mms-1b-swagen-balanced-model

This model is a fine-tuned version of facebook/mms-1b-all on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2287
  • Wer: 0.1900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
16.6036 0.2392 100 4.9362 1.0067
8.5948 0.4785 200 4.2592 1.0
7.8678 0.7177 300 3.5876 1.0
5.2547 0.9569 400 0.3053 0.2088
0.5538 1.1962 500 0.2696 0.2008
0.5574 1.4354 600 0.2543 0.1941
0.5282 1.6746 700 0.2459 0.1941
0.4837 1.9139 800 0.2387 0.1931
0.4969 2.1531 900 0.2372 0.1996
0.5005 2.3923 1000 0.2337 0.1941
0.4712 2.6316 1100 0.2309 0.1921
0.4783 2.8708 1200 0.2287 0.1902
0.4406 3.1100 1300 0.2316 0.1916
0.463 3.3493 1400 0.2288 0.1892
0.448 3.5885 1500 0.2317 0.1914
0.4567 3.8278 1600 0.2293 0.1945

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/mms-1b-swagen-balanced-model

Finetuned
(214)
this model