llama_3b_step2_batch_v2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3132
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.993 | 0.0341 | 50 | 1.1011 |
1.0449 | 0.0682 | 100 | 0.9752 |
0.9894 | 0.1023 | 150 | 0.8698 |
0.6199 | 0.1364 | 200 | 0.7913 |
0.5326 | 0.1704 | 250 | 0.7341 |
0.8109 | 0.2045 | 300 | 0.6799 |
0.7554 | 0.2386 | 350 | 0.6332 |
0.9877 | 0.2727 | 400 | 0.5993 |
0.3571 | 0.3068 | 450 | 0.5726 |
0.4539 | 0.3409 | 500 | 0.5439 |
0.464 | 0.3750 | 550 | 0.5147 |
0.4051 | 0.4091 | 600 | 0.4904 |
0.5371 | 0.4432 | 650 | 0.4732 |
0.4954 | 0.4772 | 700 | 0.4549 |
0.4594 | 0.5113 | 750 | 0.4399 |
0.4755 | 0.5454 | 800 | 0.4281 |
0.2948 | 0.5795 | 850 | 0.4118 |
0.3699 | 0.6136 | 900 | 0.4021 |
0.319 | 0.6477 | 950 | 0.3927 |
0.3359 | 0.6818 | 1000 | 0.3802 |
0.4056 | 0.7159 | 1050 | 0.3746 |
0.2975 | 0.7500 | 1100 | 0.3643 |
0.3868 | 0.7840 | 1150 | 0.3596 |
0.3485 | 0.8181 | 1200 | 0.3512 |
0.3546 | 0.8522 | 1250 | 0.3476 |
0.3697 | 0.8863 | 1300 | 0.3416 |
0.4056 | 0.9204 | 1350 | 0.3388 |
0.3189 | 0.9545 | 1400 | 0.3332 |
0.4173 | 0.9886 | 1450 | 0.3286 |
0.1779 | 1.0228 | 1500 | 0.3338 |
0.2877 | 1.0569 | 1550 | 0.3300 |
0.1506 | 1.0910 | 1600 | 0.3301 |
0.2075 | 1.1251 | 1650 | 0.3289 |
0.1956 | 1.1592 | 1700 | 0.3271 |
0.162 | 1.1933 | 1750 | 0.3276 |
0.2416 | 1.2274 | 1800 | 0.3228 |
0.2364 | 1.2615 | 1850 | 0.3243 |
0.1602 | 1.2956 | 1900 | 0.3219 |
0.1566 | 1.3296 | 1950 | 0.3211 |
0.1784 | 1.3637 | 2000 | 0.3215 |
0.1627 | 1.3978 | 2050 | 0.3190 |
0.1907 | 1.4319 | 2100 | 0.3183 |
0.1182 | 1.4660 | 2150 | 0.3183 |
0.1585 | 1.5001 | 2200 | 0.3179 |
0.2261 | 1.5342 | 2250 | 0.3158 |
0.1457 | 1.5683 | 2300 | 0.3150 |
0.2589 | 1.6024 | 2350 | 0.3146 |
0.2253 | 1.6364 | 2400 | 0.3144 |
0.1741 | 1.6705 | 2450 | 0.3143 |
0.1477 | 1.7046 | 2500 | 0.3141 |
0.1886 | 1.7387 | 2550 | 0.3141 |
0.2211 | 1.7728 | 2600 | 0.3139 |
0.238 | 1.8069 | 2650 | 0.3138 |
0.2863 | 1.8410 | 2700 | 0.3137 |
0.2603 | 1.8751 | 2750 | 0.3135 |
0.2484 | 1.9092 | 2800 | 0.3133 |
0.2343 | 1.9432 | 2850 | 0.3132 |
0.254 | 1.9773 | 2900 | 0.3132 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 75
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.