|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "rknn_api.h" |
|
|
|
#include <float.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <sys/time.h> |
|
|
|
#include <string> |
|
#include <vector> |
|
|
|
|
|
|
|
|
|
|
|
static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum) |
|
{ |
|
uint32_t i, j; |
|
uint32_t top_count = outputCount > topNum ? topNum : outputCount; |
|
|
|
for (i = 0; i < topNum; ++i) { |
|
pfMaxProb[i] = -FLT_MAX; |
|
pMaxClass[i] = -1; |
|
} |
|
|
|
for (j = 0; j < top_count; j++) { |
|
for (i = 0; i < outputCount; i++) { |
|
if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) || |
|
(i == *(pMaxClass + 4))) { |
|
continue; |
|
} |
|
|
|
if (pfProb[i] > *(pfMaxProb + j)) { |
|
*(pfMaxProb + j) = pfProb[i]; |
|
*(pMaxClass + j) = i; |
|
} |
|
} |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
static void dump_tensor_attr(rknn_tensor_attr* attr) |
|
{ |
|
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, " |
|
"zp=%d, scale=%f\n", |
|
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3], |
|
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type), |
|
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); |
|
} |
|
|
|
static std::vector<std::string> split(const std::string& str, const std::string& pattern) |
|
{ |
|
std::vector<std::string> res; |
|
if (str == "") |
|
return res; |
|
std::string strs = str + pattern; |
|
size_t pos = strs.find(pattern); |
|
while (pos != strs.npos) { |
|
std::string temp = strs.substr(0, pos); |
|
res.push_back(temp); |
|
strs = strs.substr(pos + 1, strs.size()); |
|
pos = strs.find(pattern); |
|
} |
|
return res; |
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, char* argv[]) |
|
{ |
|
char* model_path = argv[1]; |
|
char* input_paths = argv[2]; |
|
std::vector<std::string> input_paths_split = split(input_paths, "#"); |
|
|
|
rknn_context ctx = 0; |
|
|
|
|
|
int ret = rknn_init(&ctx, model_path, 0, 0, NULL); |
|
if (ret < 0) { |
|
printf("rknn_init fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
|
|
|
|
rknn_sdk_version sdk_ver; |
|
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver)); |
|
if (ret != RKNN_SUCC) { |
|
printf("rknn_query fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version); |
|
|
|
|
|
rknn_input_output_num io_num; |
|
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); |
|
if (ret != RKNN_SUCC) { |
|
printf("rknn_query fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); |
|
|
|
printf("input tensors:\n"); |
|
rknn_tensor_attr input_attrs[io_num.n_input]; |
|
memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr)); |
|
for (uint32_t i = 0; i < io_num.n_input; i++) { |
|
input_attrs[i].index = i; |
|
|
|
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); |
|
if (ret < 0) { |
|
printf("rknn_init error! ret=%d\n", ret); |
|
return -1; |
|
} |
|
dump_tensor_attr(&input_attrs[i]); |
|
} |
|
|
|
printf("output tensors:\n"); |
|
rknn_tensor_attr output_attrs[io_num.n_output]; |
|
memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr)); |
|
for (uint32_t i = 0; i < io_num.n_output; i++) { |
|
output_attrs[i].index = i; |
|
|
|
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); |
|
if (ret != RKNN_SUCC) { |
|
printf("rknn_query fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
dump_tensor_attr(&output_attrs[i]); |
|
} |
|
|
|
|
|
rknn_custom_string custom_string; |
|
ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string)); |
|
if (ret != RKNN_SUCC) { |
|
printf("rknn_query fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
printf("custom string: %s\n", custom_string.string); |
|
|
|
unsigned char* input_data[io_num.n_input]; |
|
int input_type[io_num.n_input]; |
|
int input_layout[io_num.n_input]; |
|
int input_size[io_num.n_input]; |
|
for (int i = 0; i < io_num.n_input; i++) { |
|
input_data[i] = NULL; |
|
input_type[i] = RKNN_TENSOR_UINT8; |
|
input_layout[i] = RKNN_TENSOR_NHWC; |
|
input_size[i] = input_attrs[i].n_elems * sizeof(uint8_t); |
|
} |
|
|
|
|
|
if (io_num.n_input != input_paths_split.size()) { |
|
return -1; |
|
} |
|
for (int i = 0; i < io_num.n_input; i++) { |
|
input_data[i] = new unsigned char[input_attrs[i].size]; |
|
|
|
printf("%s\n", input_paths_split[i].c_str()); |
|
|
|
FILE* fp = fopen(input_paths_split[i].c_str(), "rb"); |
|
if (fp == NULL) { |
|
perror("open failed!"); |
|
return -1; |
|
} |
|
|
|
fread(input_data[i], input_attrs[i].size, 1, fp); |
|
fclose(fp); |
|
if (!input_data[i]) { |
|
return -1; |
|
} |
|
} |
|
|
|
rknn_input inputs[io_num.n_input]; |
|
memset(inputs, 0, io_num.n_input * sizeof(rknn_input)); |
|
for (int i = 0; i < io_num.n_input; i++) { |
|
inputs[i].index = i; |
|
inputs[i].pass_through = 0; |
|
inputs[i].type = (rknn_tensor_type)input_type[i]; |
|
inputs[i].fmt = (rknn_tensor_format)input_layout[i]; |
|
inputs[i].buf = input_data[i]; |
|
inputs[i].size = input_size[i]; |
|
} |
|
|
|
|
|
ret = rknn_inputs_set(ctx, io_num.n_input, inputs); |
|
if (ret < 0) { |
|
printf("rknn_input_set fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
|
|
ret = rknn_run(ctx, NULL); |
|
if (ret < 0) { |
|
printf("rknn_run fail! ret=%d\n", ret); |
|
return -1; |
|
} |
|
|
|
|
|
rknn_output outputs[io_num.n_output]; |
|
memset(outputs, 0, io_num.n_output * sizeof(rknn_output)); |
|
for (uint32_t i = 0; i < io_num.n_output; ++i) { |
|
outputs[i].want_float = 1; |
|
outputs[i].index = i; |
|
outputs[i].is_prealloc = 0; |
|
} |
|
|
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); |
|
if (ret < 0) { |
|
printf("rknn_outputs_get fail! ret=%d\n", ret); |
|
return ret; |
|
} |
|
|
|
|
|
uint32_t topNum = 5; |
|
for (uint32_t i = 0; i < io_num.n_output; i++) { |
|
uint32_t MaxClass[topNum]; |
|
float fMaxProb[topNum]; |
|
float* buffer = (float*)outputs[i].buf; |
|
uint32_t sz = outputs[i].size / sizeof(float); |
|
int top_count = sz > topNum ? topNum : sz; |
|
|
|
rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum); |
|
|
|
printf("---- Top%d ----\n", top_count); |
|
for (int j = 0; j < top_count; j++) { |
|
printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]); |
|
} |
|
} |
|
|
|
|
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs); |
|
|
|
|
|
rknn_destroy(ctx); |
|
|
|
for (int i = 0; i < io_num.n_input; i++) { |
|
free(input_data[i]); |
|
} |
|
|
|
return 0; |
|
} |
|
|