llama_3b_step2_batch_v3
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8424 | 0.0682 | 50 | 0.9705 |
0.8978 | 0.1363 | 100 | 0.7915 |
0.5886 | 0.2045 | 150 | 0.6863 |
0.7013 | 0.2727 | 200 | 0.6097 |
0.4795 | 0.3408 | 250 | 0.5510 |
0.5601 | 0.4090 | 300 | 0.5066 |
0.4968 | 0.4772 | 350 | 0.4675 |
0.3663 | 0.5453 | 400 | 0.4353 |
0.3754 | 0.6135 | 450 | 0.4074 |
0.3271 | 0.6817 | 500 | 0.3890 |
0.2731 | 0.7498 | 550 | 0.3744 |
0.3881 | 0.8180 | 600 | 0.3599 |
0.3295 | 0.8862 | 650 | 0.3489 |
0.3408 | 0.9543 | 700 | 0.3412 |
0.2966 | 1.0225 | 750 | 0.3418 |
0.2334 | 1.0907 | 800 | 0.3365 |
0.2457 | 1.1588 | 850 | 0.3321 |
0.2332 | 1.2270 | 900 | 0.3311 |
0.2279 | 1.2952 | 950 | 0.3285 |
0.2762 | 1.3633 | 1000 | 0.3245 |
0.1464 | 1.4315 | 1050 | 0.3233 |
0.2075 | 1.4997 | 1100 | 0.3211 |
0.2251 | 1.5678 | 1150 | 0.3184 |
0.1811 | 1.6360 | 1200 | 0.3167 |
0.2104 | 1.7042 | 1250 | 0.3164 |
0.224 | 1.7723 | 1300 | 0.3158 |
0.2483 | 1.8405 | 1350 | 0.3154 |
0.1773 | 1.9087 | 1400 | 0.3151 |
0.219 | 1.9768 | 1450 | 0.3151 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.