use pytorch to do resize and clip to reduce gpu memory usage.
#1
by
yoarkyang
- opened
- image_preprocessing_molmo.py +20 -20
image_preprocessing_molmo.py
CHANGED
@@ -85,26 +85,26 @@ def resize_and_pad(
|
|
85 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
86 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
top_pad = (desired_height - scaled_height) // 2
|
110 |
left_pad = (desired_width - scaled_width) // 2
|
|
|
85 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
86 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
87 |
|
88 |
+
if resize_method == "tensorflow":
|
89 |
+
# this option leads to large gpu mem increase likely due to how tensorflow handle memory allocation
|
90 |
+
import tensorflow as tf
|
91 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
92 |
+
image = tf.image.resize(
|
93 |
+
image,
|
94 |
+
[scaled_height, scaled_width],
|
95 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
96 |
+
antialias=True,
|
97 |
+
)
|
98 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
99 |
+
image = image.numpy()
|
100 |
+
else:
|
101 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
102 |
+
image = convert_image_dtype(image) # resize in flaot32
|
103 |
+
image = torchvision.transforms.Resize(
|
104 |
+
[scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
105 |
+
)(image)
|
106 |
+
image = torch.clip(image, 0.0, 1.0)
|
107 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
108 |
|
109 |
top_pad = (desired_height - scaled_height) // 2
|
110 |
left_pad = (desired_width - scaled_width) // 2
|