metadata
tags:
- merge
- mergekit
- lazymergekit
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
base_model:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
license: cc-by-sa-4.0
Spaetzle-v12-7b
Spaetzle-v12-7b is a merge of the following models using LazyMergekit:
- flemmingmiguel/NeuDist-Ro-7B
- Blizado/discolm-mfto-7b-german-v0.1
- ResplendentAI/Flora_DPO_7B
- on the basis of mayflowergmbh/Wiedervereinigung-7b-dpo-laser
As expected, this is a little bit worse in general English tasks over Spaetzle-v12-7b, but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de) score of 64.81, but only
Metric | Value |
---|---|
Avg. | 69.36 |
AI2 Reasoning Challenge (25-Shot) | 65.96 |
HellaSwag (10-Shot) | 86.16 |
MMLU (5-Shot) | 63.48 |
TruthfulQA (0-shot) | 57.84 |
Winogrande (5-shot) | 80.03 |
GSM8k (5-shot) | 62.70 |
🧩 Configuration
models:
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
# no parameters necessary for base model
- model: flemmingmiguel/NeuDist-Ro-7B
parameters:
density: 0.60
weight: 0.30
- model: Blizado/discolm-mfto-7b-german-v0.1
parameters:
density: 0.65
weight: 0.40
- model: ResplendentAI/Flora_DPO_7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])