Improve model card: Add prominent GitHub link and sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +30 -4
README.md CHANGED
@@ -1,19 +1,18 @@
1
  ---
2
- pipeline_tag: text-generation
3
  library_name: transformers
4
  license: cc-by-nc-4.0
 
5
  tags:
6
  - text-to-sql
7
  - reinforcement-learning
8
  ---
9
 
10
-
11
  # SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
12
 
13
  ### Important Links
14
 
15
- πŸ“–[Arxiv Paper](https://arxiv.org/abs/2507.22478) |
16
- πŸ€—[HuggingFace](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
17
  πŸ€–[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
18
 
19
  ## News
@@ -55,6 +54,33 @@ Performance Comparison of different Text-to-SQL methods on BIRD dev and test dat
55
 
56
  <img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ## Model
59
 
60
  | **Model** | Base Model | Train Method | Modelscope | HuggingFace |
 
1
  ---
 
2
  library_name: transformers
3
  license: cc-by-nc-4.0
4
+ pipeline_tag: text-generation
5
  tags:
6
  - text-to-sql
7
  - reinforcement-learning
8
  ---
9
 
 
10
  # SLM-SQL: An Exploration of Small Language Models for Text-to-SQL
11
 
12
  ### Important Links
13
 
14
+ πŸ“–[Arxiv Paper](https://arxiv.org/abs/2507.22478) | πŸ’Ύ[GitHub](https://github.com/CycloneBoy/slm_sql) |
15
+ πŸ€—[HuggingFace Collection](https://huggingface.co/collections/cycloneboy/slm-sql-688b02f99f958d7a417658dc) |
16
  πŸ€–[ModelScope](https://modelscope.cn/collections/SLM-SQL-624bb6a60e9643) |
17
 
18
  ## News
 
54
 
55
  <img src="https://raw.githubusercontent.com/CycloneBoy/slm_sql/main/data/image/slmsql_ablation_study.png" height="300" alt="slmsql_ablation_study">
56
 
57
+ ## Sample Usage
58
+
59
+ You can use the model with the `transformers` library. Here's an example:
60
+
61
+ ```python
62
+ from transformers import AutoTokenizer, AutoModelForCausalLM
63
+ import torch
64
+
65
+ # Load the tokenizer and model (e.g., SLM-SQL-1.5B)
66
+ model_name = "cycloneboy/SLM-SQL-1.5B" # Adjust this to the specific model you want to use
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
69
+
70
+ # Define the input prompt (natural language question for SQL)
71
+ prompt = "what are the names of all employees?"
72
+
73
+ # Prepare the input for the model
74
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
75
+
76
+ # Generate the SQL query
77
+ output_ids = model.generate(input_ids, max_new_tokens=100, num_beams=1, do_sample=False)
78
+ generated_sql = tokenizer.decode(output_ids[0], skip_special_tokens=True)
79
+
80
+ print("Generated SQL Query:")
81
+ print(generated_sql)
82
+ ```
83
+
84
  ## Model
85
 
86
  | **Model** | Base Model | Train Method | Modelscope | HuggingFace |