|
--- |
|
base_model: |
|
- cstr/llama3.1-8b-spaetzle-v59 |
|
- cstr/llama3.1-8b-spaetzle-v63 |
|
- cstr/llama3.1-8b-spaetzle-v66 |
|
- cstr/llama3.1-8b-spaetzle-v73 |
|
tags: |
|
- merge |
|
- mergekit |
|
license: llama3 |
|
language: |
|
- en |
|
- de |
|
library_name: transformers |
|
--- |
|
|
|
# llama3.1-8b-spaetzle-v74 |
|
|
|
llama3.1-8b-spaetzle-v74 is a merge of the following models: |
|
* [cstr/llama3.1-8b-spaetzle-v59](https://huggingface.co/cstr/llama3.1-8b-spaetzle-v59) |
|
* [cstr/llama3.1-8b-spaetzle-v63](https://huggingface.co/cstr/llama3.1-8b-spaetzle-v63) |
|
* [cstr/llama3.1-8b-spaetzle-v66](https://huggingface.co/cstr/llama3.1-8b-spaetzle-v66) |
|
* [cstr/llama3.1-8b-spaetzle-v73](https://huggingface.co/cstr/llama3.1-8b-spaetzle-v73) |
|
|
|
EQ-Bench v2_de: 68.05 169/171, en: 75.27 - which is not the best, but it produces decent answers for some trick questions, and i have a sweet spot for that ;) |
|
|
|
## 🧩 Configuration |
|
|
|
```yamlmodels: |
|
models: |
|
- model: cstr/llama3.1-8b-spaetzle-v59 |
|
parameters: |
|
weight: 0.3 |
|
density: 0.5 |
|
- model: cstr/llama3.1-8b-spaetzle-v63 |
|
parameters: |
|
weight: 0.15 |
|
density: 0.5 |
|
- model: cstr/llama3.1-8b-spaetzle-v66 |
|
parameters: |
|
weight: 0.15 |
|
density: 0.5 |
|
- model: cstr/llama3.1-8b-spaetzle-v73 |
|
parameters: |
|
weight: 0.4 |
|
density: 0.5 |
|
base_model: cstr/llama3.1-8b-spaetzle-v59 |
|
merge_method: della_linear |
|
parameters: |
|
int8_mask: true |
|
normalize: true |
|
epsilon: 0.1 |
|
lambda: 1.0 |
|
density: 0.7 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "cstr/llama3.1-8b-spaetzle-v74" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |