darshanmakwana's picture
Upload folder using huggingface_hub
e0c2d04 verified
#!/usr/bin/env python3
# Copyright 2022, Lefebvre Dalloz Services
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module contains code related to client interface.
"""
import argparse
import gc
import logging
import os
from pathlib import Path
from typing import Callable, Dict, List, Tuple, Type, Union
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoTokenizer,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizer,
)
from transformer_deploy.backends.ort_utils import (
cpu_quantization,
create_model_for_provider,
inference_onnx_binding,
optimize_onnx,
)
from transformer_deploy.backends.pytorch_utils import (
convert_to_onnx,
get_model_size,
infer_classification_pytorch,
infer_feature_extraction_pytorch,
infer_text_generation,
)
from transformer_deploy.backends.st_utils import STransformerWrapper, load_sentence_transformers
from transformer_deploy.benchmarks.utils import generate_multiple_inputs, print_timings, setup_logging, track_infer_time
from transformer_deploy.t5_utils.conversion_utils import (
ExtT5,
convert_t5_to_onnx,
create_triton_configs,
generate_input_for_t5,
get_triton_output_shape,
)
from transformer_deploy.triton.configuration import Configuration, EngineType
from transformer_deploy.triton.configuration_decoder import ConfigurationDec
from transformer_deploy.triton.configuration_encoder import ConfigurationEnc
from transformer_deploy.triton.configuration_question_answering import ConfigurationQuestionAnswering
from transformer_deploy.triton.configuration_token_classifier import ConfigurationTokenClassifier
from transformer_deploy.utils.accuracy import check_accuracy
from transformer_deploy.utils.args import parse_args
def launch_inference(
infer: Callable[[Dict[str, torch.Tensor]], torch.Tensor],
inputs: List[Dict[str, Union[np.ndarray, torch.Tensor]]],
nb_measures: int,
) -> Tuple[List[Union[np.ndarray, torch.Tensor]], List[float]]:
"""
Perform inference and measure latency.
:param infer: a lambda which will perform the inference
:param inputs: tensor compatible with the lambda (Torch tensor for Pytorch, or numpy otherwise)
:param nb_measures: number of measures to perform for the latency measure
:return: a tuple of model output and inference latencies
"""
assert type(inputs) == list
assert len(inputs) > 0
outputs = list()
for batch_input in inputs:
output = infer(batch_input)
outputs.append(output)
time_buffer: List[int] = list()
for _ in range(nb_measures):
with track_infer_time(time_buffer):
_ = infer(inputs[0])
return outputs, time_buffer
def main(commands: argparse.Namespace):
torch.cuda.empty_cache()
setup_logging(level=logging.INFO if commands.verbose else logging.WARNING)
logging.info("running with commands: %s", commands)
# set seeds:
torch.manual_seed(commands.seed)
np.random.seed(commands.seed)
torch.set_num_threads(commands.nb_threads)
# set device
if commands.device is None:
commands.device = "cuda" if torch.cuda.is_available() else "cpu"
if commands.device == "cpu" and "tensorrt" in commands.backend:
raise Exception("can't perform inference on CPU and use Nvidia TensorRT as backend")
if commands.task == "text-generation" and commands.generative_model == "t5" and "tensorrt" in commands.backend:
raise Exception("TensorRT is not supported yet for T5 transformation")
if len(commands.seq_len) == len(set(commands.seq_len)) and "tensorrt" in commands.backend:
logging.warning("having different sequence lengths may make TensorRT slower")
run_on_cuda: bool = commands.device.startswith("cuda")
if run_on_cuda:
assert torch.cuda.is_available(), "CUDA/GPU is not available on Pytorch. Please check your CUDA installation"
# set authentication
if isinstance(commands.auth_token, str) and commands.auth_token.lower() in ["true", "t"]:
auth_token = True
elif isinstance(commands.auth_token, str):
auth_token = commands.auth_token
else:
auth_token = None
Path(commands.output).mkdir(parents=True, exist_ok=True)
tokenizer_path = commands.tokenizer if commands.tokenizer else commands.model
tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_auth_token=auth_token)
model_config: PretrainedConfig = AutoConfig.from_pretrained(
pretrained_model_name_or_path=commands.model, use_auth_token=auth_token
)
input_names: List[str] = tokenizer.model_input_names
if commands.task == "embedding":
model_pytorch: Union[PreTrainedModel, STransformerWrapper] = load_sentence_transformers(
commands.model, use_auth_token=auth_token
)
elif commands.task == "classification":
model_pytorch = AutoModelForSequenceClassification.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "token-classification":
model_pytorch = AutoModelForTokenClassification.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "question-answering":
model_pytorch = AutoModelForQuestionAnswering.from_pretrained(commands.model, use_auth_token=auth_token)
elif commands.task == "text-generation" and commands.generative_model == "gpt":
model_pytorch = AutoModelForCausalLM.from_pretrained(commands.model, use_auth_token=auth_token)
input_names = ["input_ids"]
elif commands.task == "text-generation" and commands.generative_model == "t5":
model_pytorch = AutoModelForSeq2SeqLM.from_pretrained(commands.model, use_auth_token=auth_token)
input_names = ["input_ids"]
else:
raise Exception(f"unknown task: {commands.task}")
if hasattr(model_config, "type_vocab_size") and model_config.type_vocab_size == 0:
try:
input_names.remove("token_type_ids")
logging.warning("Model doesn't have `token_type_ids`, removing them from `input_names`")
except ValueError:
pass
logging.info(f"axis: {input_names}")
model_pytorch.eval()
if run_on_cuda:
model_pytorch.cuda()
tensor_shapes = list(zip(commands.batch_size, commands.seq_len))
# create onnx model and compare results
if commands.task == "text-generation" and commands.generative_model == "t5":
input_ids = generate_input_for_t5(tokenizer, run_on_cuda)
inputs_pytorch: List[Dict[str, Union[np.ndarray, torch.Tensor]]] = [{"input_ids": input_ids}]
convert_t5_to_onnx(
tokenizer=tokenizer,
model_pytorch=model_pytorch,
path_dir=commands.output,
input_ids=input_ids,
)
else:
onnx_model_path = os.path.join(commands.output, "model-original.onnx")
# take optimal size
inputs_pytorch = generate_multiple_inputs(
batch_size=tensor_shapes[1][0],
seq_len=tensor_shapes[1][1],
input_names=input_names,
device=commands.device,
nb_inputs_to_gen=commands.warmup,
)
convert_to_onnx(
model_pytorch=model_pytorch,
output_path=onnx_model_path,
inputs_pytorch=inputs_pytorch[0],
quantization=commands.quantization,
var_output_seq=commands.task in ["text-generation", "token-classification", "question-answering"],
output_names=["output"] if commands.task != "question-answering" else ["start_logits", "end_logits"],
)
timings = {}
def get_pytorch_infer(model: PreTrainedModel, cuda: bool, task: str):
if task == "text-generation" and commands.generative_model == "t5":
return infer_text_generation(
model=model,
run_on_cuda=cuda,
min_length=commands.seq_len[0],
max_length=commands.seq_len[0],
num_beams=2,
)
if task in ["classification", "text-generation", "token-classification", "question-answering"]:
return infer_classification_pytorch(model=model, run_on_cuda=cuda)
if task == "embedding":
return infer_feature_extraction_pytorch(model=model, run_on_cuda=cuda)
raise Exception(f"unknown task: {task}")
with torch.inference_mode():
logging.info("running Pytorch (FP32) benchmark")
pytorch_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
timings["Pytorch (FP32)"] = time_buffer
if run_on_cuda and not commands.fast:
from torch.cuda.amp import autocast
with autocast():
engine_name = "Pytorch (FP16)"
logging.info("running Pytorch (FP16) benchmark")
model_pytorch_fp16 = model_pytorch.half()
pytorch_fp16_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch_fp16, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=pytorch_fp16_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
elif commands.device == "cpu":
logging.info("preparing Pytorch (INT-8) benchmark")
model_pytorch = torch.quantization.quantize_dynamic(model_pytorch, {torch.nn.Linear}, dtype=torch.qint8)
engine_name = "Pytorch (INT-8)"
logging.info("running Pytorch (FP32) benchmark")
pytorch_int8_output, time_buffer = launch_inference(
infer=get_pytorch_infer(model=model_pytorch, cuda=run_on_cuda, task=commands.task),
inputs=inputs_pytorch,
nb_measures=commands.nb_measures,
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=pytorch_int8_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
# create triton conf for models different from T5
if commands.generative_model != "t5":
if commands.task == "text-generation" and commands.generative_model == "gpt":
conf_class: Type[Configuration] = ConfigurationDec
elif commands.task == "token-classification":
conf_class: Type[Configuration] = ConfigurationTokenClassifier
elif commands.task == "question-answering":
conf_class: Type[Configuration] = ConfigurationQuestionAnswering
else:
conf_class = ConfigurationEnc
triton_conf = conf_class(
model_name_base=commands.name,
dim_output=get_triton_output_shape(
output=pytorch_output[0] if type(pytorch_output[0]) == torch.Tensor else pytorch_output[0][0],
task=commands.task,
),
nb_instance=commands.nb_instances,
tensor_input_names=input_names,
working_directory=commands.output,
device=commands.device,
)
model_pytorch.cpu()
logging.info("cleaning up")
if run_on_cuda:
torch.cuda.empty_cache()
gc.collect()
if "tensorrt" in commands.backend:
logging.info("preparing TensorRT (FP16) benchmark")
try:
import tensorrt as trt
from tensorrt.tensorrt import ICudaEngine, Logger, Runtime
from transformer_deploy.backends.trt_utils import build_engine, load_engine, save_engine
except ImportError:
raise ImportError(
"It seems that TensorRT is not yet installed. "
"It is required when you declare TensorRT backend."
"Please find installation instruction on "
"https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html"
)
tensorrt_path = os.path.join(commands.output, "model.plan")
trt_logger: Logger = trt.Logger(trt.Logger.VERBOSE if commands.verbose else trt.Logger.WARNING)
runtime: Runtime = trt.Runtime(trt_logger)
engine: ICudaEngine = build_engine(
runtime=runtime,
onnx_file_path=onnx_model_path,
logger=trt_logger,
min_shape=tensor_shapes[0],
optimal_shape=tensor_shapes[1],
max_shape=tensor_shapes[2],
workspace_size=commands.workspace_size * 1024 * 1024,
fp16=not commands.quantization,
int8=commands.quantization,
)
save_engine(engine=engine, engine_file_path=tensorrt_path)
# important to check the engine has been correctly serialized
tensorrt_model: Callable[[Dict[str, torch.Tensor]], Dict[str, torch.Tensor]] = load_engine(
runtime=runtime, engine_file_path=tensorrt_path
)
if commands.task == "question-answering":
tensorrt_inf: Callable[[Dict[str, torch.Tensor]], List[torch.Tensor]] = lambda x: list(
tensorrt_model(x).values()
)
else:
tensorrt_inf: Callable[[Dict[str, torch.Tensor]], torch.Tensor] = lambda x: list(
tensorrt_model(x).values()
)[0]
logging.info("running TensorRT (FP16) benchmark")
engine_name = "TensorRT (FP16)"
tensorrt_output, time_buffer = launch_inference(
infer=tensorrt_inf, inputs=inputs_pytorch, nb_measures=commands.nb_measures
)
check_accuracy(
engine_name=engine_name,
pytorch_output=pytorch_output,
engine_output=tensorrt_output,
tolerance=commands.atol,
)
timings[engine_name] = time_buffer
del engine, tensorrt_model, runtime # delete all tensorrt objects
gc.collect()
triton_conf.create_configs(
tokenizer=tokenizer, model_path=tensorrt_path, config=model_config, engine_type=EngineType.TensorRT
)
if "onnx" in commands.backend:
# create optimized onnx model and compare results
num_attention_heads, hidden_size = get_model_size(path=commands.model, auth_token=auth_token)
model_paths = (
[os.path.join(commands.output, "t5-encoder") + path for path in ["/model_fp16.onnx", "/model.onnx"]]
if commands.generative_model == "t5"
else [onnx_model_path]
)
optim_model_paths = (
[model_path[:-5] + "_optim.onnx" for model_path in model_paths]
if commands.generative_model == "t5"
else [os.path.join(commands.output, "model.onnx")]
)
[
optimize_onnx(
onnx_path=model_paths[idx],
onnx_optim_model_path=optim_model_path,
fp16=run_on_cuda,
use_cuda=run_on_cuda,
num_attention_heads=num_attention_heads,
hidden_size=hidden_size,
architecture=model_config.model_type,
)
for idx, optim_model_path in enumerate(optim_model_paths)
]
if commands.device == "cpu" and commands.quantization:
cpu_quantization(input_model_path=optim_model_paths[0], output_model_path=optim_model_paths[0])
ort_provider = "CUDAExecutionProvider" if run_on_cuda else "CPUExecutionProvider"
for provider, is_fp16, benchmark_name in [
(ort_provider, False, "ONNX Runtime (FP32)"),
(ort_provider, True, "ONNX Runtime (FP16)"),
]:
logging.info("preparing %s benchmark", benchmark_name)
torch_type = torch.float16 if is_fp16 else torch.float32
if commands.generative_model == "t5":
encoder_path = os.path.join(commands.output, "t5-encoder") + (
"/model_fp16.onnx" if is_fp16 else "/model.onnx"
)
decoder_path = os.path.join(commands.output, "t5-dec-if-node") + (
"/model_fp16.onnx" if is_fp16 else "/model.onnx"
)
ort_model = (
ExtT5(
config=model_pytorch.config,
device="cuda",
encoder_path=encoder_path,
decoder_path=decoder_path,
torch_type=torch_type,
)
.cuda()
.eval()
)
# warmup generative model:
[
ort_model.generate(
inputs=input_ids, min_length=commands.seq_len[0], max_length=commands.seq_len[0], num_beams=2
)
for _ in range(5)
]
else:
model_path = onnx_model_path if is_fp16 else optim_model_paths[0]
ort_model = create_model_for_provider(
path=model_path,
provider_to_use=provider,
nb_threads=commands.nb_threads,
)
def infer_ort(inputs: Dict[str, torch.Tensor]) -> torch.Tensor:
results = (
ort_model.generate(
inputs=inputs,
min_length=commands.seq_len[0],
max_length=commands.seq_len[0],
num_beams=2,
)[0]
if commands.generative_model == "t5"
else inference_onnx_binding(model_onnx=ort_model, inputs=inputs, device=commands.device)
)
if commands.generative_model == "t5":
return results
elif "output" in results:
return results["output"]
else:
return results["start_logits"], results["end_logits"]
logging.info("running %s benchmark", benchmark_name)
inputs = [input_ids] if commands.generative_model == "t5" else inputs_pytorch
[launch_inference(infer=infer_ort, inputs=inputs, nb_measures=commands.nb_measures) for _ in range(5)]
ort_output, time_buffer = launch_inference(infer=infer_ort, inputs=inputs, nb_measures=commands.nb_measures)
check_accuracy(
engine_name=benchmark_name,
pytorch_output=pytorch_output[0] if commands.generative_model == "t5" else pytorch_output,
engine_output=ort_output,
tolerance=100000,
)
timings[benchmark_name] = time_buffer
gc.collect()
if commands.generative_model == "t5":
encoder_output = ort_model.get_encoder()(input_ids)
decoder_output = ort_model.forward(
input_ids, encoder_output.last_hidden_state, torch.tensor([0], dtype=torch.int32, device="cuda"), None
)
create_triton_configs(
tokenizer,
model_config,
encoder_output,
decoder_output,
EngineType.ONNX,
commands.task,
commands.nb_instances,
input_names,
commands.output,
commands.device,
)
del ort_model, encoder_output, decoder_output
else:
triton_conf.create_configs(
tokenizer=tokenizer,
model_path=optim_model_paths[0],
config=model_config,
engine_type=EngineType.ONNX,
)
if run_on_cuda:
from torch.cuda import get_device_name
print(f"Inference done on {get_device_name(0)}")
print("latencies:")
for name, time_buffer in timings.items():
print_timings(name=name, timings=time_buffer)
print(f"Each inference engine output is within {commands.atol} tolerance compared to Pytorch output")
def entrypoint():
args = parse_args()
main(commands=args)
if __name__ == "__main__":
entrypoint()