Model Card for mt5-base-multi-label-cs-iiib
This model is fine-tuned for multi-label text classification of Supportive Interactions in Instant Messenger dialogs of Adolescents in Czech.
Model Description
The model was fine-tuned on a dataset of Czech Instant Messenger dialogs of Adolescents. The classification is multi-label and the model outputs any combination of the tags:'NO TAG', 'Informační podpora', 'Emocionální podpora', 'Začlenění do skupiny', 'Uznání', 'Nabídka pomoci': as a string joined with ', ' (ordered alphabetically). Each label indicates the presence of that category of Supportive Interactions: 'no tag', 'informational support', 'emocional support', 'social companionship', 'appraisal', 'instrumental support'. The inputs of the model are: a target utterance and its bi-directional context; the label of the example is determined by the label of the target utterance.
- Developed by: Anonymous
- Language(s): multilingual
- Finetuned from: mt5-base
Model Sources
- Repository: https://github.com/chi2024submission
- Paper: Stay tuned!
Usage
Here is how to use this model to classify a context-window of a dialogue:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import torch
test_texts = ['Utterance2']
test_text_pairs = ['Utterance1;Utterance2;Utterance3']
checkpoint_path = "chi2024/mt5-base-multi-label-cs-iiib"
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)\
.to("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
def verbalize_input(text: str, text_pair: str) -> str:
return "Utterance: %s\nContext: %s" % (text, text_pair)
def predict_one(text, pair):
input_pair = verbalize_input(text, pair)
inputs = tokenizer(input_pair, return_tensors="pt", padding=True,
truncation=True, max_length=256).to(model.device)
outputs = model.generate(**inputs)
decoded = [text.split(",")[0].strip() for text in
tokenizer.batch_decode(outputs, skip_special_tokens=True)]
return decoded
dec = predict_one(test_texts[0], test_text_pairs[0])
print(dec)
- Downloads last month
- 105