emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3105
  • Accuracy: 0.5188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0819 1.0 10 2.0549 0.2375
2.0249 2.0 20 1.9696 0.3625
1.8988 3.0 30 1.8123 0.3937
1.7331 4.0 40 1.6707 0.4375
1.5894 5.0 50 1.5504 0.4938
1.4997 6.0 60 1.4963 0.5188
1.424 7.0 70 1.4749 0.4688
1.3576 8.0 80 1.4223 0.5125
1.2986 9.0 90 1.3850 0.5312
1.2358 10.0 100 1.3588 0.5375
1.2052 11.0 110 1.3226 0.55
1.1699 12.0 120 1.3446 0.525
1.1334 13.0 130 1.3223 0.525
1.1178 14.0 140 1.3089 0.575
1.1062 15.0 150 1.2776 0.5625

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for damelia/emotion_classification

Finetuned
(1774)
this model