|
import pandas as pd |
|
import fitz |
|
from langchain.prompts import PromptTemplate |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.messages import HumanMessage, SystemMessage |
|
from tqdm.notebook import tqdm |
|
|
|
|
|
def pdf_to_text(pdf_path): |
|
pdf_text = "" |
|
with fitz.open(pdf_path) as pdf_document: |
|
for page_num in range(len(pdf_document)): |
|
page = pdf_document.load_page(page_num) |
|
pdf_text += page.get_text() |
|
return pdf_text |
|
|
|
|
|
|
|
|
|
last_30_QA = QA.tail(80) |
|
|
|
|
|
pdf_path = 'ahmed.pdf' |
|
pdf_text = pdf_to_text(pdf_path) |
|
|
|
|
|
llm = ChatOpenAI( |
|
model="gpt-4", |
|
temperature=0, |
|
max_tokens=None, |
|
timeout=None, |
|
max_retries=2, |
|
api_key="""""", |
|
) |
|
|
|
|
|
prompt_template = PromptTemplate( |
|
template="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.\n\n{text}", |
|
input_variables=["text"] |
|
) |
|
|
|
|
|
rag_able_texts = [] |
|
|
|
|
|
for index, row in tqdm(last_30_QA.iterrows(), total=last_30_QA.shape[0]): |
|
question = row['english'] |
|
answer = row['answer'] |
|
combined_text = f"\n\n{index + 1}. {question} correct answer {answer} + \t\n\n" |
|
|
|
|
|
system_message = SystemMessage(content="You are a helpful assistant. Please rewrite the following into a RAG-able paragraph.") |
|
human_message = HumanMessage(content=combined_text) |
|
|
|
|
|
|
|
|
|
|
|
rag_able_text = combined_text |
|
|
|
|
|
rag_able_texts.append(rag_able_text) |
|
|
|
|
|
final_rag_able_text = pdf_text +"END__"+"\n\n".join(rag_able_texts) |
|
|
|
|
|
with open('final_rag_able_text.txt', 'w') as file: |
|
file.write(final_rag_able_text) |
|
|
|
print("RAG-able text created successfully.") |
|
|