|
--- |
|
model-index: |
|
- name: CodeLlama-7b |
|
results: |
|
- task: |
|
type: code-generation |
|
dataset: |
|
name: Humaneval |
|
type: humaneval |
|
metrics: |
|
- type: pass@1 (BASELINE) |
|
value: 0.3048780487804878 |
|
- type: pass@1 (BASIC) |
|
value: 0.3170731707317073 |
|
--- |
|
This is a d-Matrix functional reference of the CODELLAMA-7B model. |
|
The reference provides the following functional *configurations*: |
|
Configuration | Explanation |
|
:-- | :-- |
|
**`BASELINE`** | a reference functionally equivalent to the original model |
|
**`BASIC`** | all linear algebraic operands quantized to `BFP16-64`, and all other operations transformed to approximated kernel simulations |
|
|
|
|
|
### Usage |
|
|
|
Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first. |
|
```sh |
|
pip install dmx_compressor |
|
``` |
|
|
|
The following is an example model and its evaluation. |
|
|
|
```sh |
|
git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git |
|
cd bigcode-evaluation-harness |
|
pip install . |
|
``` |
|
|
|
```python |
|
from dmx.compressor.modeling import DmxModel |
|
from bigcode_eval.evaluator import Evaluator |
|
|
|
pipe = pipeline( |
|
task="text-generation", |
|
model="d-matrix/CodeLlama-7b", |
|
trust_remote_code=True, |
|
) |
|
|
|
# Transform the model with DMX |
|
model = DmxModel.from_torch(pipe.model).to_basic_model() # Using BASIC configuration |
|
model(torch.randint(1, 100, (1, max_length))) # Assign desired max length of generation to max_length |
|
|
|
evaluator = Evaluator(accelerator, model, tokenizer, eval_args) |
|
|
|
eval_results = evaluator.evaluate(task) # Assign desired task, i.e. "humaneval" |
|
``` |