg.dataset.get('download_timeout', 60),
validate_hash=cfg.dataset.get('validate_hash', None),
keep_zip=cfg.dataset.get('keep_zip', False),
epoch_size=cfg.dataset.get('epoch_size', None),
predownload=cfg.dataset.get('predownload', None),
cache_limit=cfg.dataset.get('cache_limit', None),
partition_algo=cfg.dataset.get('partition_algo', 'orig'),
num_canonical_nodes=cfg.dataset.get('num_canonical_nodes', None),
batch_size=device_batch_size,
shuffle=cfg.dataset.get('shuffle', False),
shuffle_algo=cfg.dataset.get('shuffle_algo', 'py1b'),
shuffle_seed=cfg.dataset.get('shuffle_seed', 9176),
shuffle_block_size=cfg.dataset.get('shuffle_block_size', 1 << 18),
sampling_method=cfg.dataset.get('sampling_method', 'balanced'),
sampling_granularity=cfg.dataset.get('sampling_granularity', 1),
batching_method=cfg.dataset.get('batching_method', 'random'),
)
collate_fn, dataloader_batch_size = _build_collate_fn(
cfg.dataset, tokenizer, device_batch_size)
return DataLoader(
dataset,
collate_fn=collate_fn,
batch_size=dataloader_batch_size,
drop_last=cfg.drop_last,
num_workers=cfg.num_workers,
pin_memory=cfg.get('pin_memory', True),
prefetch_factor=cfg.get('prefetch_factor', 2),
persistent_workers=cfg.get('persistent_workers', True),
timeout=cfg.get('timeout', 0),
)
else:
backend, _, _ = parse_uri(cfg.dataset.hf_name)
if backend not in ['', None]:
if cfg.dataset.get('split') is None:
raise ValueError(
'When using a HuggingFace dataset from a URL, you must set the ' + \
'`split` key in the dataset config.'
)
dataset = _build_hf_dataset_from_remote(cfg, tokenizer)
else:
dataset = dataset_constructor.build_from_hf(
cfg.dataset,
max_seq_len=cfg.dataset.max_seq_len,
tokenizer=tokenizer,
)
collate_fn, dataloader_batch_size = _build_collate_fn(
cfg.dataset, tokenizer, device_batch_size)
if cfg.drop_last:
world_size = dist.get_world_size()
minimum_dataset_size = world_size * dataloader_batch_size
if hasattr(dataset, '__len__'):
full_dataset_size = len(dataset)
if full_dataset_size < minimum_dataset_size:
raise ValueError(
f'Your dataset (name={cfg.dataset.hf_name}, split={cfg.dataset.split}) '
+
f'has {full_dataset_size} samples, but your minimum batch size '
+
f'is {minimum_dataset_size} because you are running on {world_size} gpus and '
+
f'your per device batch size is {dataloader_batch_size}. Please increase the number '
+
f'of samples in your dataset to at least {minimum_dataset_size}.'
)
assert dataset is not None
return DataLoader(
dataset,
collate_fn=collate_fn,
batch_size=dataloader_batch_size,
drop_last=cfg.drop_last,
sampler=dist.get_sampler(dataset,
drop_last=cfg.drop_last,
shuffle=cfg.dataset.shuffle),
num_workers=cfg.num_workers,
pin_memory=cfg.get('pin_memory', True),
prefetch_factor=cfg.get('prefetch_factor', 2),
persistent_workers=cfg.get('persistent_workers', True),
timeout=cfg.get('timeout', 0),
)
def _validate_config(dataset_cfg: DictConfig) -> None:
"""Validates the dataset configuration.
Makes sure that the dataset is properly configured for either
a HuggingFace dataset or a streaming dataset. Must be valid for one or
the other.
Args:
dataset_cfg (DictConfig): The dataset configuration to be validated.
Raises:
ValueError: If the dataset configuration does not meet the requirements.
"""
if dataset_cfg.get('hf_name') is not None:
# Using the HuggingFace dataset codepath
illegal_keys = ['local', 'remote']
discovered_illegal_keys = []
for key in illegal_keys:
if dataset_cfg.get(key) is not None:
discovered_illegal_keys.append('`' + key + '`')
if discovered_illegal_keys:
raise ValueError(
'The dataset config sets a value for `hf_name` as well as the ' +\
f'following keys: {", ".join(discovered_illegal_keys)}.\n' +\
'Those keys are used when building from a streaming dataset, but ' +\
'setting `hf_name` instructs the dataset to build from a HuggingFace dataset.'
)
elif dataset_cfg.get('remote') is not None:
# Using the streaming dataset codepath
illegal_keys = ['hf_name', 'hf_kwargs', 'preprocessing_fn']
discovered_illegal_keys = []
for key in illegal_keys:
if dataset_cfg.get(key) is not None:
discovered_illegal_keys.append('`' + key + '`')
if discovered_illegal_keys:
raise ValueError(
'The dataset config sets a value for `remote` as well as the ' +\
f'following keys: {", ".join(discovered_illegal_keys)}.\n' +\
'Those keys are used when building from a HuggingFace dataset, but ' +\
'setting `remote` instructs the dataset to build from a streaming dataset.'
)
if dataset_cfg.get('local') is None:
raise ValueError(
'Using a streaming dataset requires setting both `remote` and `local`, ' +\
'but dataset.local is None.'
)
else:
raise ValueError(
'In the dataset config, you must set either `hf_name` to use a ' +\
'HuggingFace dataset or set `remote` to use a streaming ' +\
'dataset, but both were None.'
)
def _build_hf_dataset_from_remote(
cfg: DictConfig, tokenizer: PreTrainedTokenizerBase
) -> Union[hf_datasets.DatasetDict, hf_datasets.Dataset,
hf_datasets.IterableDatasetDict, hf_datasets.IterableDataset]:
"""Builds a dataset from a remote object store.
This function supports 'jsonl', 'csv', and 'parquet' file formats for the dataset. It will attempt to download
the dataset, then once it is downloaded, convert it into HuggingFace ``datasets`` format, and then return this
dataset.
The function also ensures synchronicity across multiple processes during the file download. It creates a signal
file that is used to synchronize the start of the download across different processes. Once the download is
completed, the function removes the signal file.
Args:
cfg (DictConfig): The configuration dictionary containing the necessary parameters to load the dataset.
This includes:
- dataset.hf_name: The path of the HuggingFace dataset to download.
- dataset.split: The dataset split to download (e.g., 'train', 'validation', 'test').
- dataset.max_seq_len: The maximum sequence length for tokenizing the dataset.
tokenizer (Tokenizer): The tokenizer to be used to tokenize the dataset.
Returns:
Dataset: A HuggingFace dataset built from the remote file, prepared and tokenized for fine-tuning the model.
Raises:
FileNotFoundError: Raised if the dataset file cannot be found with any of the supported extensions.
"""
supported_extensions = ['jsonl', 'csv', 'parquet']
# HF datasets does not support a split with dashes, so we replace dashes
# with underscores in the destination split.
destination_split = cfg.dataset.split.replace('-', '_')
finetune_dir = os.path.join(
os.path.dirname(
os.path.dirname(os.path.dirname(os.path.realpath(__file__)))),
'downloaded_finetuning',
destination_split if destination_split != 'data' else 'data_not',
)
os.makedirs(finetune_dir, exist_ok=True)
for extension in supported_extensions:
name = f'{cfg.dataset.hf_name.strip("/")}/{cfg.dataset.split}.{extension}'
destination = str(
os.path.abspath(
os.path.join(
finetune_dir, 'data',
f'{destination_split}-00000-of-00001.{extension}')))
# Since we don't know exactly what the extension will be, since it is one of a list
# use a signal file to wait for instead of the desired file
signal_file_path = os.path.join(
finetune_dir, f'.node_{dist.get_node_rank()}_local_rank0_completed')
if dist.get_local_rank() == 0:
try:
get_file(path=name, destination=destination, overwrite=True)
except FileNotFoundError as e:
if extension == supported_extensions[-1]:
files_searched = [
f'{cfg.dataset.hf_name}/{cfg.dataset.split}.{ext}'
for ext in supported_extensions
]
raise FileNotFoundError(
f'Could not find a file with any of ' + \
f'the supported extensions: {supported_extensions}\n' + \
f'at {files_searched}'
) from e
else:
log.debug(
f'Could not find {name}, looking for another extension')
continue
os.makedirs(os.path.dirname(signal_file_path), exist_ok=True)
with open(signal_file_path, 'wb') as f:
f.write(b'local_rank0_completed_download')
# Avoid the collective call until the local rank zero has finished trying to download the checkpoint
# so that we don't timeout for large downloads. This syncs all processes on the node
with dist.local_rank_zero_download_and_wait(signal_file_path):
# Then, wait to ensure every node has finished downloading the checkpoint
dist.barrier()
# clean up signal file
if dist.get_local_rank() == 0:
os.remove(signal_file_path)
dist.barrier()
cfg.dataset.hf_name = finetune_dir
log.info(cfg.dataset)
dataset = dataset_constructor.build_from_hf(
cfg.dataset,
max_seq_len=cfg.dataset.max_seq_len,
tokenizer=tokenizer,
)
return dataset
def _build_collate_fn(
dataset_cfg: DictConfig, tokenizer: PreTrainedTokenizerBase,
device_batch_size: int
) -> Tuple[Union[Seq2SeqFinetuningCollator, BinPackWrapper], int]:
collate_fn = Seq2SeqFinetuningCollator(
tokenizer=tokenizer,
max_seq_len=dataset_cfg.max_seq_len,
decoder_only_format=dataset_cfg.decoder_only_format,
allow_pad_trimming=dataset_cfg.get('allow_pad_trimming', False),
)
packing_ratio = dataset_cfg.get('packing_ratio')
if packing_ratio is None:
if dataset_cfg.get('max_leftover_bins_to_keep') is not None:
raise ValueError(
'dataset.max_leftover_bins_to_keep has been defined, ' +\
'but dataset.packing_ratio has not been set. Please set ' +\
'the latter to turn on packing or remove the former from the config.')
return collate_fn, device_batch_size
if packing_ratio == 1.0:
return collate_fn, device_batch_size
elif packing_ratio < 1.0:
raise ValueError('packing_ratio must be >= 1, if supplied')
if not dataset_cfg.decoder_only_format:
raise NotImplementedError(
'On-the-fly packing is currently only supported for decoder-only formats.'
)
collate_fn = BinPackWrapper(
collator=collate_fn,
target_batch_size=device_batch_size,
max_seq_len=dataset_cfg.max_seq_len,
pad_token_id=tokenizer.pad_token_id,
padding_side=tokenizer.padding_side,
max_leftover_bins_to_keep=dataset_cfg.get('max_leftover_bins_to_keep'),
)
n_examples_to_pack = int(device_batch_size * packing_ratio)
return collate_fn, n_examples_to_pack
if __name__ == '__main__':
import torch
from omegaconf import OmegaConf as om
from llmfoundry.utils import build_tokenizer
cfg = om.create({
'dataset': {
'hf_name':
'tatsu-lab/alpaca',
'preprocessing_fn':
'llmfoundry.data.finetuning.tasks:alpaca_preprocessing_function',
'split':
'train',
'packing_ratio':
18.0,
'max_seq_len':
2048,
'decoder_only_format':
True,
'separator_text':
False,
'allow_pad_trimming':
False,
'num_canonical_nodes':
472,
'shuffle':
True,
},
'drop_last': False,
'num_workers': 0,
'pin_memory': False,
'prefetch_factor': 2,
'persistent_workers': False,
'timeout': 0
})
tokenizer_name = 'EleutherAI/gpt-neox-20b'
tokenizer_kwargs = {'model_max_length': cfg.dataset.max_seq_len}
tokenizer = build_tokenizer(tokenizer_name, tokenizer_kwargs)
device_batch_size = 2
dataloader = build_finetuning_dataloader(cfg, tokenizer, device_batch_size)
packing = cfg.dataset.get('packing_ratio') is not None
for i, batch in enumerate(dataloader):
if i >= 5:
break
print(f'-----Batch {i}-----')
for k, v in batch.items():
if isinstance(v, torch.Tensor):
print(k, v.shape)
else:
print(k, v)
for j in range(device_batch_size):
print(f'--- Sample {j} ---')
if cfg.dataset.decoder_only_format:
if packing:
for subseq in range(int(batch['sequence_id'][j].max()) + 1):
is_subseq = batch['sequence_id'][j] == subseq
print(
'\033[93m{}\033[00m\n'.format('INPUT IDS:'),
tokenizer.decode(batch['input_ids'][
j,
torch.logical_and(
is_subseq, batch['attention_mask'][j] ==
1)],
skip_special_tokens=False))
print(
'\033[92m{}\033[00m\n'.format('CONTEXT: '),
tokenizer.decode(batch['input_ids'][
j,
torch.logical_and(
is_subseq, batch['bidirectional_mask'][j] ==
1)],
skip_special_tokens=False))
print(
'\033[91m{}\033[00m\n'.format('TARGET: '),
tokenizer.decode(batch['input_ids'][
j,
torch.logical_and(
is_subseq,
batch['labels'][j] != _HF_IGNORE_INDEX)],
skip_special_tokens=False))
else:
print(
'\033[93m{}\033[00m\n'.format('INPUT IDS:'),
tokenizer.decode(
batch['input_ids'][j,
batch['attention_mask'][j] == 1],
skip_special_tokens=False))
print(
'\033[92m{}\033[00m\n'.format('CONTEXT: '),
tokenizer.decode(batch['input_ids'][
j, batch['bidirectional_mask'][j] == 1],
skip_special_tokens=False))
print(
'\033[91m{}\033[00m\n'.format('TARGET: '),
tokenizer.decode(batch['input_ids'][
j, batch['labels'][j] != _HF_IGNORE_INDEX],
skip_special_tokens=False))
else:
print(
'\033[92m{}\033[00m\n'.format('CONTEXT: '),
tokenizer.decode(
batch['input_ids'][j, batch['attention_mask'][j] == 1],
skip_special_tokens=False))
print(
'\033[91m{}\033[00m\n'.format('TARGET: '),
tokenizer.decode(batch['labels'][
j, batch['decoder_attention_mask'][j] == 1],
skip_special_tokens=False))
print(' ')