MATH_training_response_Qwen2.5_14B_only_right
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the MATH_training_response_Qwen2.5_14B_only_right dataset. It achieves the following results on the evaluation set:
- Loss: 0.0381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0514 | 0.1404 | 200 | 0.0501 |
0.0505 | 0.2807 | 400 | 0.0442 |
0.0339 | 0.4211 | 600 | 0.0449 |
0.0418 | 0.5614 | 800 | 0.0442 |
0.0518 | 0.7018 | 1000 | 0.0431 |
0.0376 | 0.8421 | 1200 | 0.0409 |
0.0311 | 0.9825 | 1400 | 0.0377 |
0.0251 | 1.1228 | 1600 | 0.0393 |
0.0386 | 1.2632 | 1800 | 0.0397 |
0.034 | 1.4035 | 2000 | 0.0392 |
0.023 | 1.5439 | 2200 | 0.0391 |
0.0204 | 1.6842 | 2400 | 0.0382 |
0.0079 | 1.8246 | 2600 | 0.0381 |
0.0192 | 1.9649 | 2800 | 0.0378 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6