w2v-bert-bem-bembaspeech-model

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the BEMBASPEECH - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2620
  • Wer: 0.5353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7066 0.2811 200 0.5066 0.7648
0.5538 0.5622 400 0.4313 0.7232
0.4574 0.8433 600 0.4102 0.6956
0.4084 1.1244 800 0.3529 0.6276
0.388 1.4055 1000 0.3004 0.5724
0.3803 1.6866 1200 0.3376 0.6477
0.367 1.9677 1400 0.2911 0.5802
0.3168 2.2488 1600 0.3106 0.5725
0.3227 2.5299 1800 0.2654 0.5348
0.3111 2.8110 2000 0.2621 0.5494
0.2823 3.0921 2200 0.2665 0.5422
0.2603 3.3732 2400 0.2623 0.5174
0.2735 3.6543 2600 0.2620 0.5353
0.2666 3.9353 2800 0.2753 0.5450
0.2248 4.2164 3000 0.2881 0.5818
0.2408 4.4975 3200 0.2748 0.5324

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
5
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/w2v-bert-bem-bembaspeech-model

Finetuned
(238)
this model