csukuangfj's picture
Update model card.
6e94afa
|
raw
history blame
5.21 kB
---
language: "en"
tags:
- icefall
- k2
- transducer
- aishell
- ASR
- stateless transducer
- PyTorch
license: "apache-2.0"
datasets:
- aishell
- aidatatang_200zh
metrics:
- WER
---
# Introduction
This repo contains pre-trained model using
<https://github.com/k2-fsa/icefall/pull/219>.
It is trained on [AIShell](https://www.openslr.org/33/) dataset
using modified transducer from [optimized_transducer](https://github.com/csukuangfj/optimized_transducer).
Also, it uses [aidatatang_200zh](http://www.openslr.org/62/) as extra training data.
## How to clone this repo
```
sudo apt-get install git-lfs
git clone https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01
cd icefall-aishell-transducer-stateless-modified-2-2022-03-01
git lfs pull
```
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later.
The model in this repo is trained using the commit `TODO`.
You can use
```
git clone https://github.com/k2-fsa/icefall
cd icefall
git checkout TODO
```
to download `icefall`.
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/TODO/egs/aishell/ASR/transducer_stateless_modified-2/train.py#L232>.
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward;
the decoder contains a 512-dim embedding layer and a Conv1d with kernel size 2.
The decoder architecture is modified from
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419).
A Conv1d layer is placed right after the input embedding layer.
-----
## Description
This repo provides pre-trained transducer Conformer model for the AIShell dataset
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless
and contains only an embedding layer and a Conv1d.
The commands for training are:
```bash
cd egs/aishell/ASR
./prepare.sh --stop-stage 6
./prepare_aidatatang_200zh.sh
export CUDA_VISIBLE_DEVICES="0,1,2"
./transducer_stateless_modified-2/train.py \
--world-size 3 \
--num-epochs 90 \
--start-epoch 0 \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 250 \
--lr-factor 2.0 \
--context-size 2 \
--modified-transducer-prob 0.25 \
--datatang-prob 0.2
```
The tensorboard training log can be found at
<https://tensorboard.dev/experiment/oG72ZlWaSGua6fXkcGRRjA/>
The commands for decoding are
```bash
# greedy search
for epoch in 89; do
for avg in 38; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 100 \
--context-size 2 \
--decoding-method greedy_search \
--max-sym-per-frame 1
done
done
# modified beam search
for epoch in 89; do
for avg in 38; do
./transducer_stateless_modified-2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless_modified-2/exp-2 \
--max-duration 100 \
--context-size 2 \
--decoding-method modified_beam_search \
--beam-size 4
done
done
```
You can find the decoding log for the above command in this
repo (in the folder [log][log]).
The WER for the test dataset is
| | test |comment |
|------------------------|------|----------------------------------------------------------------|
| greedy search | 4.94 |--epoch 89, --avg 38, --max-duration 100, --max-sym-per-frame 1 |
| modified beam search | 4.68 |--epoch 89, --avg 38, --max-duration 100 --beam-size 4 |
# File description
- [log][log], this directory contains the decoding log and decoding results
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model
- [data][data], this directory contains files generated by [prepare.sh][prepare]
- [exp][exp], this directory contains only one file: `preprained.pt`
`exp/pretrained.pt` is generated by the following command:
```bash
epoch=89
avg=38
./transducer_stateless_modified-2/export.py \
--exp-dir ./transducer_stateless_modified-2/exp-2 \
--lang-dir ./data/lang_char \
--epoch $epoch \
--avg $avg
```
**HINT**: To use `pretrained.pt` to compute the WER for the `test` dataset,
just do the following:
```bash
cp icefall-aishell-transducer-stateless-modified-2-2022-03-01/exp/pretrained.pt \
/path/to/icefall/egs/aishell/ASR/transducer_stateless_modified-2/exp/epoch-999.pt
```
and pass `--epoch 999 --avg 1` to `transducer_stateless_modified-2/decode.py`.
[icefall]: https://github.com/k2-fsa/icefall
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/aishell/ASR/prepare.sh
[exp]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/exp
[data]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/data
[test_wavs]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/test_wavs
[log]: https://huggingface.co/csukuangfj/icefall-aishell-transducer-stateless-modified-2-2022-03-01/tree/main/log
[icefall]: https://github.com/k2-fsa/icefall