Datasets:

ArXiv:
License:
zhuwq0 kylewhy commited on
Commit
5d1d228
·
verified ·
1 Parent(s): fc037b7

doc & scripts update (#1)

Browse files

- update urls (a6afd6d500ff8c8b26ac2f8dbf8988ffefbe0b1c)
- update doc (665e5756680c48f6f41e6cf5fa4328f9dbd4ddeb)


Co-authored-by: kylewhy <[email protected]>

Files changed (3) hide show
  1. CEED.py +15 -30
  2. README.md +176 -1
  3. example.py +1 -0
CEED.py CHANGED
@@ -123,25 +123,11 @@ _FILES_SC = [
123
  ]
124
 
125
  _URLS = {
126
- "station": [f"{_REPO_NC}/{x}" for x in _FILES_NC] + [f"{_REPO_SC}/{x}" for x in _FILES_SC],
127
- "event": [f"{_REPO_NC}/{x}" for x in _FILES_NC] + [f"{_REPO_SC}/{x}" for x in _FILES_SC],
128
- "station_train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]],
129
- "event_train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]],
130
- "station_test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]],
131
- "event_test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]],
132
  }
133
 
134
 
135
- class BatchBuilderConfig(datasets.BuilderConfig):
136
- """
137
- yield a batch of event-based sample, so the number of sample stations can vary among batches
138
- Batch Config for CEED
139
- """
140
-
141
- def __init__(self, **kwargs):
142
- super().__init__(**kwargs)
143
-
144
-
145
  # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
146
  class CEED(datasets.GeneratorBasedBuilder):
147
  """CEED: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
@@ -254,7 +240,15 @@ class CEED(datasets.GeneratorBasedBuilder):
254
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
255
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
256
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
257
- urls = _URLS[self.config.name]
 
 
 
 
 
 
 
 
258
  # files = dl_manager.download(urls)
259
  files = dl_manager.download_and_extract(urls)
260
  # files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
@@ -266,13 +260,13 @@ class CEED(datasets.GeneratorBasedBuilder):
266
  name=datasets.Split.TRAIN,
267
  # These kwargs will be passed to _generate_examples
268
  gen_kwargs={
269
- "filepath": files[:-1],
270
  "split": "train",
271
  },
272
  ),
273
  datasets.SplitGenerator(
274
  name=datasets.Split.TEST,
275
- gen_kwargs={"filepath": files[-1:], "split": "test"},
276
  ),
277
  ]
278
  elif self.config.name == "station_train" or self.config.name == "event_train":
@@ -319,11 +313,7 @@ class CEED(datasets.GeneratorBasedBuilder):
319
  station_ids = list(event.keys())
320
  if len(station_ids) == 0:
321
  continue
322
- if (
323
- (self.config.name == "station")
324
- or (self.config.name == "station_train")
325
- or (self.config.name == "station_test")
326
- ):
327
  waveforms = np.zeros([3, self.nt], dtype="float32")
328
 
329
  for i, sta_id in enumerate(station_ids):
@@ -349,12 +339,7 @@ class CEED(datasets.GeneratorBasedBuilder):
349
  "station_location": station_location,
350
  }
351
 
352
- elif (
353
- (self.config.name == "event")
354
- or (self.config.name == "event_train")
355
- or (self.config.name == "event_test")
356
- ):
357
-
358
  waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
359
  phase_type = []
360
  phase_time = []
 
123
  ]
124
 
125
  _URLS = {
126
+ "train": [f"{_REPO_NC}/{x}" for x in _FILES_NC[:-1]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[:-1]],
127
+ "test": [f"{_REPO_NC}/{x}" for x in _FILES_NC[-1:]] + [f"{_REPO_SC}/{x}" for x in _FILES_SC[-1:]],
 
 
 
 
128
  }
129
 
130
 
 
 
 
 
 
 
 
 
 
 
131
  # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
132
  class CEED(datasets.GeneratorBasedBuilder):
133
  """CEED: A dataset of earthquake waveforms organized by earthquake events and based on the HDF5 format."""
 
240
  # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
241
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
242
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
243
+ if self.config.name in ["station", "event"]:
244
+ urls = _URLS["train"] + _URLS["test"]
245
+ elif self.config.name in ["station_train", "event_train"]:
246
+ urls = _URLS["train"]
247
+ elif self.config.name in ["station_test", "event_test"]:
248
+ urls = _URLS["test"]
249
+ else:
250
+ raise ValueError("config.name is not in BUILDER_CONFIGS")
251
+
252
  # files = dl_manager.download(urls)
253
  files = dl_manager.download_and_extract(urls)
254
  # files = ["waveform_h5/1989.h5", "waveform_h5/1990.h5"]
 
260
  name=datasets.Split.TRAIN,
261
  # These kwargs will be passed to _generate_examples
262
  gen_kwargs={
263
+ "filepath": files[:-2],
264
  "split": "train",
265
  },
266
  ),
267
  datasets.SplitGenerator(
268
  name=datasets.Split.TEST,
269
+ gen_kwargs={"filepath": files[-2:], "split": "test"},
270
  ),
271
  ]
272
  elif self.config.name == "station_train" or self.config.name == "event_train":
 
313
  station_ids = list(event.keys())
314
  if len(station_ids) == 0:
315
  continue
316
+ if ("station" in self.config.name):
 
 
 
 
317
  waveforms = np.zeros([3, self.nt], dtype="float32")
318
 
319
  for i, sta_id in enumerate(station_ids):
 
339
  "station_location": station_location,
340
  }
341
 
342
+ elif ("event" in self.config.name):
 
 
 
 
 
343
  waveforms = np.zeros([len(station_ids), 3, self.nt], dtype="float32")
344
  phase_type = []
345
  phase_time = []
README.md CHANGED
@@ -2,4 +2,179 @@
2
  license: mit
3
  ---
4
 
5
- ## CEED: *C*alifornia *E*arthquak*E* *D*ataset for Machine Learning and Cloud Computing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
4
 
5
+ ## CEED: *C*alifornia *E*arthquak*E* *D*ataset for Machine Learning and Cloud Computing
6
+
7
+ The California EarthquakE Dataset (CEED) is a dataset of earthquake waveforms and metadata for machine learning and cloud computing. The dataset structure is shown below, and you can find more information about the format at [AI4EPS](https://ai4eps.github.io/homepage/ml4earth/seismic_event_format1/)
8
+
9
+ ```
10
+ Group: / len:60424
11
+ |- Group: /ci38457511 len:35
12
+ | |-* begin_time = 2019-07-06T03:19:23.668000
13
+ | |-* depth_km = 8.0
14
+ | |-* end_time = 2019-07-06T03:21:23.668000
15
+ | |-* event_id = ci38457511
16
+ | |-* event_time = 2019-07-06T03:19:53.040000
17
+ | |-* event_time_index = 2937
18
+ | |-* latitude = 35.7695
19
+ | |-* longitude = -117.5993
20
+ | |-* magnitude = 7.1
21
+ | |-* magnitude_type = w
22
+ | |-* nt = 12000
23
+ | |-* nx = 35
24
+ | |-* sampling_rate = 100
25
+ | |-* source = SC
26
+ | |- Dataset: /ci38457511/CI.CCC..HH (shape:(3, 12000))
27
+ | | |- (dtype=float32)
28
+ | | | |-* azimuth = 141.849479
29
+ | | | |-* back_azimuth = 321.986302
30
+ | | | |-* component = ENZ
31
+ | | | |-* depth_km = -0.67
32
+ | | | |-* distance_km = 34.471389
33
+ | | | |-* dt_s = 0.01
34
+ | | | |-* elevation_m = 670.0
35
+ | | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
36
+ | | | |-* instrument = HH
37
+ | | | |-* latitude = 35.52495
38
+ | | | |-* local_depth_m = 0.0
39
+ | | | |-* location =
40
+ | | | |-* longitude = -117.36453
41
+ | | | |-* network = CI
42
+ | | | |-* p_phase_index = 3575
43
+ | | | |-* p_phase_polarity = U
44
+ | | | |-* p_phase_score = 0.8
45
+ | | | |-* p_phase_status = manual
46
+ | | | |-* p_phase_time = 2019-07-06T03:19:59.422000
47
+ | | | |-* phase_index = [ 3575 4184 11826]
48
+ | | | |-* phase_picking_channel = ['HHZ' 'HNN' 'HHZ']
49
+ | | | |-* phase_polarity = ['U' 'N' 'N']
50
+ | | | |-* phase_remark = ['i' 'e' 'e']
51
+ | | | |-* phase_score = [0.8 0.5 0.5]
52
+ | | | |-* phase_status = manual
53
+ | | | |-* phase_time = ['2019-07-06T03:19:59.422000' '2019-07-06T03:20:05.509000' '2019-07-06T03:21:21.928000']
54
+ | | | |-* phase_type = ['P' 'S' 'P']
55
+ | | | |-* s_phase_index = 4184
56
+ | | | |-* s_phase_polarity = N
57
+ | | | |-* s_phase_score = 0.5
58
+ | | | |-* s_phase_status = manual
59
+ | | | |-* s_phase_time = 2019-07-06T03:20:05.509000
60
+ | | | |-* snr = [ 637.9865898 286.9100766 1433.04052911]
61
+ | | | |-* station = CCC
62
+ | | | |-* unit = 1e-6m/s
63
+ | |- Dataset: /ci38457511/CI.CCC..HN (shape:(3, 12000))
64
+ | | |- (dtype=float32)
65
+ | | | |-* azimuth = 141.849479
66
+ | | | |-* back_azimuth = 321.986302
67
+ | | | |-* component = ENZ
68
+ | | | |-* depth_km = -0.67
69
+ | | | |-* distance_km = 34.471389
70
+ | | | |-* dt_s = 0.01
71
+ | | | |-* elevation_m = 670.0
72
+ | | | |-* event_id = ['ci38457511' 'ci38457511' 'ci37260300']
73
+ ......
74
+ ```
75
+
76
+ ## Getting Started
77
+
78
+ ### Requirements
79
+ - datasets
80
+ - h5py
81
+ - fsspec
82
+ - pytorch
83
+
84
+ ### Usage
85
+ Import the necessary packages:
86
+ ```python
87
+ import h5py
88
+ import numpy as np
89
+ import torch
90
+ from datasets import load_dataset
91
+ ```
92
+ We have 6 configurations for the dataset:
93
+ - "station"
94
+ - "event"
95
+ - "station_train"
96
+ - "event_train"
97
+ - "station_test"
98
+ - "event_test"
99
+
100
+ "station" yields station-based samples one by one, while "event" yields event-based samples one by one. The configurations with no suffix are the full dataset, while the configurations with suffix "_train" and "_test" only have corresponding split of the full dataset. Train split contains data from 1970 to 2019, while test split contains data in 2020.
101
+
102
+ The sample of `station` is a dictionary with the following keys:
103
+ - `data`: the waveform with shape `(3, nt)`, the default time length is 8192
104
+ - `begin_time`: the begin time of the waveform data
105
+ - `end_time`: the end time of the waveform data
106
+ - `phase_time`: the phase arrival time
107
+ - `phase_index`: the time point index of the phase arrival time
108
+ - `phase_type`: the phase type
109
+ - `phase_polarity`: the phase polarity in ('U', 'D', 'N')
110
+ - `event_time`: the event time
111
+ - `event_time_index`: the time point index of the event time
112
+ - `event_location`: the event location with shape `(3,)`, including latitude, longitude, depth
113
+ - `station_location`: the station location with shape `(3,)`, including latitude, longitude and depth
114
+
115
+ The sample of `event` is a dictionary with the following keys:
116
+ - `data`: the waveform with shape `(n_station, 3, nt)`, the default time length is 8192
117
+ - `begin_time`: the begin time of the waveform data
118
+ - `end_time`: the end time of the waveform data
119
+ - `phase_time`: the phase arrival time with shape `(n_station,)`
120
+ - `phase_index`: the time point index of the phase arrival time with shape `(n_station,)`
121
+ - `phase_type`: the phase type with shape `(n_station,)`
122
+ - `phase_polarity`: the phase polarity in ('U', 'D', 'N') with shape `(n_station,)`
123
+ - `event_time`: the event time
124
+ - `event_time_index`: the time point index of the event time
125
+ - `event_location`: the space-time coordinates of the event with shape `(n_staion, 3)`
126
+ - `station_location`: the space coordinates of the station with shape `(n_station, 3)`, including latitude, longitude and depth
127
+
128
+ The default configuration is `station_test`. You can specify the configuration by argument `name`. For example:
129
+ ```python
130
+ # load dataset
131
+ # ATTENTION: Streaming(Iterable Dataset) is complex to support because of the feature of HDF5
132
+ # So we recommend to directly load the dataset and convert it into iterable later
133
+ # The dataset is very large, so you need to wait for some time at the first time
134
+
135
+ # to load "station_test" with test split
136
+ ceed = load_dataset("AI4EPS/CEED", split="test")
137
+ # or
138
+ ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
139
+
140
+ # to load "event" with train split
141
+ ceed = load_dataset("AI4EPS/CEED", name="event", split="train")
142
+ ```
143
+
144
+ #### Example loading the dataset
145
+ ```python
146
+ ceed = load_dataset("AI4EPS/CEED", name="station_test", split="test")
147
+
148
+ # print the first sample of the iterable dataset
149
+ for example in ceed:
150
+ print("\nIterable test\n")
151
+ print(example.keys())
152
+ for key in example.keys():
153
+ if key == "data":
154
+ print(key, np.array(example[key]).shape)
155
+ else:
156
+ print(key, example[key])
157
+ break
158
+
159
+ # %%
160
+ ceed = ceed.with_format("torch")
161
+ dataloader = DataLoader(ceed, batch_size=8, num_workers=0, collate_fn=lambda x: x)
162
+
163
+ for batch in dataloader:
164
+ print("\nDataloader test\n")
165
+ print(f"Batch size: {len(batch)}")
166
+ print(batch[0].keys())
167
+ for key in batch[0].keys():
168
+ if key == "data":
169
+ print(key, np.array(batch[0][key]).shape)
170
+ else:
171
+ print(key, batch[0][key])
172
+ break
173
+ ```
174
+
175
+ #### Extension
176
+
177
+ If you want to introduce new features in to labels, we recommend to make a copy of `CEED.py` and modify the `_generate_examples` method. Check [AI4EPS/EQNet](https://github.com/AI4EPS/EQNet/blob/master/eqnet/data/quakeflow_nc.py) for an example. To load the dataset with your modified script, specify the path to the script in `load_dataset` function:
178
+ ```python
179
+ ceed = load_dataset("path/to/your/CEED.py", name="station_test", split="test", trust_remote_code=True)
180
+ ```
example.py CHANGED
@@ -10,6 +10,7 @@ ceed = load_dataset(
10
  # name="event_test",
11
  split="test",
12
  download_mode="force_redownload",
 
13
  )
14
 
15
  # print the first sample of the iterable dataset
 
10
  # name="event_test",
11
  split="test",
12
  download_mode="force_redownload",
13
+ trust_remote_code=True,
14
  )
15
 
16
  # print the first sample of the iterable dataset