damand2061's picture
End of training
7342f85
---
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_keras_callback
model-index:
- name: damand2061/innermore-x-indobert-base-p1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# damand2061/innermore-x-indobert-base-p1
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0007
- Validation Loss: 0.2387
- Validation Precision: 0.7583
- Validation Recall: 0.6987
- Validation F1: 0.7273
- Validation Accuracy: 0.9535
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 420, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | Epoch |
|:----------:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|:-----:|
| 0.5438 | 0.2878 | 0.5065 | 0.5109 | 0.5087 | 0.9161 | 0 |
| 0.1798 | 0.1890 | 0.6416 | 0.6332 | 0.6374 | 0.9425 | 1 |
| 0.0764 | 0.2122 | 0.5833 | 0.5502 | 0.5663 | 0.9338 | 2 |
| 0.0491 | 0.1986 | 0.7729 | 0.6987 | 0.7339 | 0.9545 | 3 |
| 0.0333 | 0.2071 | 0.75 | 0.6812 | 0.7140 | 0.9545 | 4 |
| 0.0252 | 0.1806 | 0.7456 | 0.7424 | 0.7440 | 0.9530 | 5 |
| 0.0138 | 0.2283 | 0.7018 | 0.6987 | 0.7002 | 0.9497 | 6 |
| 0.0073 | 0.2202 | 0.7318 | 0.7031 | 0.7171 | 0.9530 | 7 |
| 0.0065 | 0.2174 | 0.7762 | 0.7118 | 0.7426 | 0.9540 | 8 |
| 0.0037 | 0.2373 | 0.7619 | 0.6987 | 0.7289 | 0.9516 | 9 |
| 0.0021 | 0.2343 | 0.7594 | 0.7031 | 0.7302 | 0.9535 | 10 |
| 0.0015 | 0.2478 | 0.7546 | 0.7118 | 0.7326 | 0.9530 | 11 |
| 0.0011 | 0.2405 | 0.7630 | 0.7031 | 0.7318 | 0.9540 | 12 |
| 0.0006 | 0.2388 | 0.7583 | 0.6987 | 0.7273 | 0.9535 | 13 |
| 0.0007 | 0.2387 | 0.7583 | 0.6987 | 0.7273 | 0.9535 | 14 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Tokenizers 0.15.2