|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <dlfcn.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <sys/time.h> |
|
|
|
#define _BASETSD_H |
|
|
|
#include "RgaUtils.h" |
|
|
|
#include "postprocess.h" |
|
|
|
#include "rknn_api.h" |
|
#include "preprocess.h" |
|
|
|
#define PERF_WITH_POST 1 |
|
|
|
|
|
|
|
|
|
static void dump_tensor_attr(rknn_tensor_attr *attr) |
|
{ |
|
std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]); |
|
for (int i = 1; i < attr->n_dims; ++i) |
|
{ |
|
shape_str += ", " + std::to_string(attr->dims[i]); |
|
} |
|
|
|
printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, " |
|
"type=%s, qnt_type=%s, " |
|
"zp=%d, scale=%f\n", |
|
attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride, |
|
attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type), |
|
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale); |
|
} |
|
|
|
double __get_us(struct timeval t) { return (t.tv_sec * 1000000 + t.tv_usec); } |
|
|
|
static unsigned char *load_data(FILE *fp, size_t ofst, size_t sz) |
|
{ |
|
unsigned char *data; |
|
int ret; |
|
|
|
data = NULL; |
|
|
|
if (NULL == fp) |
|
{ |
|
return NULL; |
|
} |
|
|
|
ret = fseek(fp, ofst, SEEK_SET); |
|
if (ret != 0) |
|
{ |
|
printf("blob seek failure.\n"); |
|
return NULL; |
|
} |
|
|
|
data = (unsigned char *)malloc(sz); |
|
if (data == NULL) |
|
{ |
|
printf("buffer malloc failure.\n"); |
|
return NULL; |
|
} |
|
ret = fread(data, 1, sz, fp); |
|
return data; |
|
} |
|
|
|
static unsigned char *load_model(const char *filename, int *model_size) |
|
{ |
|
FILE *fp; |
|
unsigned char *data; |
|
|
|
fp = fopen(filename, "rb"); |
|
if (NULL == fp) |
|
{ |
|
printf("Open file %s failed.\n", filename); |
|
return NULL; |
|
} |
|
|
|
fseek(fp, 0, SEEK_END); |
|
int size = ftell(fp); |
|
|
|
data = load_data(fp, 0, size); |
|
|
|
fclose(fp); |
|
|
|
*model_size = size; |
|
return data; |
|
} |
|
|
|
static int saveFloat(const char *file_name, float *output, int element_size) |
|
{ |
|
FILE *fp; |
|
fp = fopen(file_name, "w"); |
|
for (int i = 0; i < element_size; i++) |
|
{ |
|
fprintf(fp, "%.6f\n", output[i]); |
|
} |
|
fclose(fp); |
|
return 0; |
|
} |
|
|
|
|
|
|
|
|
|
int main(int argc, char **argv) |
|
{ |
|
if (argc < 3) |
|
{ |
|
printf("Usage: %s <rknn model> <input_image_path> <resize/letterbox> <output_image_path>\n", argv[0]); |
|
return -1; |
|
} |
|
int ret; |
|
rknn_context ctx; |
|
size_t actual_size = 0; |
|
int img_width = 0; |
|
int img_height = 0; |
|
int img_channel = 0; |
|
const float nms_threshold = NMS_THRESH; |
|
const float box_conf_threshold = BOX_THRESH; |
|
struct timeval start_time, stop_time; |
|
char *model_name = (char *)argv[1]; |
|
char *input_path = argv[2]; |
|
std::string option = "letterbox"; |
|
std::string out_path = "./out.jpg"; |
|
if (argc >= 4) |
|
{ |
|
option = argv[3]; |
|
} |
|
if (argc >= 5) |
|
{ |
|
out_path = argv[4]; |
|
} |
|
|
|
|
|
rga_buffer_t src; |
|
rga_buffer_t dst; |
|
memset(&src, 0, sizeof(src)); |
|
memset(&dst, 0, sizeof(dst)); |
|
|
|
printf("post process config: box_conf_threshold = %.2f, nms_threshold = %.2f\n", box_conf_threshold, nms_threshold); |
|
|
|
|
|
printf("Loading mode...\n"); |
|
int model_data_size = 0; |
|
unsigned char *model_data = load_model(model_name, &model_data_size); |
|
ret = rknn_init(&ctx, model_data, model_data_size, 0, NULL); |
|
if (ret < 0) |
|
{ |
|
printf("rknn_init error ret=%d\n", ret); |
|
return -1; |
|
} |
|
|
|
rknn_sdk_version version; |
|
ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &version, sizeof(rknn_sdk_version)); |
|
if (ret < 0) |
|
{ |
|
printf("rknn_init error ret=%d\n", ret); |
|
return -1; |
|
} |
|
printf("sdk version: %s driver version: %s\n", version.api_version, version.drv_version); |
|
|
|
rknn_input_output_num io_num; |
|
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num)); |
|
if (ret < 0) |
|
{ |
|
printf("rknn_init error ret=%d\n", ret); |
|
return -1; |
|
} |
|
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output); |
|
|
|
rknn_tensor_attr input_attrs[io_num.n_input]; |
|
memset(input_attrs, 0, sizeof(input_attrs)); |
|
for (int i = 0; i < io_num.n_input; i++) |
|
{ |
|
input_attrs[i].index = i; |
|
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr)); |
|
if (ret < 0) |
|
{ |
|
printf("rknn_init error ret=%d\n", ret); |
|
return -1; |
|
} |
|
dump_tensor_attr(&(input_attrs[i])); |
|
} |
|
|
|
rknn_tensor_attr output_attrs[io_num.n_output]; |
|
memset(output_attrs, 0, sizeof(output_attrs)); |
|
for (int i = 0; i < io_num.n_output; i++) |
|
{ |
|
output_attrs[i].index = i; |
|
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr)); |
|
dump_tensor_attr(&(output_attrs[i])); |
|
} |
|
|
|
int channel = 3; |
|
int width = 0; |
|
int height = 0; |
|
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) |
|
{ |
|
printf("model is NCHW input fmt\n"); |
|
channel = input_attrs[0].dims[1]; |
|
height = input_attrs[0].dims[2]; |
|
width = input_attrs[0].dims[3]; |
|
} |
|
else |
|
{ |
|
printf("model is NHWC input fmt\n"); |
|
height = input_attrs[0].dims[1]; |
|
width = input_attrs[0].dims[2]; |
|
channel = input_attrs[0].dims[3]; |
|
} |
|
|
|
printf("model input height=%d, width=%d, channel=%d\n", height, width, channel); |
|
|
|
rknn_input inputs[1]; |
|
memset(inputs, 0, sizeof(inputs)); |
|
inputs[0].index = 0; |
|
inputs[0].type = RKNN_TENSOR_UINT8; |
|
inputs[0].size = width * height * channel; |
|
inputs[0].fmt = RKNN_TENSOR_NHWC; |
|
inputs[0].pass_through = 0; |
|
|
|
|
|
printf("Read %s ...\n", input_path); |
|
cv::Mat orig_img = cv::imread(input_path, 1); |
|
if (!orig_img.data) |
|
{ |
|
printf("cv::imread %s fail!\n", input_path); |
|
return -1; |
|
} |
|
cv::Mat img; |
|
cv::cvtColor(orig_img, img, cv::COLOR_BGR2RGB); |
|
img_width = img.cols; |
|
img_height = img.rows; |
|
printf("img width = %d, img height = %d\n", img_width, img_height); |
|
|
|
|
|
BOX_RECT pads; |
|
memset(&pads, 0, sizeof(BOX_RECT)); |
|
cv::Size target_size(width, height); |
|
cv::Mat resized_img(target_size.height, target_size.width, CV_8UC3); |
|
|
|
float scale_w = (float)target_size.width / img.cols; |
|
float scale_h = (float)target_size.height / img.rows; |
|
|
|
if (img_width != width || img_height != height) |
|
{ |
|
|
|
if (option == "resize") |
|
{ |
|
printf("resize image by rga\n"); |
|
ret = resize_rga(src, dst, img, resized_img, target_size); |
|
if (ret != 0) |
|
{ |
|
fprintf(stderr, "resize with rga error\n"); |
|
return -1; |
|
} |
|
|
|
cv::imwrite("resize_input.jpg", resized_img); |
|
} |
|
else if (option == "letterbox") |
|
{ |
|
printf("resize image with letterbox\n"); |
|
float min_scale = std::min(scale_w, scale_h); |
|
scale_w = min_scale; |
|
scale_h = min_scale; |
|
letterbox(img, resized_img, pads, min_scale, target_size); |
|
|
|
cv::imwrite("letterbox_input.jpg", resized_img); |
|
} |
|
else |
|
{ |
|
fprintf(stderr, "Invalid resize option. Use 'resize' or 'letterbox'.\n"); |
|
return -1; |
|
} |
|
inputs[0].buf = resized_img.data; |
|
} |
|
else |
|
{ |
|
inputs[0].buf = img.data; |
|
} |
|
|
|
gettimeofday(&start_time, NULL); |
|
rknn_inputs_set(ctx, io_num.n_input, inputs); |
|
|
|
rknn_output outputs[io_num.n_output]; |
|
memset(outputs, 0, sizeof(outputs)); |
|
for (int i = 0; i < io_num.n_output; i++) |
|
{ |
|
outputs[i].index = i; |
|
outputs[i].want_float = 0; |
|
} |
|
|
|
|
|
ret = rknn_run(ctx, NULL); |
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); |
|
gettimeofday(&stop_time, NULL); |
|
printf("once run use %f ms\n", (__get_us(stop_time) - __get_us(start_time)) / 1000); |
|
|
|
|
|
detect_result_group_t detect_result_group; |
|
std::vector<float> out_scales; |
|
std::vector<int32_t> out_zps; |
|
for (int i = 0; i < io_num.n_output; ++i) |
|
{ |
|
out_scales.push_back(output_attrs[i].scale); |
|
out_zps.push_back(output_attrs[i].zp); |
|
} |
|
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width, |
|
box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group); |
|
|
|
|
|
char text[256]; |
|
for (int i = 0; i < detect_result_group.count; i++) |
|
{ |
|
detect_result_t *det_result = &(detect_result_group.results[i]); |
|
sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100); |
|
printf("%s @ (%d %d %d %d) %f\n", det_result->name, det_result->box.left, det_result->box.top, |
|
det_result->box.right, det_result->box.bottom, det_result->prop); |
|
int x1 = det_result->box.left; |
|
int y1 = det_result->box.top; |
|
int x2 = det_result->box.right; |
|
int y2 = det_result->box.bottom; |
|
rectangle(orig_img, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(256, 0, 0, 256), 3); |
|
putText(orig_img, text, cv::Point(x1, y1 + 12), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255)); |
|
} |
|
|
|
printf("save detect result to %s\n", out_path.c_str()); |
|
imwrite(out_path, orig_img); |
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs); |
|
|
|
|
|
int test_count = 10; |
|
gettimeofday(&start_time, NULL); |
|
for (int i = 0; i < test_count; ++i) |
|
{ |
|
rknn_inputs_set(ctx, io_num.n_input, inputs); |
|
ret = rknn_run(ctx, NULL); |
|
ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL); |
|
#if PERF_WITH_POST |
|
post_process((int8_t *)outputs[0].buf, (int8_t *)outputs[1].buf, (int8_t *)outputs[2].buf, height, width, |
|
box_conf_threshold, nms_threshold, pads, scale_w, scale_h, out_zps, out_scales, &detect_result_group); |
|
#endif |
|
ret = rknn_outputs_release(ctx, io_num.n_output, outputs); |
|
} |
|
gettimeofday(&stop_time, NULL); |
|
printf("loop count = %d , average run %f ms\n", test_count, |
|
(__get_us(stop_time) - __get_us(start_time)) / 1000.0 / test_count); |
|
|
|
deinitPostProcess(); |
|
|
|
|
|
ret = rknn_destroy(ctx); |
|
|
|
if (model_data) |
|
{ |
|
free(model_data); |
|
} |
|
|
|
return 0; |
|
} |
|
|