RuTaskFlow-mBART-T26-200K

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5087
  • Rouge1: 85.72
  • Rouge2: 63.57
  • Rougel: 83.99
  • Rougelsum: 83.99

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.5496 0.9999 6803 0.5541 81.99 59.63 80.24 80.22
0.4657 2.0 13607 0.5035 84.21 62.28 82.5 82.48
0.307 2.9999 20410 0.4942 85.26 62.93 83.5 83.5
0.2345 3.9997 27212 0.5087 85.72 63.57 83.99 83.99

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
11
Safetensors
Model size
611M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for damienliccia/RuTaskFlow-mBART-T26-200K

Finetuned
(187)
this model
Quantizations
1 model