csukuangfj
first commit
477da44
The directory structure of examples is as follows:
.
β”œβ”€β”€ caffe
β”‚ β”œβ”€β”€ mobilenet_v2 # mobilenet_v2 float model
β”‚ └── vgg-ssd # vgg-ssd float model
β”œβ”€β”€ onnx
β”‚ β”œβ”€β”€ resnet50v2 # resnet50v2 float model
β”‚ └── yolov5 # yolov5 float model
β”œβ”€β”€ pytorch
β”‚ β”œβ”€β”€ resnet18 # resnet18 float model
β”‚ β”œβ”€β”€ resnet18_qat # resnet18 QAT model
β”‚ β”œβ”€β”€ resnet18_export_onnx # how to export onnx model from pytorch
β”‚ └── yolov5 # yolov5 float model
β”œβ”€β”€ tensorflow
β”‚ β”œβ”€β”€ ssd_mobilenet_v1 # ssd_mobilenet_v1 float model
β”‚ └── inception_v3_qat # inception_v3 QAT model
β”œβ”€β”€ tflite
β”‚ β”œβ”€β”€ mobilenet_v1 # mobilenet_v1 float model
β”‚ └── mobilenet_v1_qat # mobilenet_v1 QAT model
β”œβ”€β”€ darknet
β”‚ └── yolov3_416x416 # yolov3 float model
└── functions
β”œβ”€β”€ accuracy_analysis # how to use accuracy-analysis function
β”œβ”€β”€ codegen # how to generate c++ deployment demo when converting model
β”œβ”€β”€ custom_op # How to use custom_op function
β”œβ”€β”€ dynamic_shape # how to use dynamic shape function
β”œβ”€β”€ hybrid_quant # how to use hybrid-quantization function
β”œβ”€β”€ model_pruning # how to use model_pruning function
β”œβ”€β”€ multi_batch # how to expand batch for use multi-batch function
β”œβ”€β”€ multi_input # How to convert multi-input model
β”œβ”€β”€ npu_device_test # how to test npu device by connect the board
β”œβ”€β”€ onnx_edit # how to use onnx_edit function
└── quantize_algorithm_mmse # how to use MMSE quantize algorithm