crystal-technologies's picture
Upload 1287 files
2d8da09
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
python process_speech_commands_data.py \
--data_root=<absolute path to where the data should be stored> \
--data_version=<either 1 or 2, indicating version of the dataset> \
--class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \
--num_processes=<number of processes to use for data preprocessing> \
--rebalance \
--log
"""
import argparse
import glob
import json
import logging
import os
import re
import tarfile
import urllib.request
from collections import defaultdict
from functools import partial
from multiprocessing import Pool
from typing import Dict, List, Set, Tuple
import librosa
import numpy as np
import soundfile
from tqdm import tqdm
URL_v1 = 'http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz'
URL_v2 = 'http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz'
def __maybe_download_file(destination: str, source: str) -> str:
"""
Downloads source to destination if it doesn't exist.
If exists, skips download
Args:
destination: local filepath
source: url of resource
Returns:
Local filepath of the downloaded file
"""
if not os.path.exists(destination):
logging.info(f'{destination} does not exist. Downloading ...')
urllib.request.urlretrieve(source, filename=destination + '.tmp')
os.rename(destination + '.tmp', destination)
logging.info(f'Downloaded {destination}.')
else:
logging.info(f'Destination {destination} exists. Skipping.')
return destination
def __extract_all_files(filepath: str, data_dir: str):
if not os.path.exists(data_dir):
extract_file(filepath, data_dir)
else:
logging.info(f'Skipping extracting. Data already there {data_dir}')
def extract_file(filepath: str, data_dir: str):
try:
tar = tarfile.open(filepath)
tar.extractall(data_dir)
tar.close()
except Exception:
logging.info('Not extracting. Maybe already there?')
def __get_mp_chunksize(dataset_size: int, num_processes: int) -> int:
"""
Returns the number of chunks to split the dataset into for multiprocessing.
Args:
dataset_size: size of the dataset
num_processes: number of processes to use for multiprocessing
Returns:
Number of chunks to split the dataset into for multiprocessing
"""
chunksize = dataset_size // num_processes
return chunksize if chunksize > 0 else 1
def __construct_filepaths(
all_files: List[str],
valset_uids: Set[str],
testset_uids: Set[str],
class_split: str,
class_subset: List[str],
pattern: str,
) -> Tuple[Dict[str, int], Dict[str, List[tuple]], List[tuple], List[tuple], List[tuple], List[tuple], List[tuple]]:
"""
Prepares the filepaths for the dataset.
Args:
all_files: list of all files in the dataset
valset_uids: set of uids of files in the validation set
testset_uids: set of uids of files in the test set
class_split: whether to use all classes as distinct labels, or to use
10 classes subset and rest of the classes as noise or background
class_subset: list of classes to consider if `class_split` is set to `sub`
pattern: regex pattern to match the file names in the dataset
"""
label_count = defaultdict(int)
label_filepaths = defaultdict(list)
unknown_val_filepaths = []
unknown_test_filepaths = []
train, val, test = [], [], []
for entry in all_files:
r = re.match(pattern, entry)
if r:
label, uid = r.group(2), r.group(3)
if label == '_background_noise_' or label == 'silence':
continue
if class_split == 'sub' and label not in class_subset:
label = 'unknown'
if uid in valset_uids:
unknown_val_filepaths.append((label, entry))
elif uid in testset_uids:
unknown_test_filepaths.append((label, entry))
if uid not in valset_uids and uid not in testset_uids:
label_count[label] += 1
label_filepaths[label].append((label, entry))
if label == 'unknown':
continue
if uid in valset_uids:
val.append((label, entry))
elif uid in testset_uids:
test.append((label, entry))
else:
train.append((label, entry))
return {
'label_count': label_count,
'label_filepaths': label_filepaths,
'unknown_val_filepaths': unknown_val_filepaths,
'unknown_test_filepaths': unknown_test_filepaths,
'train': train,
'val': val,
'test': test,
}
def __construct_silence_set(
rng: np.random.RandomState, sampling_rate: int, silence_stride: int, data_folder: str, background_noise: str
) -> List[str]:
"""
Creates silence files given a background noise.
Args:
rng: Random state for random number generator
sampling_rate: sampling rate of the audio
silence_stride: stride for creating silence files
data_folder: folder containing the silence directory
background_noise: filepath of the background noise
Returns:
List of filepaths of silence files
"""
silence_files = []
if '.wav' in background_noise:
y, sr = librosa.load(background_noise, sr=sampling_rate)
for i in range(0, len(y) - sampling_rate, silence_stride):
file_path = f'silence/{os.path.basename(background_noise)[:-4]}_{i}.wav'
y_slice = y[i : i + sampling_rate] * rng.uniform(0.0, 1.0)
out_file_path = os.path.join(data_folder, file_path)
soundfile.write(out_file_path, y_slice, sr)
silence_files.append(('silence', out_file_path))
return silence_files
def __rebalance_files(max_count: int, label_filepath: str) -> Tuple[str, List[str], int]:
"""
Rebalance the number of samples for a class.
Args:
max_count: maximum number of samples for a class
label_filepath: list of filepaths for a class
Returns:
Rebalanced list of filepaths along with the label name and the number of samples
"""
command, samples = label_filepath
filepaths = [sample[1] for sample in samples]
rng = np.random.RandomState(0)
filepaths = np.asarray(filepaths)
num_samples = len(filepaths)
if num_samples < max_count:
difference = max_count - num_samples
duplication_ids = rng.choice(num_samples, difference, replace=True)
filepaths = np.append(filepaths, filepaths[duplication_ids], axis=0)
return command, filepaths, num_samples
def __prepare_metadata(skip_duration, sample: Tuple[str, str]) -> dict:
"""
Creates the manifest entry for a file.
Args:
skip_duration: Whether to skip the computation of duration
sample: Tuple of label and filepath
Returns:
Manifest entry of the file
"""
label, audio_path = sample
return json.dumps(
{
'audio_filepath': audio_path,
'duration': 0.0 if skip_duration else librosa.core.get_duration(filename=audio_path),
'command': label,
}
)
def __process_data(
data_folder: str,
dst_folder: str,
num_processes: int = 1,
rebalance: bool = False,
class_split: str = 'all',
skip_duration: bool = False,
):
"""
Processes the data and generates the manifests.
Args:
data_folder: source with wav files and validation / test lists
dst_folder: where manifest files will be stored
num_processes: number of processes
rebalance: rebalance the classes to have same number of samples
class_split: whether to use all classes as distinct labels, or to use
10 classes subset and rest of the classes as noise or background
skip_duration: Bool whether to skip duration computation. Use this only for
colab notebooks where knowing duration is not necessary for demonstration
"""
os.makedirs(dst_folder, exist_ok=True)
# Used for 10 classes + silence + unknown class setup - Only used when class_split is 'sub'
class_subset = ['yes', 'no', 'up', 'down', 'left', 'right', 'on', 'off', 'stop', 'go']
pattern = re.compile(r'(.+\/)?(\w+)\/([^_]+)_.+wav')
all_files = glob.glob(os.path.join(data_folder, '*/*wav'))
# Get files in the validation set
valset_uids = set()
with open(os.path.join(data_folder, 'validation_list.txt')) as fin:
for line in fin:
r = re.match(pattern, line)
if r:
valset_uids.add(r.group(3))
# Get files in the test set
testset_uids = set()
with open(os.path.join(data_folder, 'testing_list.txt')) as fin:
for line in fin:
r = re.match(pattern, line)
if r:
testset_uids.add(r.group(3))
logging.info('Validation and test set lists extracted')
filepath_info = __construct_filepaths(all_files, valset_uids, testset_uids, class_split, class_subset, pattern)
label_count = filepath_info['label_count']
label_filepaths = filepath_info['label_filepaths']
unknown_val_filepaths = filepath_info['unknown_val_filepaths']
unknown_test_filepaths = filepath_info['unknown_test_filepaths']
train = filepath_info['train']
val = filepath_info['val']
test = filepath_info['test']
logging.info('Prepared filepaths for dataset')
pool = Pool(num_processes)
# Add silence and unknown class label samples
if class_split == 'sub':
logging.info('Perforiming 10+2 class subsplit')
silence_path = os.path.join(data_folder, 'silence')
os.makedirs(silence_path, exist_ok=True)
silence_stride = 1000 # 0.0625 second stride
sampling_rate = 16000
folder = os.path.join(data_folder, '_background_noise_')
silence_files = []
rng = np.random.RandomState(0)
background_noise_files = [os.path.join(folder, x) for x in os.listdir(folder)]
silence_set_fn = partial(__construct_silence_set, rng, sampling_rate, silence_stride, data_folder)
for silence_flist in tqdm(
pool.imap(
silence_set_fn, background_noise_files, __get_mp_chunksize(len(background_noise_files), num_processes)
),
total=len(background_noise_files),
desc='Constructing silence set',
):
silence_files.extend(silence_flist)
rng = np.random.RandomState(0)
rng.shuffle(silence_files)
logging.info(f'Constructed silence set of {len(silence_files)}')
# Create the splits
rng = np.random.RandomState(0)
silence_split = 0.1
unknown_split = 0.1
# train split
num_total_samples = sum([label_count[cls] for cls in class_subset])
num_silence_samples = int(np.ceil(silence_split * num_total_samples))
# initialize sample
label_count['silence'] = 0
label_filepaths['silence'] = []
for silence_id in range(num_silence_samples):
label_count['silence'] += 1
label_filepaths['silence'].append(silence_files[silence_id])
train.extend(label_filepaths['silence'])
# Update train unknown set
unknown_train_samples = label_filepaths['unknown']
rng.shuffle(unknown_train_samples)
unknown_size = int(np.ceil(unknown_split * num_total_samples))
label_count['unknown'] = unknown_size
label_filepaths['unknown'] = unknown_train_samples[:unknown_size]
train.extend(label_filepaths['unknown'])
logging.info('Train set prepared')
# val set silence
num_val_samples = len(val)
num_silence_samples = int(np.ceil(silence_split * num_val_samples))
val_idx = label_count['silence'] + 1
for silence_id in range(num_silence_samples):
val.append(silence_files[val_idx + silence_id])
# Update val unknown set
rng.shuffle(unknown_val_filepaths)
unknown_size = int(np.ceil(unknown_split * num_val_samples))
val.extend(unknown_val_filepaths[:unknown_size])
logging.info('Validation set prepared')
# test set silence
num_test_samples = len(test)
num_silence_samples = int(np.ceil(silence_split * num_test_samples))
test_idx = val_idx + num_silence_samples + 1
for silence_id in range(num_silence_samples):
test.append(silence_files[test_idx + silence_id])
# Update test unknown set
rng.shuffle(unknown_test_filepaths)
unknown_size = int(np.ceil(unknown_split * num_test_samples))
test.extend(unknown_test_filepaths[:unknown_size])
logging.info('Test set prepared')
max_command = None
max_count = -1
for command, count in label_count.items():
if command == 'unknown':
continue
if count > max_count:
max_count = count
max_command = command
if rebalance:
logging.info(f'Command with maximum number of samples = {max_command} with {max_count} samples')
logging.info(f'Rebalancing dataset by duplicating classes with less than {max_count} samples...')
rebalance_fn = partial(__rebalance_files, max_count)
for command, filepaths, num_samples in tqdm(
pool.imap(rebalance_fn, label_filepaths.items(), __get_mp_chunksize(len(label_filepaths), num_processes)),
total=len(label_filepaths),
desc='Rebalancing dataset',
):
if num_samples < max_count:
logging.info(f'Extended class label {command} from {num_samples} samples to {len(filepaths)} samples')
label_filepaths[command] = [(command, filepath) for filepath in filepaths]
del train
train = []
for label, samples in label_filepaths.items():
train.extend(samples)
manifests = [
('train_manifest.json', train),
('validation_manifest.json', val),
('test_manifest.json', test),
]
metadata_fn = partial(__prepare_metadata, skip_duration)
for manifest_filename, dataset in manifests:
num_files = len(dataset)
logging.info(f'Preparing manifest : {manifest_filename} with #{num_files} files')
manifest = [
metadata
for metadata in tqdm(
pool.imap(metadata_fn, dataset, __get_mp_chunksize(len(dataset), num_processes)),
total=num_files,
desc=f'Preparing {manifest_filename}',
)
]
with open(os.path.join(dst_folder, manifest_filename), 'w') as fout:
for metadata in manifest:
fout.write(metadata + '\n')
logging.info(f'Finished construction of manifest. Path: {os.path.join(dst_folder, manifest_filename)}')
pool.close()
if skip_duration:
logging.info(
f'\n<<NOTE>> Duration computation was skipped for demonstration purposes on Colaboratory.\n'
f'In order to replicate paper results and properly perform data augmentation, \n'
f'please recompute the manifest file without the `--skip_duration` flag !\n'
)
def main():
parser = argparse.ArgumentParser(description='Google Speech Commands Data download and preprocessing')
parser.add_argument('--data_root', required=True, help='Root directory for storing data')
parser.add_argument(
'--data_version',
required=True,
default=1,
type=int,
choices=[1, 2],
help='Version of the speech commands dataset to download',
)
parser.add_argument(
'--class_split', default='all', choices=['all', 'sub'], help='Whether to consider all classes or only a subset'
)
parser.add_argument('--num_processes', default=1, type=int, help='Number of processes')
parser.add_argument('--rebalance', action='store_true', help='Rebalance the number of samples in each class')
parser.add_argument('--skip_duration', action='store_true', help='Skip computing duration of audio files')
parser.add_argument('--log', action='store_true', help='Generate logs')
args = parser.parse_args()
if args.log:
logging.basicConfig(level=logging.DEBUG)
data_root = args.data_root
data_set = f'google_speech_recognition_v{args.data_version}'
data_folder = os.path.join(data_root, data_set)
logging.info(f'Working on: {data_set}')
URL = URL_v1 if args.data_version == 1 else URL_v2
# Download and extract
if not os.path.exists(data_folder):
file_path = os.path.join(data_root, data_set + '.tar.bz2')
logging.info(f'Getting {data_set}')
__maybe_download_file(file_path, URL)
logging.info(f'Extracting {data_set}')
__extract_all_files(file_path, data_folder)
logging.info(f'Processing {data_set}')
__process_data(
data_folder,
data_folder,
num_processes=args.num_processes,
rebalance=args.rebalance,
class_split=args.class_split,
skip_duration=args.skip_duration,
)
logging.info('Done!')
if __name__ == '__main__':
main()