|
# How to use dynamic shape function |
|
|
|
## Model Source |
|
The model used in this example come from the following open source projects: |
|
https://github.com/shicai/MobileNet-Caffe |
|
|
|
## Script Usage |
|
*Usage:* |
|
``` |
|
python test.py |
|
``` |
|
*Description:* |
|
- The default target platform in script is 'rk3566', please modify the 'target_platform' parameter of 'rknn.config' according to the actual platform. |
|
- If connecting board is required, please add the 'target' parameter in 'rknn.init_runtime'. |
|
- The 'dynamic_input' parameter of 'rknn.config' is set to: |
|
``` |
|
dynamic_input = [ |
|
[[1,3,256,256]], # set 1: [input0_256] |
|
[[1,3,160,160]], # set 2: [input0_160] |
|
[[1,3,224,224]], # set 3: [input0_224] |
|
] |
|
``` |
|
to simulate models with dynamic input shapes. |
|
|
|
## Expected Results |
|
This example will print the TOP5 labels and corresponding scores of the test image classification results for each different input shape, as follows: |
|
``` |
|
--> Running model with input shape [1,3,224,224] |
|
GraphPreparing : 100%|ββββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 4764.33it/s] |
|
SessionPreparing : 100%|βββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 366.73it/s] |
|
-----TOP 5----- |
|
[155] score:0.993652 class:"Shih-Tzu" |
|
[154] score:0.002277 class:"Pekinese, Pekingese, Peke" |
|
[204] score:0.002277 class:"Lhasa, Lhasa apso" |
|
[283] score:0.000673 class:"Persian cat" |
|
[196] score:0.000109 class:"miniature schnauzer" |
|
--> Running model with input shape [1,3,160,160] |
|
GraphPreparing : 100%|ββββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 9800.88it/s] |
|
SessionPreparing : 100%|ββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 1296.61it/s] |
|
-----TOP 5----- |
|
[155] score:0.963867 class:"Shih-Tzu" |
|
[154] score:0.029099 class:"Pekinese, Pekingese, Peke" |
|
[204] score:0.006393 class:"Lhasa, Lhasa apso" |
|
[194] score:0.000415 class:"Dandie Dinmont, Dandie Dinmont terrier" |
|
[219] score:0.000090 class:"cocker spaniel, English cocker spaniel, cocker" |
|
--> Running model with input shape [1,3,256,256] |
|
GraphPreparing : 100%|ββββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 8788.48it/s] |
|
SessionPreparing : 100%|ββββββββββββββββββββββββββββββββββββββββ| 104/104 [00:00<00:00, 1404.91it/s] |
|
-----TOP 5----- |
|
[155] score:0.981445 class:"Shih-Tzu" |
|
[154] score:0.008896 class:"Pekinese, Pekingese, Peke" |
|
[204] score:0.004169 class:"Lhasa, Lhasa apso" |
|
[193] score:0.000783 class:"Australian terrier" |
|
[283] score:0.000783 class:"Persian cat" |
|
``` |
|
- Note: Different platforms, different versions of tools and drivers may have slightly different results. |