dap305's picture
fix typo
398e696 verified
---
license: mit
base_model: Helsinki-NLP/opus-mt-en-es
tags:
- translation
- UPV
- MIARFID
- EuroParl
model-index:
- name: dap305/Helsinki-finetuned-EuroParl-en-to-es
results:
- task:
type: translation
name: Translation En-to-ES
dataset:
type: translation
name: EuroParl.V7.Subset
metrics:
- type: bleu
value: 37.083
language:
- en
- es
metrics:
- bleu
library_name: transformers
pipeline_tag: translation
datasets:
- dap305/processed_europarlv7_subset50k
---
# dap305/Helsinki-finetuned-EuroParl-en-to-es
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on a subset of the EuroParl dataset.
It achieves the following results on the validation set:
- Train Loss: 0.9863
- Validation Loss: 1.1352
- BLUE: 37.083
## Intended uses & limitations
This model has been created for learning purposes at the MIARFID Automatic Translation course.
## Training and evaluation data
This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish.
Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand.
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.2441 | 1.1487 | 0 |
| 1.0785 | 1.1351 | 1 |
| 0.9863 | 1.1352 | 2 |
### Framework versions
- Transformers 4.37.0
- TensorFlow 2.13.0
- Datasets 2.16.1
- Tokenizers 0.15.1