emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2014
  • Accuracy: 0.6125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0842 1.0 10 2.0668 0.175
2.039 2.0 20 2.0070 0.2875
1.9285 3.0 30 1.8789 0.4062
1.7699 4.0 40 1.6942 0.425
1.6135 5.0 50 1.5758 0.4313
1.5056 6.0 60 1.4884 0.55
1.3896 7.0 70 1.3999 0.5437
1.2804 8.0 80 1.3563 0.5437
1.2043 9.0 90 1.3244 0.55
1.1231 10.0 100 1.2775 0.6062
1.0652 11.0 110 1.2567 0.575
1.0005 12.0 120 1.2833 0.5563
0.9878 13.0 130 1.2277 0.5687
0.9714 14.0 140 1.2557 0.5563
0.9057 15.0 150 1.2187 0.6125
0.8854 16.0 160 1.2612 0.5437
0.8478 17.0 170 1.2450 0.5437
0.8601 18.0 180 1.2456 0.5375
0.8498 19.0 190 1.2413 0.5875
0.8775 20.0 200 1.1928 0.6

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for daryfauzan/emotion_recognition

Finetuned
(1777)
this model

Evaluation results