crystal-technologies's picture
Upload 1287 files
2d8da09
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Utility methods to be used for training N-gram LM with KenLM in train_kenlm.py
The BPE sub-words are encoded using the Unicode table.
This encoding scheme reduces the required memory significantly, and the LM and its binary blob format require less storage space.
The value DEFAULT_TOKEN_OFFSET from nemo.collections.asr.parts.submodules.ctc_beam_decoding is utilized as the offset value.
"""
CHUNK_SIZE = 8192
CHUNK_BUFFER_SIZE = 512
import gzip
import json
import os
import numpy as np
import torch
from joblib import Parallel, delayed
from tqdm.auto import tqdm
import nemo.collections.asr as nemo_asr
from nemo.collections.asr.parts.submodules.ctc_beam_decoding import DEFAULT_TOKEN_OFFSET
from nemo.utils import logging
# List of the supported models to be used with N-gram LM and beam search decoding
SUPPORTED_MODELS = {
'EncDecCTCModelBPE': 'subword',
'EncDecCTCModel': 'char',
'EncDecRNNTBPEModel': 'subword',
'EncDecRNNTModel': 'char',
'EncDecHybridRNNTCTCBPEModel': 'subword',
'EncDecHybridRNNTCTCModel': 'char',
}
def softmax(x):
e = np.exp(x - np.max(x))
return e / e.sum(axis=-1).reshape([x.shape[0], 1])
def get_train_list(args_train_path):
train_path = []
for train_item in args_train_path:
if os.path.isdir(train_item):
file_list = os.listdir(train_item)
train_path.extend([os.path.join(train_item, file) for file in file_list])
elif os.path.isfile(train_item):
train_path.append(train_item)
return sorted(train_path)
def setup_tokenizer(nemo_model_file):
""" TOKENIZER SETUP
nemo_model_file (str): The path to the NeMo model file (.nemo).
"""
logging.info(f"Loading nemo model '{nemo_model_file}' ...")
if nemo_model_file.endswith('.nemo'):
model = nemo_asr.models.ASRModel.restore_from(nemo_model_file, map_location=torch.device('cpu'))
else:
logging.warning(
"tokenizer_model_file does not end with .model or .nemo, therefore trying to load a pretrained model with this name."
)
model = nemo_asr.models.ASRModel.from_pretrained(nemo_model_file, map_location=torch.device('cpu'))
is_aggregate_tokenizer = False
tokenizer_nemo = None
encoding_level = SUPPORTED_MODELS.get(type(model).__name__, None)
if not encoding_level:
logging.warning(
f"Model type '{type(model).__name__}' may not be supported. Would try to train a char-level LM."
)
encoding_level = 'char'
if encoding_level == 'subword':
if type(model.tokenizer).__name__ == 'AggregateTokenizer':
is_aggregate_tokenizer = True
tokenizer_nemo = model.tokenizer
del model
return tokenizer_nemo, encoding_level, is_aggregate_tokenizer
def iter_files(source_path, dest_path, tokenizer, encoding_level, is_aggregate_tokenizer, verbose):
if isinstance(dest_path, list):
paths = zip(dest_path, source_path)
else: # dest_path is stdin of KenLM
paths = [(dest_path, path) for path in source_path]
for dest_path, input_path in paths:
dataset = read_train_file(input_path, is_aggregate_tokenizer=is_aggregate_tokenizer, verbose=verbose)
if encoding_level == "subword":
tokenize_text(
data=dataset,
tokenizer=tokenizer,
path=dest_path,
chunk_size=CHUNK_SIZE,
buffer_size=CHUNK_BUFFER_SIZE,
)
else: # encoding_level == "char"
if isinstance(dest_path, str):
with open(dest_path, 'w', encoding='utf-8') as f:
for line in dataset:
f.write(line[0] + "\n")
else: # write to stdin of KenLM
for line in dataset:
dest_path.write((line[0] + '\n').encode())
def read_train_file(
path, is_aggregate_tokenizer: bool = False, verbose: int = 0,
):
lines_read = 0
text_dataset, lang_dataset = [], []
if path[-8:] == '.json.gz': # for Common Crawl dataset
fin = gzip.open(path, 'r')
else:
fin = open(path, 'r', encoding='utf-8')
if verbose > 0:
reader = tqdm(iter(lambda: fin.readline(), ''), desc="Read 0 lines", unit=' lines')
else:
reader = fin
for line in reader:
lang = None
if line:
if path[-8:] == '.json.gz': # for Common Crawl dataset
line = json.loads(line.decode('utf-8'))['text']
elif path.endswith('.json'):
jline = json.loads(line)
line = jline['text']
if is_aggregate_tokenizer:
lang = jline['lang']
line_list = line.split("\n")
line = " ".join(line_list)
if line:
text_dataset.append(line)
if lang:
lang_dataset.append(lang)
lines_read += 1
if verbose > 0 and lines_read % 100000 == 0:
reader.set_description(f"Read {lines_read} lines")
else:
break
fin.close()
if is_aggregate_tokenizer:
assert len(text_dataset) == len(
lang_dataset
), f"text_dataset length {len(text_dataset)} and lang_dataset length {len(lang_dataset)} must be the same!"
return list(zip(text_dataset, lang_dataset))
else:
return [[text] for text in text_dataset]
def tokenize_str(texts, tokenizer):
tokenized_text = []
for text in texts:
tok_text = tokenizer.text_to_ids(*text)
tok_text = [chr(token + DEFAULT_TOKEN_OFFSET) for token in tok_text]
tokenized_text.append(tok_text)
return tokenized_text
def tokenize_text(data, tokenizer, path, chunk_size=8192, buffer_size=32):
dataset_len = len(data)
current_step = 0
if isinstance(path, str) and os.path.exists(path):
os.remove(path)
with Parallel(n_jobs=-2, verbose=0) as parallel:
while True:
start = current_step * chunk_size
end = min((current_step + buffer_size) * chunk_size, dataset_len)
tokenized_data = parallel(
delayed(tokenize_str)(data[start : start + chunk_size], tokenizer)
for start in range(start, end, chunk_size)
)
# Write dataset
write_dataset(tokenized_data, path)
current_step += len(tokenized_data)
logging.info(
f"Finished writing {len(tokenized_data)} chunks to {path}. Current chunk index = {current_step}"
)
del tokenized_data
if end >= dataset_len:
break
def write_dataset(chunks, path):
if isinstance(path, str):
with open(path, 'a+', encoding='utf-8') as f:
for chunk_idx in tqdm(range(len(chunks)), desc='Chunk ', total=len(chunks), unit=' chunks'):
for text in chunks[chunk_idx]:
line = ' '.join(text)
f.write(f"{line}\n")
else: # write to stdin of KenLM
for chunk_idx in range(len(chunks)):
for text in chunks[chunk_idx]:
line = ' '.join(text)
path.write((line + '\n').encode())