training

This model is a fine-tuned version of microsoft/deberta-base on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0810
  • Attackid Precision: 1.0
  • Attackid Recall: 1.0
  • Attackid F1: 1.0
  • Attackid Number: 6
  • Cve Precision: 1.0
  • Cve Recall: 1.0
  • Cve F1: 1.0
  • Cve Number: 11
  • Defenderthreat Precision: 0.0
  • Defenderthreat Recall: 0.0
  • Defenderthreat F1: 0.0
  • Defenderthreat Number: 2
  • Domain Precision: 1.0
  • Domain Recall: 0.9565
  • Domain F1: 0.9778
  • Domain Number: 23
  • Email Precision: 1.0
  • Email Recall: 1.0
  • Email F1: 1.0
  • Email Number: 3
  • Filepath Precision: 0.8841
  • Filepath Recall: 0.8788
  • Filepath F1: 0.8815
  • Filepath Number: 165
  • Hostname Precision: 1.0
  • Hostname Recall: 1.0
  • Hostname F1: 1.0
  • Hostname Number: 12
  • Ipv4 Precision: 1.0
  • Ipv4 Recall: 1.0
  • Ipv4 F1: 1.0
  • Ipv4 Number: 12
  • Md5 Precision: 0.8333
  • Md5 Recall: 0.9615
  • Md5 F1: 0.8929
  • Md5 Number: 52
  • Sha1 Precision: 0.6667
  • Sha1 Recall: 0.8571
  • Sha1 F1: 0.75
  • Sha1 Number: 7
  • Sha256 Precision: 0.9565
  • Sha256 Recall: 1.0
  • Sha256 F1: 0.9778
  • Sha256 Number: 44
  • Uri Precision: 0.0
  • Uri Recall: 0.0
  • Uri F1: 0.0
  • Uri Number: 1
  • Overall Precision: 0.9014
  • Overall Recall: 0.9201
  • Overall F1: 0.9107
  • Overall Accuracy: 0.9851

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Attackid Precision Attackid Recall Attackid F1 Attackid Number Cve Precision Cve Recall Cve F1 Cve Number Defenderthreat Precision Defenderthreat Recall Defenderthreat F1 Defenderthreat Number Domain Precision Domain Recall Domain F1 Domain Number Email Precision Email Recall Email F1 Email Number Filepath Precision Filepath Recall Filepath F1 Filepath Number Hostname Precision Hostname Recall Hostname F1 Hostname Number Ipv4 Precision Ipv4 Recall Ipv4 F1 Ipv4 Number Md5 Precision Md5 Recall Md5 F1 Md5 Number Sha1 Precision Sha1 Recall Sha1 F1 Sha1 Number Sha256 Precision Sha256 Recall Sha256 F1 Sha256 Number Uri Precision Uri Recall Uri F1 Uri Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3797 0.37 500 0.1998 0.0 0.0 0.0 6 0.0 0.0 0.0 11 0.0 0.0 0.0 2 0.0286 0.0435 0.0345 23 0.0 0.0 0.0 3 0.5108 0.7152 0.5960 165 0.1774 0.9167 0.2973 12 0.4 0.5 0.4444 12 0.3194 0.4423 0.3710 52 0.0 0.0 0.0 7 0.4588 0.8864 0.6047 44 0.0 0.0 0.0 1 0.3875 0.5858 0.4664 0.9593
0.1713 0.75 1000 0.1619 0.6 0.5 0.5455 6 0.5 0.6364 0.56 11 0.0 0.0 0.0 2 0.6957 0.6957 0.6957 23 0.0 0.0 0.0 3 0.6879 0.6545 0.6708 165 0.5217 1.0 0.6857 12 0.5714 1.0 0.7273 12 0.6667 0.8846 0.7603 52 0.0 0.0 0.0 7 0.7692 0.9091 0.8333 44 0.0 0.0 0.0 1 0.6685 0.7219 0.6942 0.9664
0.1152 1.12 1500 0.1096 0.8333 0.8333 0.8333 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.7826 0.7826 0.7826 23 1.0 1.0 1.0 3 0.7202 0.8424 0.7765 165 1.0 1.0 1.0 12 0.4444 1.0 0.6154 12 0.6944 0.9615 0.8065 52 0.0 0.0 0.0 7 0.8723 0.9318 0.9011 44 0.0 0.0 0.0 1 0.7312 0.8609 0.7908 0.9751
0.1089 1.5 2000 0.1243 1.0 1.0 1.0 6 0.9167 1.0 0.9565 11 0.0 0.0 0.0 2 0.9048 0.8261 0.8636 23 1.0 1.0 1.0 3 0.8011 0.8788 0.8382 165 0.6667 1.0 0.8 12 0.9091 0.8333 0.8696 12 0.7812 0.9615 0.8621 52 0.0 0.0 0.0 7 0.7857 1.0 0.88 44 0.0 0.0 0.0 1 0.8065 0.8876 0.8451 0.9750
0.0947 1.87 2500 0.0913 0.75 1.0 0.8571 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.8462 0.9565 0.8980 23 0.3333 0.6667 0.4444 3 0.8035 0.8424 0.8225 165 0.6 1.0 0.7500 12 1.0 1.0 1.0 12 0.7969 0.9808 0.8793 52 0.0 0.0 0.0 7 0.8302 1.0 0.9072 44 0.0 0.0 0.0 1 0.7952 0.8846 0.8375 0.9792
0.0629 2.25 3000 0.0940 1.0 0.8333 0.9091 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 0.9565 0.9565 0.9565 23 1.0 1.0 1.0 3 0.8671 0.8303 0.8483 165 1.0 1.0 1.0 12 1.0 1.0 1.0 12 0.9273 0.9808 0.9533 52 0.25 0.1429 0.1818 7 0.8776 0.9773 0.9247 44 0.0 0.0 0.0 1 0.8946 0.8787 0.8866 0.9825
0.0442 2.62 3500 0.1012 1.0 1.0 1.0 6 0.9167 1.0 0.9565 11 0.0 0.0 0.0 2 0.9091 0.8696 0.8889 23 0.75 1.0 0.8571 3 0.8182 0.8727 0.8446 165 1.0 1.0 1.0 12 1.0 1.0 1.0 12 0.92 0.8846 0.9020 52 0.5 1.0 0.6667 7 0.9565 1.0 0.9778 44 0.0 0.0 0.0 1 0.8616 0.9024 0.8815 0.9818
0.0401 3.0 4000 0.0810 1.0 1.0 1.0 6 1.0 1.0 1.0 11 0.0 0.0 0.0 2 1.0 0.9565 0.9778 23 1.0 1.0 1.0 3 0.8841 0.8788 0.8815 165 1.0 1.0 1.0 12 1.0 1.0 1.0 12 0.8333 0.9615 0.8929 52 0.6667 0.8571 0.75 7 0.9565 1.0 0.9778 44 0.0 0.0 0.0 1 0.9014 0.9201 0.9107 0.9851

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu102
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.