crystal-technologies's picture
Upload 1287 files
2d8da09
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This is the script to build Faiss retrieval index for KNN look up.
For more information about Faiss, check https://faiss.ai/
It requires the retrieval DB text data to be converted into `bin` and `idx` files by `preprocess_data_for_megatron.py` script.
Here is an example to using it:
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--devices=0,1,2,3 \
--batch_size=1280 \
--output_file=index.sav
```
It creates a index.sav which can be loaded by Faiss. It can look up the KNN chunk ids of the
DB dataset given the input embedding vector.
To use it in multiple stages, it follows the example as shown in
https://github.com/facebookresearch/faiss/blob/main/demos/demo_ondisk_ivf.py
stage-0: train on the dataset, example,
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--workers=2 \
--devices=0,1,2,3 \
--percent=0.9 \
--stage=0 \
--output_file=index_learned.save
```
stage-1: build partial indexes, each containing a fraction of the dataset. This can be done in parallel on several machines. example,
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--input_file=PATH_TO_DB_FILE \
--tokenizer-library=sentencepiece \
--tokenizer-model=tokenizer.model \
--train_index_size=128000 \
--train_chunk_size=51200 \
--workers=2 \
--devices=0,1,2,3 \
--percent=0.9 \
--stage=1 \
--shard_id=0 \
--total_shards=10 \
--learned_index=index_learned.save \
--output_file=index_shard2.save
```
stage-2: merge the shard indexes into one that is written directly to disk (needs not to fit in RAM), example
```python
python scripts/nlp_language_modeling/build_retrieval_index.py \
--stage=2 \
--learned_index=index_learned.save \
--shard_index_input=index_shard \
--output_file=index_final.save
```
"""
import argparse
import multiprocessing
import pathlib
import sys
import time
from multiprocessing import Pool
from typing import Union
import faiss
import numpy as np
import torch
from faiss.contrib.ondisk import merge_ondisk
from sentence_transformers import SentenceTransformer
from nemo.collections.nlp.data.language_modeling.megatron.indexed_retrieval_dataset import MMapRetrievalIndexedDataset
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.utils import logging
QUEUE_SIZE = 30
queue = multiprocessing.Queue(QUEUE_SIZE)
emb_queue = multiprocessing.Queue(QUEUE_SIZE)
def get_tokenizer(args):
tokenizer = get_nmt_tokenizer(
library=args.tokenizer_library,
model_name=args.tokenizer_type,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merge_file,
delimiter=args.delimiter,
)
if not hasattr(tokenizer, "pad_id"):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
elif hasattr(tokenizer, "pad_id") and (tokenizer.pad_id is None or tokenizer.pad_id < 0):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
return tokenizer
def process_sentence_chunks(
ds: MMapRetrievalIndexedDataset,
tokenizer,
chunk_size: int,
warm_up_size: int,
percent: float,
stage: Union[int, None],
workers: int,
shard_id: int,
total_shards: int,
):
"""
This function takes chunked tokens from the retrieval dataset and map it back to text.
In stage 0, it only loads the first `warm_up_size` chunks that is used for building the Faiss index structure.
In other stages, in addition to the warm_up_size chunks, it also sends the chunked text and add their embeddings into the index.
In stage 1, it divides the total work into `total_shards`, and process only at the `shard_id`. If the stage is None, it process all the chunks.
"""
total_chunks = ds.chunks
num_docs = len(ds._index.sizes)
assert len(ds._index.sizes) == len(ds._index._chunk_id_start)
if percent < 1.0:
use_num_docs = int(num_docs * percent)
logging.info(f"Use {use_num_docs} out of {num_docs} docs to build index")
total_chunks = ds._index._chunk_id_start[min(use_num_docs, num_docs - 1)]
logging.info(f"{total_chunks} chunks are used to build the index")
start = 0
if stage is None or stage == 0:
beg = time.time()
# only prepare the warmup batch for stage None and stage 0
assert warm_up_size < total_chunks
warm_chunk_ids = np.random.randint(0, total_chunks, warm_up_size)
warm_up_slices = []
for warm_up_id in warm_chunk_ids:
warm_up_slices.append(ds.get_chunk(warm_up_id, force_no_cont_ids=True))
with Pool(workers) as p:
sentences = p.map(tokenizer.ids_to_text, warm_up_slices)
end = time.time()
logging.info(f"token-to-text {total_chunks} chunks takes {end-beg}")
queue.put((sentences, None))
if stage == 0:
# first the task for stage 0
queue.put((None, None))
return
elif stage == 1:
shard_size = total_chunks // total_shards
splits = list(range(0, total_chunks, shard_size))
if shard_id < total_shards - 1:
start = splits[shard_id]
total_chunks = splits[shard_id + 1]
elif shard_id == total_shards - 1:
start = splits[shard_id]
total_chunks = total_chunks
else:
raise ValueError(f'{shard_id} bigger than {total_shards}')
logging.info(f'shard_id {shard_id}, create index from chunk {start} to {total_chunks}')
threshold = 0.1
with Pool(workers) as p:
while start < total_chunks:
if start / total_chunks > threshold:
logging.info(f"sentence processing {start / total_chunks} is done")
threshold += 0.1
slice_id = (start, min(start + chunk_size, total_chunks))
beg = time.time()
id_slices = ds.get_chunk(slice(*slice_id), force_no_cont_ids=True)
end = time.time()
logging.info(f"load {chunk_size} chunks takes {end-beg}")
start = min(start + chunk_size, total_chunks)
sentences = p.map(tokenizer.ids_to_text, id_slices)
end2 = time.time()
logging.info(f"tokenize {chunk_size} chunks takes {end2-end}")
queue.put((sentences, slice_id))
queue.put((None, None))
def get_sentence_chunks():
return queue.get()
def calculate_embedding(pool, batch_size):
while True:
sentences, slice_id = get_sentence_chunks()
if sentences is None:
break
beg = time.time()
emb = model.encode_multi_process(sentences=sentences, pool=pool, batch_size=batch_size)
end = time.time()
logging.info(f"one embedding {len(emb)} batch size takes {end-beg}")
emb_queue.put((emb, slice_id))
emb_queue.put((None, None))
def get_emb():
return emb_queue.get()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="build Faiss index",)
parser.add_argument(
'--input_file', type=str, required=False, help='Input file',
)
parser.add_argument(
'--train_index_size', type=int, required=False, help='The number of sentences that is used to train the index',
)
parser.add_argument(
'--train_chunk_size', type=int, default=10000, help='The sentences in chunks that is added to the index',
)
parser.add_argument(
'--sentence_transformer_model',
type=str,
default='bert-base-nli-mean-tokens',
help='sentence transformer to load',
)
parser.add_argument(
'--output_file', type=str, required=True, help='Output Faiss index file',
)
parser.add_argument(
'--percent', type=float, default=1.0, help='percent of documents used for building the search index',
)
parser.add_argument(
'--devices', type=str, default=None, help='delimited list input with cuda devices. Specify like 0,1,2'
)
parser.add_argument(
"--batch_size", type=int, default=4000, help="Batch size for encoding. Use max according to GPU MEM"
)
parser.add_argument("--subquantizers", type=int, default=8, help="Quantizer code size")
group = parser.add_argument_group(title='tokenizer')
group.add_argument(
'--tokenizer-library',
type=str,
required=False,
choices=['yttm', 'sentencepiece', 'megatron', 'huggingface', 'tabular'],
help='What tokenizer library to use.',
)
group.add_argument(
'--tokenizer-type', type=str, default=None, help='What type of tokenizer to use.',
)
group.add_argument(
'--tokenizer-model', type=str, default=None, help='Path to tokenizer model.',
)
group.add_argument('--no_pq', action='store_true', help="don't use the Product Quantizer")
group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file')
group.add_argument('--workers', type=int, default=None, help='number of workers to run tokenizer')
group.add_argument(
'--stage',
type=int,
default=None,
help='used for building the large index in multiple stages',
choices=[0, 1, 2],
)
group.add_argument('--faiss_factory', type=str, default=None, help="faiss index factory str")
group.add_argument('--faiss_factory_metric', type=str, default='IP', help="faiss index factory metric, l2 or IP")
group.add_argument('--shard_id', type=int, default=None, help='run the job to create the shard_id index')
group.add_argument('--total_shards', type=int, default=None, help='total number of faiss index shards')
group.add_argument(
'--learned_index', type=str, default=None, help='the learned faiss index file, which is prepared at stage 0'
)
group.add_argument(
'--shard_index_input', type=str, default=None, help='the shard faiss index files, which are created at stage 1'
)
group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).')
group.add_argument('--delimiter', type=str, default=None, help='delimiter used for tabular tokenizer')
args = parser.parse_args()
has_gpu = torch.cuda.is_available() and hasattr(faiss, "index_gpu_to_cpu")
if not hasattr(faiss, "index_gpu_to_cpu"):
logging.warning(
"faiss doesn't support gpu index. Please check https://github.com/facebookresearch/faiss/blob/main/INSTALL.md"
)
if args.stage == 2:
# combine shard index files into one
logging.info('loading trained index')
# construct the output index
index = faiss.read_index(args.learned_index)
input_file = pathlib.Path(args.shard_index_input)
path = input_file.parent
fname = input_file.name
all_files = [str(i) for i in pathlib.Path(path).glob(fname + '*')]
merge_ondisk(index, all_files, str(path / 'merged.index'))
faiss.write_index(index, args.output_file)
logging.info(f'Write to {args.output_file}, Size of Index : {index.ntotal}')
# consolidate it as one index
if args.devices is None or not torch.cuda.is_available():
device_list = None
else:
device_list = ['cuda:' + str(device) for device in args.devices.split(',')]
index = faiss.read_index(args.output_file)
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
sys.exit(0)
model = SentenceTransformer(args.sentence_transformer_model)
tokenizer = get_tokenizer(args)
ds = MMapRetrievalIndexedDataset(args.input_file, skip_warmup=True)
# make sure the dataset is padded as retrieval database
assert ds._index.retrieval_db
if args.stage is None or args.stage == 0:
if ds.chunks < args.train_index_size:
raise ValueError(
f"the train index size {args.train_index_size} is larger than the total number of chunks {ds.chunks} in the dataset"
)
# Where nlist is 4*sqrt(N) to 16*sqrt(N), with N the size of the dataset.
# This just clusters the vectors with k-means. You will need between 30*K and 256*K vectors for training (the more the better).
total_chunks = ds.chunks
if args.percent < 1.0:
num_docs = len(ds._index.sizes)
use_num_docs = int(num_docs * args.percent)
total_chunks = ds._index._chunk_id_start[min(use_num_docs, num_docs - 1)]
nlist = int(4 * np.sqrt(total_chunks))
assert 30 * nlist < args.train_index_size, f"need more training samples, at least {30 * nlist}"
process = multiprocessing.Process(
target=process_sentence_chunks,
args=(
ds,
tokenizer,
args.train_chunk_size,
args.train_index_size,
args.percent,
args.stage,
args.workers,
args.shard_id,
args.total_shards,
),
)
process.start()
if args.devices is None or not torch.cuda.is_available():
device_list = None
else:
device_list = ['cuda:' + str(device) for device in args.devices.split(',')]
pool = model.start_multi_process_pool(device_list)
emb_process = multiprocessing.Process(target=calculate_embedding, args=(pool, args.batch_size))
emb_process.start()
# get first batch of sentences to build up the index
# sentences = get_sentence_chunks()
if args.stage is None or args.stage == 0:
emb, slice_id = get_emb()
# initialize the Faiss index
# m is number of subquantizers. So vector of size D is broken into m sub-vectors of size D/m
m = args.subquantizers
k = 4 # num_nearest neighbors to get
quantizer = faiss.IndexFlatIP(emb.shape[1])
# 8 specifies that each sub-vector is encoded as 8 bits
if args.no_pq:
index = faiss.IndexIVFFlat(quantizer, emb.shape[1], nlist)
elif args.faiss_factory is not None:
if args.faiss_factory_metric == 'IP':
metric = faiss.METRIC_INNER_PRODUCT
else:
metric = faiss.METRIC_L2
index = faiss.index_factory(emb.shape[1], args.faiss_factory, metric)
else:
index = faiss.IndexIVFPQ(quantizer, emb.shape[1], nlist, m, 8)
if has_gpu:
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
elif args.stage == 1:
# stage 1, need to load the index from file
index = faiss.read_index(args.learned_index)
if has_gpu:
co = faiss.GpuMultipleClonerOptions()
co.useFloat16 = True
co.usePrecomputed = False
co.shard = True
index = faiss.index_cpu_to_all_gpus(index, co, ngpu=len(device_list))
else:
raise ValueError(f'should not come here')
if args.stage is not None:
logging.info(f'build index at stage {args.stage}')
if args.stage is None or args.stage == 0:
# train the index
beg = time.time()
index.train(emb)
end = time.time()
logging.info(f'Trained Index takes {end-beg}')
# just need to have the learned index
if has_gpu:
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
model.stop_multi_process_pool(pool)
process.join()
emb_process.join()
sys.exit(0)
while True:
emb, slice_id = get_emb()
if emb is None:
break
beg = time.time()
index.add_with_ids(emb, np.arange(slice_id[0], slice_id[1]).astype(np.int64))
end = time.time()
logging.info(f'add index {slice_id[0]} - {slice_id[1]} takes {end-beg}')
model.stop_multi_process_pool(pool)
process.join()
emb_process.join()
logging.info('Writing Index file')
if has_gpu:
index = faiss.index_gpu_to_cpu(index)
faiss.write_index(index, args.output_file)
logging.info(f'Size of Index : {index.ntotal}')