|
import numpy as np |
|
import cv2 |
|
from rknn.api import RKNN |
|
|
|
|
|
def show_outputs(outputs): |
|
output_ = outputs[0].reshape((-1, 1000)) |
|
fp = open('./labels.txt', 'r') |
|
labels = fp.readlines() |
|
for output in output_: |
|
index = sorted(range(len(output)), key=lambda k : output[k], reverse=True) |
|
top5_str = '-----TOP 5-----\n' |
|
for i in range(5): |
|
value = output[index[i]] |
|
if value > 0: |
|
topi = '[{:>3d}] score:{:.6f} class:"{}"\n'.format(index[i], value, labels[index[i]].strip().split(':')[-1]) |
|
else: |
|
topi = '[ -1]: 0.0\n' |
|
top5_str += topi |
|
print(top5_str.strip()) |
|
|
|
|
|
def show_perfs(perfs): |
|
perfs = 'perfs: {}\n'.format(outputs) |
|
print(perfs) |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
rknn = RKNN(verbose=True) |
|
|
|
|
|
|
|
dynamic_input = [ |
|
[[1,3,256,256]], |
|
[[1,3,160,160]], |
|
[[1,3,224,224]], |
|
] |
|
|
|
|
|
print('--> Config model') |
|
rknn.config(mean_values=[103.94, 116.78, 123.68], std_values=[58.82, 58.82, 58.82], quant_img_RGB2BGR=True, target_platform='rk3566', dynamic_input=dynamic_input) |
|
print('done') |
|
|
|
|
|
print('--> Loading model') |
|
ret = rknn.load_caffe(model='../../caffe/mobilenet_v2/mobilenet_v2_deploy.prototxt', |
|
blobs='../../caffe/mobilenet_v2/mobilenet_v2.caffemodel') |
|
if ret != 0: |
|
print('Load model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Building model') |
|
ret = rknn.build(do_quantization=True, dataset='../../caffe/mobilenet_v2/dataset.txt') |
|
if ret != 0: |
|
print('Build model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Export rknn model') |
|
ret = rknn.export_rknn('./mobilenet_v2.rknn') |
|
if ret != 0: |
|
print('Export rknn model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
print('--> Init runtime environment') |
|
ret = rknn.init_runtime() |
|
if ret != 0: |
|
print('Init runtime environment failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
|
|
img = cv2.imread('./dog_224x224.jpg') |
|
|
|
|
|
print('\n--> Running model with input shape [1,3,224,224]') |
|
img2 = cv2.resize(img, (224,224)) |
|
img2 = np.expand_dims(img2, 0) |
|
img2 = np.transpose(img2, (0,3,1,2)) |
|
outputs = rknn.inference(inputs=[img2], data_format=['nchw']) |
|
np.save('./functions_dynamic_shape_0.npy', outputs[0]) |
|
show_outputs(outputs) |
|
|
|
print('--> Running model with input shape [1,3,160,160]') |
|
img3 = cv2.resize(img, (160,160)) |
|
img3 = np.expand_dims(img3, 0) |
|
img3 = np.transpose(img3, (0,3,1,2)) |
|
outputs = rknn.inference(inputs=[img3], data_format=['nchw']) |
|
np.save('./functions_dynamic_shape_1.npy', outputs[0]) |
|
show_outputs(outputs) |
|
|
|
print('--> Running model with input shape [1,3,256,256]') |
|
img4 = cv2.resize(img, (256,256)) |
|
img4 = np.expand_dims(img4, 0) |
|
img4 = np.transpose(img4, (0,3,1,2)) |
|
outputs = rknn.inference(inputs=[img4], data_format=['nchw']) |
|
np.save('./functions_dynamic_shape_2.npy', outputs[0]) |
|
show_outputs(outputs) |
|
|
|
print('done') |
|
|
|
rknn.release() |
|
|