llama_3b_step2_batch_v1
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0531 | 0.0170 | 50 | 1.2007 |
1.0336 | 0.0341 | 100 | 1.1242 |
0.9428 | 0.0511 | 150 | 1.0800 |
1.4386 | 0.0682 | 200 | 1.0408 |
0.8375 | 0.0852 | 250 | 1.0127 |
0.9193 | 0.1023 | 300 | 0.9817 |
1.0368 | 0.1193 | 350 | 0.9573 |
1.2018 | 0.1364 | 400 | 0.9319 |
1.2749 | 0.1534 | 450 | 0.9072 |
0.9881 | 0.1704 | 500 | 0.8820 |
0.9707 | 0.1875 | 550 | 0.8599 |
1.2377 | 0.2045 | 600 | 0.8412 |
0.9024 | 0.2216 | 650 | 0.8180 |
0.5889 | 0.2386 | 700 | 0.8024 |
0.8046 | 0.2557 | 750 | 0.7899 |
0.83 | 0.2727 | 800 | 0.7710 |
0.6852 | 0.2898 | 850 | 0.7548 |
0.8512 | 0.3068 | 900 | 0.7422 |
0.8377 | 0.3238 | 950 | 0.7345 |
0.5361 | 0.3409 | 1000 | 0.7220 |
0.7696 | 0.3579 | 1050 | 0.7105 |
0.8175 | 0.3750 | 1100 | 0.7013 |
0.6144 | 0.3920 | 1150 | 0.6886 |
0.3598 | 0.4091 | 1200 | 0.6809 |
0.7176 | 0.4261 | 1250 | 0.6692 |
0.5281 | 0.4432 | 1300 | 0.6644 |
0.3555 | 0.4602 | 1350 | 0.6547 |
0.9024 | 0.4772 | 1400 | 0.6471 |
0.7713 | 0.4943 | 1450 | 0.6386 |
0.6172 | 0.5113 | 1500 | 0.6322 |
0.6325 | 0.5284 | 1550 | 0.6266 |
0.7503 | 0.5454 | 1600 | 0.6206 |
0.349 | 0.5625 | 1650 | 0.6136 |
0.7 | 0.5795 | 1700 | 0.6085 |
0.5014 | 0.5966 | 1750 | 0.6023 |
0.6441 | 0.6136 | 1800 | 0.5975 |
0.5066 | 0.6306 | 1850 | 0.5921 |
0.6036 | 0.6477 | 1900 | 0.5883 |
0.6549 | 0.6647 | 1950 | 0.5840 |
0.3903 | 0.6818 | 2000 | 0.5789 |
0.8864 | 0.6988 | 2050 | 0.5754 |
0.7164 | 0.7159 | 2100 | 0.5709 |
0.5504 | 0.7329 | 2150 | 0.5687 |
0.4216 | 0.7500 | 2200 | 0.5646 |
0.4241 | 0.7670 | 2250 | 0.5618 |
0.6452 | 0.7840 | 2300 | 0.5590 |
0.7067 | 0.8011 | 2350 | 0.5558 |
0.4536 | 0.8181 | 2400 | 0.5537 |
0.8657 | 0.8352 | 2450 | 0.5508 |
0.7452 | 0.8522 | 2500 | 0.5483 |
0.3444 | 0.8693 | 2550 | 0.5458 |
0.2889 | 0.8863 | 2600 | 0.5437 |
0.2415 | 0.9034 | 2650 | 0.5401 |
0.5393 | 0.9204 | 2700 | 0.5385 |
0.4866 | 0.9374 | 2750 | 0.5372 |
0.9233 | 0.9545 | 2800 | 0.5347 |
0.4623 | 0.9715 | 2850 | 0.5318 |
0.4211 | 0.9886 | 2900 | 0.5299 |
0.4308 | 1.0056 | 2950 | 0.5283 |
0.618 | 1.0227 | 3000 | 0.5285 |
0.7693 | 1.0397 | 3050 | 0.5262 |
0.2893 | 1.0568 | 3100 | 0.5266 |
0.461 | 1.0738 | 3150 | 0.5273 |
0.3648 | 1.0908 | 3200 | 0.5230 |
0.4981 | 1.1079 | 3250 | 0.5253 |
0.5005 | 1.1249 | 3300 | 0.5222 |
0.4117 | 1.1420 | 3350 | 0.5217 |
0.3319 | 1.1590 | 3400 | 0.5188 |
0.2549 | 1.1761 | 3450 | 0.5190 |
0.3758 | 1.1931 | 3500 | 0.5186 |
0.2889 | 1.2102 | 3550 | 0.5173 |
0.6341 | 1.2272 | 3600 | 0.5167 |
0.3217 | 1.2442 | 3650 | 0.5155 |
0.4406 | 1.2613 | 3700 | 0.5150 |
0.7445 | 1.2783 | 3750 | 0.5148 |
0.5511 | 1.2954 | 3800 | 0.5133 |
0.3933 | 1.3124 | 3850 | 0.5125 |
0.39 | 1.3295 | 3900 | 0.5134 |
0.3015 | 1.3465 | 3950 | 0.5126 |
0.8124 | 1.3636 | 4000 | 0.5118 |
0.6512 | 1.3806 | 4050 | 0.5111 |
0.7011 | 1.3976 | 4100 | 0.5106 |
0.4556 | 1.4147 | 4150 | 0.5103 |
0.4563 | 1.4317 | 4200 | 0.5100 |
0.2651 | 1.4488 | 4250 | 0.5100 |
0.5674 | 1.4658 | 4300 | 0.5090 |
0.2869 | 1.4829 | 4350 | 0.5093 |
0.5327 | 1.4999 | 4400 | 0.5088 |
0.726 | 1.5170 | 4450 | 0.5086 |
0.2619 | 1.5340 | 4500 | 0.5084 |
0.6597 | 1.5510 | 4550 | 0.5081 |
0.4848 | 1.5681 | 4600 | 0.5083 |
0.412 | 1.5851 | 4650 | 0.5080 |
0.6712 | 1.6022 | 4700 | 0.5077 |
0.5523 | 1.6192 | 4750 | 0.5076 |
0.5105 | 1.6363 | 4800 | 0.5077 |
0.5315 | 1.6533 | 4850 | 0.5071 |
0.4166 | 1.6704 | 4900 | 0.5069 |
0.4081 | 1.6874 | 4950 | 0.5065 |
0.3154 | 1.7044 | 5000 | 0.5063 |
0.396 | 1.7215 | 5050 | 0.5063 |
0.6121 | 1.7385 | 5100 | 0.5064 |
0.379 | 1.7556 | 5150 | 0.5063 |
0.4534 | 1.7726 | 5200 | 0.5061 |
0.5572 | 1.7897 | 5250 | 0.5060 |
0.3847 | 1.8067 | 5300 | 0.5059 |
0.3751 | 1.8238 | 5350 | 0.5060 |
0.4346 | 1.8408 | 5400 | 0.5061 |
0.4928 | 1.8578 | 5450 | 0.5061 |
0.5215 | 1.8749 | 5500 | 0.5060 |
0.6156 | 1.8919 | 5550 | 0.5060 |
0.4041 | 1.9090 | 5600 | 0.5060 |
0.5604 | 1.9260 | 5650 | 0.5059 |
0.424 | 1.9431 | 5700 | 0.5060 |
0.1856 | 1.9601 | 5750 | 0.5060 |
0.3701 | 1.9772 | 5800 | 0.5061 |
0.4201 | 1.9942 | 5850 | 0.5060 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.