walloc / README.md
Jacobellis Dan (dgj335)
metadata
f4937ec
|
raw
history blame
2.62 kB
---
datasets:
- danjacobellis/LSDIR_540
---
```python
!pip install walloc PyWavelets pytorch-wavelets
```
```python
!wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"
```
```python
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from IPython.display import display
from torchvision.transforms import ToPILImage, PILToTensor
from walloc.walloc import Walloc
class Args: pass
```
```python
device = "cpu"
checkpoint = torch.load("v0.6.1.pth",map_location="cpu")
args = checkpoint['args']
codec = Walloc(
channels = args.channels,
J = args.J,
N = args.N,
latent_dim = args.latent_dim,
latent_bits = 5
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec = codec.to(device)
```
```python
img = Image.open("kodim05.png")
img
```
![png](README_files/README_5_0.png)
```python
with torch.no_grad():
codec.eval()
x = PILToTensor()(img).to(torch.float)
x = (x/255 - 0.5).unsqueeze(0).to(device)
x_hat, _, _ = codec(x)
ToPILImage()(x_hat[0]+0.5)
```
![png](README_files/README_6_0.png)
```python
with torch.no_grad():
codec.eval()
X = codec.wavelet_analysis(x,J=codec.J)
Y = codec.encoder(X)
X_hat = codec.decoder(Y)
x_hat = codec.wavelet_synthesis(X_hat,J=codec.J)
print(f"dimensionality reduction: {x.numel()/Y.numel()}x")
```
dimensionality reduction: 12.0x
```python
Y.unique()
```
tensor([-15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4.,
-3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8.,
9., 10., 11., 12., 13., 14., 15.])
```python
plt.hist(Y.flatten().numpy(),range=(-17.5,17.5),bins=35);
```
![png](README_files/README_9_0.png)
```python
grid_size = 4
n_channels, H, W = Y[0].shape
combined_image = Image.new('L', (W * grid_size, H * grid_size))
size_bytes = 0
for i, channel in enumerate(Y[0]):
channel = (channel+16).to(torch.uint8)
row = i // grid_size
col = i % grid_size
channel = ToPILImage()(channel)
combined_image.paste(channel, (col * W, row * H))
combined_image
```
![png](README_files/README_10_0.png)
```python
combined_image.save('tmp.png')
print("compression_ratio: ", x.numel()/os.path.getsize("tmp.png"))
```
compression_ratio: 20.792244646161983
```python
!jupyter nbconvert --to markdown README.ipynb
```
[NbConvertApp] Converting notebook README.ipynb to markdown
[NbConvertApp] Support files will be in README_files/
[NbConvertApp] Writing 2620 bytes to README.md