metadata
model-index:
- name: gpt2-xl
results:
- task:
type: text-generation
dataset:
name: Wikitext
type: wikitext
metrics:
- type: perplexity (BASELINE)
value: 20.37662382338481
- type: perplexity (BASIC)
value: 20.394323121837566
- task:
type: text-generation
dataset:
name: Hellaswag
type: hellaswag
metrics:
- type: accuracy (BASELINE)
value: 0.4004182433778132
- type: accuracy (BASIC)
value: 0.4004182433778132
This is a d-Matrix functional reference of the GPT2-XL model. The reference provides the following functional configurations:
Configuration | Explanation |
---|---|
BASELINE |
a reference functionally equivalent to the original model |
BASIC |
all linear algebraic operands quantized to MXINT8-64 , and all other operations transformed to approximated kernel simulations |
Usage
Install d-Matrix Dmx_Compressor first.
pip install dmx_compressor
The following is an example model and its evaluation.
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
from dmx.compressor.modeling import DmxModel
import lm_eval
model_args = "pretrained=d-matrix/gpt2-xl,trust_remote_code=True"
lm = lm_eval.api.registry.get_model("hf").create_from_arg_string(model_args, {"batch_size": 1})
# Transform the model with DMX
lm._model = DmxModel.from_torch(lm._model)
eval_results = lm_eval.evaluate(lm, lm_eval.tasks.get_task_dict(["wikitext"])) # Assign desired task, i.e. "wikitext"