|
--- |
|
license: cc-by-sa-4.0 |
|
datasets: |
|
- csdc-atl/query-document-retrieval-full |
|
language: |
|
- zh |
|
--- |
|
|
|
# csdc-atl/doc2query |
|
|
|
This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). |
|
|
|
It can be used for: |
|
- **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. |
|
- **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
model_name = 'csdc-atl/doc2query' |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
text = "2014年12月9日,于洋转会至中超联赛球队广州富力。2015赛季初,于洋并没有出场机会。韩国中后卫张贤秀受伤后,主教练选择用金洋洋代替。足协杯4比0战胜贵州人和的比赛中,金洋洋打入两球。赛后,中国足协认定金洋洋在庆祝进球时使用侮辱性手势,将他禁赛四场。之后对阵山东鲁能的联赛,于洋迎来出场机会,首次代表广州富力出战正式比赛。从此开始,于洋得到了较为充足的出场时间。2015赛季于洋中超联赛出场17次、亚冠联赛1次,这18次出场中有17次为首发。2016赛季,于洋成为广州富力三后卫体系的主力,还曾担任队长。这个赛季,他在中超联赛出场25次、足协杯出场5次,联赛的25次出场中含22次首发。效力广州富力期间,他于2015年重返中国国家足球队。\n2016年12月30日,广州富力宣布于洋离队,加盟北京国安。有媒体透露,转会费在5000万至6000万元人民币之间。回归北京国安之后,于洋成为中后卫位置上的主力。2018年3月31日北京国安与北京人和的北京德比上,于洋第100次代表北京国安出场。他在比赛中打入一球,助球队4比0获胜。" |
|
|
|
|
|
def create_queries(para): |
|
input_ids = tokenizer.encode(para, return_tensors='pt') |
|
with torch.no_grad(): |
|
# Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality |
|
sampling_outputs = model.generate( |
|
input_ids=input_ids, |
|
max_length=64, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=10, |
|
num_return_sequences=10 |
|
) |
|
|
|
print("Paragraph:") |
|
print(para) |
|
|
|
print("\nSampling Outputs:") |
|
for i in range(len(sampling_outputs)): |
|
query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) |
|
print(f'{i + 1}: {query}') |
|
|
|
create_queries(text) |
|
|
|
# 1: 于洋在2016年重返中国国家足球队是在哪个球队效力? |
|
# 2: 于洋在2018年3月31日的北京德比上打入了几个球? |
|
# 3: 于洋在哪些比赛中有出场机会? |
|
# 4: 于洋在哪个比赛中打入了两球? |
|
# 5: 于洋在2015赛季中超联赛中出场次数和亚冠联赛中的首发次数分别是多少? |
|
# 6: 于洋在哪个比赛中打入了两球,帮助球队赢了这场比赛? |
|
# 7: 于洋在2018年3月31日北京国安与北京人和的北京德比上打进了几个进球? |
|
# 8: 于洋在2015赛季中超联赛和亚冠联赛中出场次数分别是多少? |
|
# 9: 于洋在广州富力期间曾担任什么职位? |
|
# 10: 于洋在哪些比赛中有出场机会? |
|
|
|
``` |
|
|
|
**Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. |
|
|
|
## Training |
|
This model fine-tuned [Langboat/mengzi-t5-base](https://huggingface.co/Langboat/mengzi-t5-base). |
|
|
|
The input-text was truncated to 768 word pieces. Output text was generated up to 64 word pieces. |
|
|
|
This model was trained on a (query, positive, negative) from the [CSDC query document retrieval dataset](https://huggingface.co/datasets/csdc-atl/query-document-retrieval-full). |
|
|