TRL Model
This is a TRL language model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
Usage
To use this model for inference, first install the TRL library:
python -m pip install trl
You can then generate text as follows:
from transformers import pipeline
generator = pipeline("text-generation", model="damienbenveniste//private/var/folders/dy/k5ycdcns28s2cxl8hc76v2mr0000gn/T/tmpl2a_v6sk/damienbenveniste/mistral-ppo")
outputs = generator("Hello, my llama is cute")
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("damienbenveniste//private/var/folders/dy/k5ycdcns28s2cxl8hc76v2mr0000gn/T/tmpl2a_v6sk/damienbenveniste/mistral-ppo")
model = AutoModelForCausalLMWithValueHead.from_pretrained("damienbenveniste//private/var/folders/dy/k5ycdcns28s2cxl8hc76v2mr0000gn/T/tmpl2a_v6sk/damienbenveniste/mistral-ppo")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
- Downloads last month
- 13