|
# Introduction |
|
|
|
This repo contains pre-trained model using |
|
<https://github.com/k2-fsa/icefall/pull/213>. |
|
|
|
It is trained on train-clean-100 subset of the LibriSpeech dataset. |
|
Also, it uses the `S` subset from GigaSpeech as extra training data. |
|
|
|
## How to clone this repo |
|
``` |
|
sudo apt-get install git-lfs |
|
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21 |
|
|
|
cd icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21 |
|
git lfs pull |
|
``` |
|
|
|
**Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later. |
|
|
|
The model in this repo is trained using the commit `2332ba312d7ce72f08c7bac1e3312f7e3dd722dc`. |
|
|
|
You can use |
|
|
|
``` |
|
git clone https://github.com/k2-fsa/icefall |
|
cd icefall |
|
git checkout 2332ba312d7ce72f08c7bac1e3312f7e3dd722dc |
|
``` |
|
to download `icefall`. |
|
|
|
You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/2332ba312d7ce72f08c7bac1e3312f7e3dd722dc/egs/librispeech/ASR/transducer_stateless_multi_datasets/train.py#L198>. |
|
|
|
In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; |
|
the decoder contains a 1024-dim embedding layer and a Conv1d with kernel size 2. |
|
|
|
The decoder architecture is modified from |
|
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419). |
|
A Conv1d layer is placed right after the input embedding layer. |
|
|
|
----- |
|
|
|
## Description |
|
|
|
This repo provides pre-trained transducer Conformer model for the LibriSpeech dataset |
|
using [icefall][icefall]. There are no RNNs in the decoder. The decoder is stateless |
|
and contains only an embedding layer and a Conv1d. |
|
|
|
The commands for training are: |
|
|
|
``` |
|
cd egs/librispeech/ASR/ |
|
./prepare.sh |
|
./prepare_giga_speech.sh |
|
|
|
export CUDA_VISIBLE_DEVICES="0,1" |
|
|
|
./transducer_stateless_multi_datasets/train.py \ |
|
--world-size 2 \ |
|
--num-epochs 60 \ |
|
--start-epoch 0 \ |
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \ |
|
--full-libri 0 \ |
|
--max-duration 300 \ |
|
--lr-factor 1 \ |
|
--bpe-model data/lang_bpe_500/bpe.model \ |
|
--modified-transducer-prob 0.25 |
|
--giga-prob 0.2 |
|
``` |
|
|
|
The tensorboard training log can be found at |
|
<https://tensorboard.dev/experiment/qUEKzMnrTZmOz1EXPda9RA/> |
|
|
|
The command for decoding is: |
|
``` |
|
epoch=57 |
|
avg=17 |
|
|
|
## greedy search |
|
for epoch in 57; do |
|
for avg in 17; do |
|
for sym in 1 2 3; do |
|
./transducer_stateless_multi_datasets/decode.py \ |
|
--epoch $epoch \ |
|
--avg $avg \ |
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \ |
|
--bpe-model ./data/lang_bpe_500/bpe.model \ |
|
--max-duration 100 \ |
|
--context-size 2 \ |
|
--max-sym-per-frame $sym |
|
done |
|
done |
|
done |
|
|
|
## modified beam search |
|
|
|
epoch=57 |
|
avg=17 |
|
./transducer_stateless_multi_datasets/decode.py \ |
|
--epoch $epoch \ |
|
--avg $avg \ |
|
--exp-dir transducer_stateless_multi_datasets/exp-100-2 \ |
|
--bpe-model ./data/lang_bpe_500/bpe.model \ |
|
--max-duration 100 \ |
|
--context-size 2 \ |
|
--decoding-method modified_beam_search \ |
|
--beam-size 4 |
|
``` |
|
|
|
You can find the decoding log for the above command in this |
|
repo (in the folder `log`). |
|
|
|
The WERs for the test datasets are |
|
|
|
| | test-clean | test-other | comment | |
|
|-------------------------------------|------------|------------|------------------------------------------| |
|
| greedy search (max sym per frame 1) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | |
|
| greedy search (max sym per frame 2) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | |
|
| greedy search (max sym per frame 3) | 6.34 | 16.7 | --epoch 57, --avg 17, --max-duration 100 | |
|
| modified beam search (beam size 4) | 6.31 | 16.3 | --epoch 57, --avg 17, --max-duration 100 | |
|
|
|
|
|
# File description |
|
|
|
- [log][log], this directory contains the decoding log and decoding results |
|
- [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model |
|
- [data][data], this directory contains files generated by [prepare.sh][prepare] |
|
- [exp][exp], this directory contains only one file: `preprained.pt` |
|
|
|
`exp/pretrained.pt` is generated by the following command: |
|
|
|
```bash |
|
./transducer_stateless_multi_datasets/export.py \ |
|
--epoch 57 \ |
|
--avg 17 \ |
|
--bpe-model data/lang_bpe_500/bpe.model \ |
|
--exp-dir transducer_stateless_multi_datasets/exp-full |
|
``` |
|
|
|
**HINT**: To use `pretrained.pt` to compute the WER for test-clean and test-other, |
|
just do the following: |
|
``` |
|
cp icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/exp/pretrained.pt \ |
|
/path/to/icefall/egs/librispeech/ASR/transducer_stateless_multi_datasets/exp/epoch-999.pt |
|
``` |
|
and pass `--epoch 999 --avg 1` to `transducer_stateless_multi_datasets/decode.py`. |
|
|
|
|
|
[icefall]: https://github.com/k2-fsa/icefall |
|
[prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh |
|
[exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/exp |
|
[data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/data |
|
[test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/test_wavs |
|
[log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-100h-transducer-stateless-multi-datasets-bpe-500-2022-02-21/tree/main/log |
|
[icefall]: https://github.com/k2-fsa/icefall |
|
|