csukuangfj
first commit
477da44
// Copyright (c) 2022 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*-------------------------------------------
Includes
-------------------------------------------*/
#include "rknn_api.h"
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb/stb_image.h"
#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include <stb/stb_image_resize.h>
#include "cnpy/cnpy.h"
using namespace cnpy;
/*-------------------------------------------
Functions
-------------------------------------------*/
static inline int64_t getCurrentTimeUs()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
{
uint32_t i, j;
uint32_t top_count = outputCount > topNum ? topNum : outputCount;
for (i = 0; i < topNum; ++i) {
pfMaxProb[i] = -FLT_MAX;
pMaxClass[i] = -1;
}
for (j = 0; j < top_count; j++) {
for (i = 0; i < outputCount; i++) {
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
(i == *(pMaxClass + 4))) {
continue;
}
if (pfProb[i] > *(pfMaxProb + j)) {
*(pfMaxProb + j) = pfProb[i];
*(pMaxClass + j) = i;
}
}
}
return 1;
}
static void dump_tensor_attr(rknn_tensor_attr* attr)
{
std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]);
for (int i = 1; i < attr->n_dims; ++i) {
shape_str += ", " + std::to_string(attr->dims[i]);
}
printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, "
"type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride,
attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
static unsigned char* load_npy(const char* input_path, rknn_tensor_attr* input_attr, int* input_type, int* input_size)
{
int req_height = 0;
int req_width = 0;
int req_channel = 0;
printf("Loading %s\n", input_path);
switch (input_attr->fmt) {
case RKNN_TENSOR_NHWC:
req_height = input_attr->dims[1];
req_width = input_attr->dims[2];
req_channel = input_attr->dims[3];
break;
case RKNN_TENSOR_NCHW:
req_height = input_attr->dims[2];
req_width = input_attr->dims[3];
req_channel = input_attr->dims[1];
break;
case RKNN_TENSOR_UNDEFINED:
break;
default:
printf("meet unsupported layout\n");
return NULL;
}
NpyArray npy_data = npy_load(input_path);
int type_bytes = npy_data.word_size;
std::string typeName = npy_data.typeName;
printf("npy data type:%s\n", typeName.c_str());
if (typeName == "int8") {
*input_type = RKNN_TENSOR_INT8;
} else if (typeName == "uint8") {
*input_type = RKNN_TENSOR_UINT8;
} else if (typeName == "float16") {
*input_type = RKNN_TENSOR_FLOAT16;
} else if (typeName == "float32") {
*input_type = RKNN_TENSOR_FLOAT32;
} else if (typeName == "8") {
*input_type = RKNN_TENSOR_BOOL;
} else if (typeName == "int64") {
*input_type = RKNN_TENSOR_INT64;
}
// npy shape = NHWC
int npy_shape[4] = {1, 1, 1, 1};
int start = npy_data.shape.size() == 4 ? 0 : 1;
for (size_t i = 0; i < npy_data.shape.size() && i < 4; ++i) {
npy_shape[start + i] = npy_data.shape[i];
}
int height = npy_shape[1];
int width = npy_shape[2];
int channel = npy_shape[3];
if ((input_attr->fmt != RKNN_TENSOR_UNDEFINED) &&
(width != req_width || height != req_height || channel != req_channel)) {
printf("npy shape match failed!, (%d, %d, %d) != (%d, %d, %d)\n", height, width, channel, req_height, req_width,
req_channel);
return NULL;
}
unsigned char* data = (unsigned char*)malloc(npy_data.num_bytes());
if (!data) {
return NULL;
}
// TODO: copy
memcpy(data, npy_data.data<unsigned char>(), npy_data.num_bytes());
*input_size = npy_data.num_bytes();
return data;
}
static void save_npy(const char* output_path, float* output_data, rknn_tensor_attr* output_attr)
{
std::vector<size_t> output_shape;
for (uint32_t i = 0; i < output_attr->n_dims; ++i) {
output_shape.push_back(output_attr->dims[i]);
}
npy_save<float>(output_path, output_data, output_shape);
}
static unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr)
{
int req_height = 0;
int req_width = 0;
int req_channel = 0;
switch (input_attr->fmt) {
case RKNN_TENSOR_NHWC:
req_height = input_attr->dims[1];
req_width = input_attr->dims[2];
req_channel = input_attr->dims[3];
break;
case RKNN_TENSOR_NCHW:
req_height = input_attr->dims[2];
req_width = input_attr->dims[3];
req_channel = input_attr->dims[1];
break;
default:
printf("meet unsupported layout\n");
return NULL;
}
int height = 0;
int width = 0;
int channel = 0;
unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel);
if (image_data == NULL) {
printf("load image failed!\n");
return NULL;
}
if (width != req_width || height != req_height) {
unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel);
if (!image_resized) {
printf("malloc image failed!\n");
STBI_FREE(image_data);
return NULL;
}
if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) {
printf("resize image failed!\n");
STBI_FREE(image_data);
return NULL;
}
STBI_FREE(image_data);
image_data = image_resized;
}
return image_data;
}
static std::vector<std::string> split(const std::string& str, const std::string& pattern)
{
std::vector<std::string> res;
if (str == "")
return res;
std::string strs = str + pattern;
size_t pos = strs.find(pattern);
while (pos != strs.npos) {
std::string temp = strs.substr(0, pos);
res.push_back(temp);
strs = strs.substr(pos + 1, strs.size());
pos = strs.find(pattern);
}
return res;
}
/*-------------------------------------------
Main Functions
-------------------------------------------*/
int main(int argc, char* argv[])
{
if (argc < 2) {
printf("Usage:%s model_path [input_path] [loop_count] [core_mask]\n", argv[0]);
return -1;
}
char* model_path = argv[1];
std::vector<std::string> input_paths_split;
int loop_count = 10;
uint32_t core_mask = 1;
rknn_context ctx = 0;
uint32_t topNum = 5;
double total_time = 0;
if (argc > 2) {
char* input_paths = argv[2];
input_paths_split = split(input_paths, "#");
}
if (argc > 3) {
loop_count = atoi(argv[3]);
}
if (argc > 4) {
core_mask = strtoul(argv[4], NULL, 10);
}
// Init rknn from model path
int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
if (ret < 0) {
printf("rknn_init fail! ret=%d\n", ret);
return -1;
}
// Get sdk and driver version
rknn_sdk_version sdk_ver;
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
// Get weight and internal mem size, dma used size
rknn_mem_size mem_size;
ret = rknn_query(ctx, RKNN_QUERY_MEM_SIZE, &mem_size, sizeof(mem_size));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
printf("total weight size: %d, total internal size: %d\n", mem_size.total_weight_size, mem_size.total_internal_size);
printf("total dma used size: %zu\n", (size_t)mem_size.total_dma_allocated_size);
// Get Model Input Output Info
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
if (ret < 0) {
printf("rknn_init error! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
dump_tensor_attr(&input_attrs[i]);
}
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
for (uint32_t i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
// query info
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
dump_tensor_attr(&output_attrs[i]);
}
// Get custom string
rknn_custom_string custom_string;
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
rknn_destroy(ctx);
return -1;
}
printf("custom string: %s\n", custom_string.string);
unsigned char* input_data[io_num.n_input];
int input_type[io_num.n_input];
int input_layout[io_num.n_input];
int input_size[io_num.n_input];
rknn_input inputs[io_num.n_input];
rknn_output outputs[io_num.n_output];
for (int i = 0; i < io_num.n_input; i++) {
input_data[i] = NULL;
input_type[i] = RKNN_TENSOR_UINT8;
input_layout[i] = RKNN_TENSOR_NHWC;
input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t);
}
if (input_paths_split.size() > 0) {
// Load input
if (io_num.n_input != input_paths_split.size()) {
printf("input missing!, need input number: %d, only get %zu inputs\n", io_num.n_input, input_paths_split.size());
goto out;
}
for (int i = 0; i < io_num.n_input; i++) {
if (strstr(input_paths_split[i].c_str(), ".npy")) {
input_data[i] = load_npy(input_paths_split[i].c_str(), &input_attrs[i], &input_type[i], &input_size[i]);
} else {
// Load image
input_data[i] = load_image(input_paths_split[i].c_str(), &input_attrs[i]);
}
if (!input_data[i]) {
goto out;
}
}
} else {
for (int i = 0; i < io_num.n_input; i++) {
input_data[i] = (unsigned char*)malloc(input_size[i]);
memset(input_data[i], 0x00, input_size[i]);
}
}
memset(inputs, 0, io_num.n_input * sizeof(rknn_input));
for (int i = 0; i < io_num.n_input; i++) {
inputs[i].index = i;
inputs[i].pass_through = 0;
inputs[i].type = (rknn_tensor_type)input_type[i];
inputs[i].fmt = (rknn_tensor_format)input_layout[i];
inputs[i].buf = input_data[i];
inputs[i].size = input_size[i];
}
// Set input
ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
if (ret < 0) {
printf("rknn_input_set fail! ret=%d\n", ret);
goto out;
}
rknn_set_core_mask(ctx, (rknn_core_mask)core_mask);
// Warmup
printf("Warmup ...\n");
for (int i = 0; i < 5; ++i) {
int64_t start_us = getCurrentTimeUs();
ret = rknn_run(ctx, NULL);
int64_t elapse_us = getCurrentTimeUs() - start_us;
if (ret < 0) {
printf("rknn run error %d\n", ret);
goto out;
}
printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
}
// Run
printf("Begin perf ...\n");
for (int i = 0; i < loop_count; ++i) {
int64_t start_us = getCurrentTimeUs();
ret = rknn_run(ctx, NULL);
int64_t elapse_us = getCurrentTimeUs() - start_us;
if (ret < 0) {
printf("rknn run error %d\n", ret);
return -1;
}
total_time += elapse_us / 1000.f;
printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
}
printf("\nAvg Time %.2fms, Avg FPS = %.3f\n\n", total_time/loop_count, loop_count * 1000.f / total_time);
// Get output
memset(outputs, 0, io_num.n_output * sizeof(rknn_output));
for (uint32_t i = 0; i < io_num.n_output; ++i) {
outputs[i].want_float = 1;
outputs[i].index = i;
outputs[i].is_prealloc = 0;
}
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
if (ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto out;
}
// save output
for (uint32_t i = 0; i < io_num.n_output; i++) {
char output_path[PATH_MAX];
memset(output_path, 0x00, sizeof(output_path));
sprintf(output_path, "rt_output%d.npy", i);
printf("Save output to %s\n", output_path);
save_npy(output_path, (float*)outputs[i].buf, &output_attrs[i]);
}
// Get top 5
for (uint32_t i = 0; i < io_num.n_output; i++) {
uint32_t MaxClass[topNum];
float fMaxProb[topNum];
float* buffer = (float*)outputs[i].buf;
uint32_t sz = outputs[i].size / sizeof(float);
int top_count = sz > topNum ? topNum : sz;
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
printf("---- Top%d ----\n", top_count);
for (int j = 0; j < top_count; j++) {
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
}
}
// release outputs
ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
out:
// destroy
rknn_destroy(ctx);
for (int i = 0; i < io_num.n_input; i++) {
if (input_data[i] != NULL) {
free(input_data[i]);
}
}
return 0;
}