Spaetzle-v12-7b / README.md
cstr's picture
Update README.md
de8f831 verified
|
raw
history blame
2.71 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - flemmingmiguel/NeuDist-Ro-7B
  - Blizado/discolm-mfto-7b-german-v0.1
  - ResplendentAI/Flora_DPO_7B
base_model:
  - flemmingmiguel/NeuDist-Ro-7B
  - Blizado/discolm-mfto-7b-german-v0.1
  - ResplendentAI/Flora_DPO_7B
license: cc-by-sa-4.0

Spaetzle-v12-7b

Spaetzle-v12-7b is a merge of the following models using LazyMergekit:

As expected, this is a little bit worse in general English tasks over Spaetzle-v12-7b, but a tiny little bit better on German tasks, at least some: e.g. it reaches an EQ-Bench (de) score of 64.81, but only

Metric Value
Avg. 69.36
AI2 Reasoning Challenge (25-Shot) 65.96
HellaSwag (10-Shot) 86.16
MMLU (5-Shot) 63.48
TruthfulQA (0-shot) 57.84
Winogrande (5-shot) 80.03
GSM8k (5-shot) 62.70

🧩 Configuration

models:
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    # no parameters necessary for base model
  - model: flemmingmiguel/NeuDist-Ro-7B
    parameters:
      density: 0.60
      weight: 0.30
  - model: Blizado/discolm-mfto-7b-german-v0.1
    parameters:
      density: 0.65
      weight: 0.40
  - model: ResplendentAI/Flora_DPO_7B
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/Spaetzle-v12-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])