id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
51
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
2,400
opencobra/memote
memote/support/thermodynamics.py
get_smallest_compound_id
def get_smallest_compound_id(compounds_identifiers): """ Return the smallest KEGG compound identifier from a list. KEGG identifiers may map to compounds, drugs or glycans prefixed respectively with "C", "D", and "G" followed by at least 5 digits. We choose the lowest KEGG identifier with the assumption that several identifiers are due to chirality and that the lower one represents the more common form. Parameters ---------- compounds_identifiers : list A list of mixed KEGG identifiers. Returns ------- str The KEGG compound identifier with the smallest number. Raises ------ ValueError When compound_identifiers contains no KEGG compound identifiers. """ return min((c for c in compounds_identifiers if c.startswith("C")), key=lambda c: int(c[1:]))
python
def get_smallest_compound_id(compounds_identifiers): return min((c for c in compounds_identifiers if c.startswith("C")), key=lambda c: int(c[1:]))
[ "def", "get_smallest_compound_id", "(", "compounds_identifiers", ")", ":", "return", "min", "(", "(", "c", "for", "c", "in", "compounds_identifiers", "if", "c", ".", "startswith", "(", "\"C\"", ")", ")", ",", "key", "=", "lambda", "c", ":", "int", "(", "c", "[", "1", ":", "]", ")", ")" ]
Return the smallest KEGG compound identifier from a list. KEGG identifiers may map to compounds, drugs or glycans prefixed respectively with "C", "D", and "G" followed by at least 5 digits. We choose the lowest KEGG identifier with the assumption that several identifiers are due to chirality and that the lower one represents the more common form. Parameters ---------- compounds_identifiers : list A list of mixed KEGG identifiers. Returns ------- str The KEGG compound identifier with the smallest number. Raises ------ ValueError When compound_identifiers contains no KEGG compound identifiers.
[ "Return", "the", "smallest", "KEGG", "compound", "identifier", "from", "a", "list", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/thermodynamics.py#L37-L64
2,401
opencobra/memote
memote/support/thermodynamics.py
map_metabolite2kegg
def map_metabolite2kegg(metabolite): """ Return a KEGG compound identifier for the metabolite if it exists. First see if there is an unambiguous mapping to a single KEGG compound ID provided with the model. If not, check if there is any KEGG compound ID in a list of mappings. KEGG IDs may map to compounds, drugs and glycans. KEGG compound IDs are sorted so we keep the lowest that is there. If none of this works try mapping to KEGG via the CompoundMatcher by the name of the metabolite. If the metabolite cannot be mapped at all we simply map it back to its own ID. Parameters ---------- metabolite : cobra.Metabolite The metabolite to be mapped to its KEGG compound identifier. Returns ------- None If the metabolite could not be mapped. str The smallest KEGG compound identifier that was found. """ logger.debug("Looking for KEGG compound identifier for %s.", metabolite.id) kegg_annotation = metabolite.annotation.get("kegg.compound") if kegg_annotation is None: # TODO (Moritz Beber): Currently name matching is very slow and # inaccurate. We disable it until there is a better solution. # if metabolite.name: # # The compound matcher uses regular expression and chokes # # with a low level error on `[` in the name, for example. # df = compound_matcher.match(metabolite.name) # try: # return df.loc[df["score"] > threshold, "CID"].iat[0] # except (IndexError, AttributeError): # logger.warning( # "Could not match the name %r to any kegg.compound " # "annotation for metabolite %s.", # metabolite.name, metabolite.id # ) # return # else: logger.warning("No kegg.compound annotation for metabolite %s.", metabolite.id) return if isinstance(kegg_annotation, string_types) and \ kegg_annotation.startswith("C"): return kegg_annotation elif isinstance(kegg_annotation, Iterable): try: return get_smallest_compound_id(kegg_annotation) except ValueError: return logger.warning( "No matching kegg.compound annotation for metabolite %s.", metabolite.id ) return
python
def map_metabolite2kegg(metabolite): logger.debug("Looking for KEGG compound identifier for %s.", metabolite.id) kegg_annotation = metabolite.annotation.get("kegg.compound") if kegg_annotation is None: # TODO (Moritz Beber): Currently name matching is very slow and # inaccurate. We disable it until there is a better solution. # if metabolite.name: # # The compound matcher uses regular expression and chokes # # with a low level error on `[` in the name, for example. # df = compound_matcher.match(metabolite.name) # try: # return df.loc[df["score"] > threshold, "CID"].iat[0] # except (IndexError, AttributeError): # logger.warning( # "Could not match the name %r to any kegg.compound " # "annotation for metabolite %s.", # metabolite.name, metabolite.id # ) # return # else: logger.warning("No kegg.compound annotation for metabolite %s.", metabolite.id) return if isinstance(kegg_annotation, string_types) and \ kegg_annotation.startswith("C"): return kegg_annotation elif isinstance(kegg_annotation, Iterable): try: return get_smallest_compound_id(kegg_annotation) except ValueError: return logger.warning( "No matching kegg.compound annotation for metabolite %s.", metabolite.id ) return
[ "def", "map_metabolite2kegg", "(", "metabolite", ")", ":", "logger", ".", "debug", "(", "\"Looking for KEGG compound identifier for %s.\"", ",", "metabolite", ".", "id", ")", "kegg_annotation", "=", "metabolite", ".", "annotation", ".", "get", "(", "\"kegg.compound\"", ")", "if", "kegg_annotation", "is", "None", ":", "# TODO (Moritz Beber): Currently name matching is very slow and", "# inaccurate. We disable it until there is a better solution.", "# if metabolite.name:", "# # The compound matcher uses regular expression and chokes", "# # with a low level error on `[` in the name, for example.", "# df = compound_matcher.match(metabolite.name)", "# try:", "# return df.loc[df[\"score\"] > threshold, \"CID\"].iat[0]", "# except (IndexError, AttributeError):", "# logger.warning(", "# \"Could not match the name %r to any kegg.compound \"", "# \"annotation for metabolite %s.\",", "# metabolite.name, metabolite.id", "# )", "# return", "# else:", "logger", ".", "warning", "(", "\"No kegg.compound annotation for metabolite %s.\"", ",", "metabolite", ".", "id", ")", "return", "if", "isinstance", "(", "kegg_annotation", ",", "string_types", ")", "and", "kegg_annotation", ".", "startswith", "(", "\"C\"", ")", ":", "return", "kegg_annotation", "elif", "isinstance", "(", "kegg_annotation", ",", "Iterable", ")", ":", "try", ":", "return", "get_smallest_compound_id", "(", "kegg_annotation", ")", "except", "ValueError", ":", "return", "logger", ".", "warning", "(", "\"No matching kegg.compound annotation for metabolite %s.\"", ",", "metabolite", ".", "id", ")", "return" ]
Return a KEGG compound identifier for the metabolite if it exists. First see if there is an unambiguous mapping to a single KEGG compound ID provided with the model. If not, check if there is any KEGG compound ID in a list of mappings. KEGG IDs may map to compounds, drugs and glycans. KEGG compound IDs are sorted so we keep the lowest that is there. If none of this works try mapping to KEGG via the CompoundMatcher by the name of the metabolite. If the metabolite cannot be mapped at all we simply map it back to its own ID. Parameters ---------- metabolite : cobra.Metabolite The metabolite to be mapped to its KEGG compound identifier. Returns ------- None If the metabolite could not be mapped. str The smallest KEGG compound identifier that was found.
[ "Return", "a", "KEGG", "compound", "identifier", "for", "the", "metabolite", "if", "it", "exists", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/thermodynamics.py#L67-L126
2,402
opencobra/memote
memote/support/thermodynamics.py
translate_reaction
def translate_reaction(reaction, metabolite_mapping): """ Return a mapping from KEGG compound identifiers to coefficients. Parameters ---------- reaction : cobra.Reaction The reaction whose metabolites are to be translated. metabolite_mapping : dict An existing mapping from cobra.Metabolite to KEGG compound identifier that may already contain the metabolites in question or will have to be extended. Returns ------- dict The stoichiometry of the reaction given as a mapping from metabolite KEGG identifier to coefficient. """ # Transport reactions where the same metabolite occurs in different # compartments should have been filtered out but just to be sure, we add # coefficients in the mapping. stoichiometry = defaultdict(float) for met, coef in iteritems(reaction.metabolites): kegg_id = metabolite_mapping.setdefault(met, map_metabolite2kegg(met)) if kegg_id is None: continue stoichiometry[kegg_id] += coef return dict(stoichiometry)
python
def translate_reaction(reaction, metabolite_mapping): # Transport reactions where the same metabolite occurs in different # compartments should have been filtered out but just to be sure, we add # coefficients in the mapping. stoichiometry = defaultdict(float) for met, coef in iteritems(reaction.metabolites): kegg_id = metabolite_mapping.setdefault(met, map_metabolite2kegg(met)) if kegg_id is None: continue stoichiometry[kegg_id] += coef return dict(stoichiometry)
[ "def", "translate_reaction", "(", "reaction", ",", "metabolite_mapping", ")", ":", "# Transport reactions where the same metabolite occurs in different", "# compartments should have been filtered out but just to be sure, we add", "# coefficients in the mapping.", "stoichiometry", "=", "defaultdict", "(", "float", ")", "for", "met", ",", "coef", "in", "iteritems", "(", "reaction", ".", "metabolites", ")", ":", "kegg_id", "=", "metabolite_mapping", ".", "setdefault", "(", "met", ",", "map_metabolite2kegg", "(", "met", ")", ")", "if", "kegg_id", "is", "None", ":", "continue", "stoichiometry", "[", "kegg_id", "]", "+=", "coef", "return", "dict", "(", "stoichiometry", ")" ]
Return a mapping from KEGG compound identifiers to coefficients. Parameters ---------- reaction : cobra.Reaction The reaction whose metabolites are to be translated. metabolite_mapping : dict An existing mapping from cobra.Metabolite to KEGG compound identifier that may already contain the metabolites in question or will have to be extended. Returns ------- dict The stoichiometry of the reaction given as a mapping from metabolite KEGG identifier to coefficient.
[ "Return", "a", "mapping", "from", "KEGG", "compound", "identifiers", "to", "coefficients", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/thermodynamics.py#L129-L158
2,403
opencobra/memote
memote/support/thermodynamics.py
find_thermodynamic_reversibility_index
def find_thermodynamic_reversibility_index(reactions): u""" Return the reversibility index of the given reactions. To determine the reversibility index, we calculate the reversibility index ln_gamma (see [1]_ section 3.5) of each reaction using the eQuilibrator API [2]_. Parameters ---------- reactions: list of cobra.Reaction A list of reactions for which to calculate the reversibility index. Returns ------- tuple list of cobra.Reaction, index pairs A list of pairs of reactions and their reversibility indexes. list of cobra.Reaction A list of reactions which contain at least one metabolite that could not be mapped to KEGG on the basis of its annotation. list of cobra.Reaction A list of reactions for which it is not possible to calculate the standard change in Gibbs free energy potential. Reasons of failure include that participating metabolites cannot be broken down with the group contribution method. list of cobra.Reaction A list of reactions that are not chemically or redox balanced. References ---------- .. [1] Elad Noor, Arren Bar-Even, Avi Flamholz, Yaniv Lubling, Dan Davidi, Ron Milo; An integrated open framework for thermodynamics of reactions that combines accuracy and coverage, Bioinformatics, Volume 28, Issue 15, 1 August 2012, Pages 2037–2044, https://doi.org/10.1093/bioinformatics/bts317 .. [2] https://pypi.org/project/equilibrator-api/ """ incomplete_mapping = [] problematic_calculation = [] reversibility_indexes = [] unbalanced = [] metabolite_mapping = {} for rxn in reactions: stoich = translate_reaction(rxn, metabolite_mapping) if len(stoich) < len(rxn.metabolites): incomplete_mapping.append(rxn) continue try: # Remove protons from stoichiometry. if "C00080" in stoich: del stoich["C00080"] eq_rxn = Reaction(stoich, rxn.id) except KeyError: incomplete_mapping.append(rxn) continue if eq_rxn.check_full_reaction_balancing(): try: ln_rev_index = eq_rxn.reversibility_index() # TODO (Moritz Beber): Which exceptions can we expect here? except Exception: problematic_calculation.append(rxn) continue reversibility_indexes.append((rxn, ln_rev_index)) else: unbalanced.append(rxn) reversibility_indexes.sort(key=lambda p: abs(p[1]), reverse=True) return ( reversibility_indexes, incomplete_mapping, problematic_calculation, unbalanced )
python
def find_thermodynamic_reversibility_index(reactions): u""" Return the reversibility index of the given reactions. To determine the reversibility index, we calculate the reversibility index ln_gamma (see [1]_ section 3.5) of each reaction using the eQuilibrator API [2]_. Parameters ---------- reactions: list of cobra.Reaction A list of reactions for which to calculate the reversibility index. Returns ------- tuple list of cobra.Reaction, index pairs A list of pairs of reactions and their reversibility indexes. list of cobra.Reaction A list of reactions which contain at least one metabolite that could not be mapped to KEGG on the basis of its annotation. list of cobra.Reaction A list of reactions for which it is not possible to calculate the standard change in Gibbs free energy potential. Reasons of failure include that participating metabolites cannot be broken down with the group contribution method. list of cobra.Reaction A list of reactions that are not chemically or redox balanced. References ---------- .. [1] Elad Noor, Arren Bar-Even, Avi Flamholz, Yaniv Lubling, Dan Davidi, Ron Milo; An integrated open framework for thermodynamics of reactions that combines accuracy and coverage, Bioinformatics, Volume 28, Issue 15, 1 August 2012, Pages 2037–2044, https://doi.org/10.1093/bioinformatics/bts317 .. [2] https://pypi.org/project/equilibrator-api/ """ incomplete_mapping = [] problematic_calculation = [] reversibility_indexes = [] unbalanced = [] metabolite_mapping = {} for rxn in reactions: stoich = translate_reaction(rxn, metabolite_mapping) if len(stoich) < len(rxn.metabolites): incomplete_mapping.append(rxn) continue try: # Remove protons from stoichiometry. if "C00080" in stoich: del stoich["C00080"] eq_rxn = Reaction(stoich, rxn.id) except KeyError: incomplete_mapping.append(rxn) continue if eq_rxn.check_full_reaction_balancing(): try: ln_rev_index = eq_rxn.reversibility_index() # TODO (Moritz Beber): Which exceptions can we expect here? except Exception: problematic_calculation.append(rxn) continue reversibility_indexes.append((rxn, ln_rev_index)) else: unbalanced.append(rxn) reversibility_indexes.sort(key=lambda p: abs(p[1]), reverse=True) return ( reversibility_indexes, incomplete_mapping, problematic_calculation, unbalanced )
[ "def", "find_thermodynamic_reversibility_index", "(", "reactions", ")", ":", "incomplete_mapping", "=", "[", "]", "problematic_calculation", "=", "[", "]", "reversibility_indexes", "=", "[", "]", "unbalanced", "=", "[", "]", "metabolite_mapping", "=", "{", "}", "for", "rxn", "in", "reactions", ":", "stoich", "=", "translate_reaction", "(", "rxn", ",", "metabolite_mapping", ")", "if", "len", "(", "stoich", ")", "<", "len", "(", "rxn", ".", "metabolites", ")", ":", "incomplete_mapping", ".", "append", "(", "rxn", ")", "continue", "try", ":", "# Remove protons from stoichiometry.", "if", "\"C00080\"", "in", "stoich", ":", "del", "stoich", "[", "\"C00080\"", "]", "eq_rxn", "=", "Reaction", "(", "stoich", ",", "rxn", ".", "id", ")", "except", "KeyError", ":", "incomplete_mapping", ".", "append", "(", "rxn", ")", "continue", "if", "eq_rxn", ".", "check_full_reaction_balancing", "(", ")", ":", "try", ":", "ln_rev_index", "=", "eq_rxn", ".", "reversibility_index", "(", ")", "# TODO (Moritz Beber): Which exceptions can we expect here?", "except", "Exception", ":", "problematic_calculation", ".", "append", "(", "rxn", ")", "continue", "reversibility_indexes", ".", "append", "(", "(", "rxn", ",", "ln_rev_index", ")", ")", "else", ":", "unbalanced", ".", "append", "(", "rxn", ")", "reversibility_indexes", ".", "sort", "(", "key", "=", "lambda", "p", ":", "abs", "(", "p", "[", "1", "]", ")", ",", "reverse", "=", "True", ")", "return", "(", "reversibility_indexes", ",", "incomplete_mapping", ",", "problematic_calculation", ",", "unbalanced", ")" ]
u""" Return the reversibility index of the given reactions. To determine the reversibility index, we calculate the reversibility index ln_gamma (see [1]_ section 3.5) of each reaction using the eQuilibrator API [2]_. Parameters ---------- reactions: list of cobra.Reaction A list of reactions for which to calculate the reversibility index. Returns ------- tuple list of cobra.Reaction, index pairs A list of pairs of reactions and their reversibility indexes. list of cobra.Reaction A list of reactions which contain at least one metabolite that could not be mapped to KEGG on the basis of its annotation. list of cobra.Reaction A list of reactions for which it is not possible to calculate the standard change in Gibbs free energy potential. Reasons of failure include that participating metabolites cannot be broken down with the group contribution method. list of cobra.Reaction A list of reactions that are not chemically or redox balanced. References ---------- .. [1] Elad Noor, Arren Bar-Even, Avi Flamholz, Yaniv Lubling, Dan Davidi, Ron Milo; An integrated open framework for thermodynamics of reactions that combines accuracy and coverage, Bioinformatics, Volume 28, Issue 15, 1 August 2012, Pages 2037–2044, https://doi.org/10.1093/bioinformatics/bts317 .. [2] https://pypi.org/project/equilibrator-api/
[ "u", "Return", "the", "reversibility", "index", "of", "the", "given", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/thermodynamics.py#L161-L234
2,404
opencobra/memote
memote/support/consistency.py
check_stoichiometric_consistency
def check_stoichiometric_consistency(model): """ Verify the consistency of the model's stoichiometry. Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- See [1]_ section 3.1 for a complete description of the algorithm. .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245. """ problem = model.problem # The transpose of the stoichiometric matrix N.T in the paper. stoich_trans = problem.Model() internal_rxns = con_helpers.get_internals(model) metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites) LOGGER.info("model '%s' has %d internal reactions", model.id, len(internal_rxns)) LOGGER.info("model '%s' has %d internal metabolites", model.id, len(metabolites)) stoich_trans.add([problem.Variable(m.id, lb=1) for m in metabolites]) stoich_trans.update() con_helpers.add_reaction_constraints( stoich_trans, internal_rxns, problem.Constraint) # The objective is to minimize the metabolite mass vector. stoich_trans.objective = problem.Objective( Zero, direction="min", sloppy=True) stoich_trans.objective.set_linear_coefficients( {var: 1. for var in stoich_trans.variables}) status = stoich_trans.optimize() if status == OPTIMAL: return True elif status == INFEASIBLE: return False else: raise RuntimeError( "Could not determine stoichiometric consistencty." " Solver status is '{}'" " (only optimal or infeasible expected).".format(status))
python
def check_stoichiometric_consistency(model): problem = model.problem # The transpose of the stoichiometric matrix N.T in the paper. stoich_trans = problem.Model() internal_rxns = con_helpers.get_internals(model) metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites) LOGGER.info("model '%s' has %d internal reactions", model.id, len(internal_rxns)) LOGGER.info("model '%s' has %d internal metabolites", model.id, len(metabolites)) stoich_trans.add([problem.Variable(m.id, lb=1) for m in metabolites]) stoich_trans.update() con_helpers.add_reaction_constraints( stoich_trans, internal_rxns, problem.Constraint) # The objective is to minimize the metabolite mass vector. stoich_trans.objective = problem.Objective( Zero, direction="min", sloppy=True) stoich_trans.objective.set_linear_coefficients( {var: 1. for var in stoich_trans.variables}) status = stoich_trans.optimize() if status == OPTIMAL: return True elif status == INFEASIBLE: return False else: raise RuntimeError( "Could not determine stoichiometric consistencty." " Solver status is '{}'" " (only optimal or infeasible expected).".format(status))
[ "def", "check_stoichiometric_consistency", "(", "model", ")", ":", "problem", "=", "model", ".", "problem", "# The transpose of the stoichiometric matrix N.T in the paper.", "stoich_trans", "=", "problem", ".", "Model", "(", ")", "internal_rxns", "=", "con_helpers", ".", "get_internals", "(", "model", ")", "metabolites", "=", "set", "(", "met", "for", "rxn", "in", "internal_rxns", "for", "met", "in", "rxn", ".", "metabolites", ")", "LOGGER", ".", "info", "(", "\"model '%s' has %d internal reactions\"", ",", "model", ".", "id", ",", "len", "(", "internal_rxns", ")", ")", "LOGGER", ".", "info", "(", "\"model '%s' has %d internal metabolites\"", ",", "model", ".", "id", ",", "len", "(", "metabolites", ")", ")", "stoich_trans", ".", "add", "(", "[", "problem", ".", "Variable", "(", "m", ".", "id", ",", "lb", "=", "1", ")", "for", "m", "in", "metabolites", "]", ")", "stoich_trans", ".", "update", "(", ")", "con_helpers", ".", "add_reaction_constraints", "(", "stoich_trans", ",", "internal_rxns", ",", "problem", ".", "Constraint", ")", "# The objective is to minimize the metabolite mass vector.", "stoich_trans", ".", "objective", "=", "problem", ".", "Objective", "(", "Zero", ",", "direction", "=", "\"min\"", ",", "sloppy", "=", "True", ")", "stoich_trans", ".", "objective", ".", "set_linear_coefficients", "(", "{", "var", ":", "1.", "for", "var", "in", "stoich_trans", ".", "variables", "}", ")", "status", "=", "stoich_trans", ".", "optimize", "(", ")", "if", "status", "==", "OPTIMAL", ":", "return", "True", "elif", "status", "==", "INFEASIBLE", ":", "return", "False", "else", ":", "raise", "RuntimeError", "(", "\"Could not determine stoichiometric consistencty.\"", "\" Solver status is '{}'\"", "\" (only optimal or infeasible expected).\"", ".", "format", "(", "status", ")", ")" ]
Verify the consistency of the model's stoichiometry. Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- See [1]_ section 3.1 for a complete description of the algorithm. .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245.
[ "Verify", "the", "consistency", "of", "the", "model", "s", "stoichiometry", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L63-L110
2,405
opencobra/memote
memote/support/consistency.py
find_unconserved_metabolites
def find_unconserved_metabolites(model): """ Detect unconserved metabolites. Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- See [1]_ section 3.2 for a complete description of the algorithm. .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245. """ problem = model.problem stoich_trans = problem.Model() internal_rxns = con_helpers.get_internals(model) metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites) # The binary variables k[i] in the paper. k_vars = list() for met in metabolites: # The element m[i] of the mass vector. m_var = problem.Variable(met.id) k_var = problem.Variable("k_{}".format(met.id), type="binary") k_vars.append(k_var) stoich_trans.add([m_var, k_var]) # This constraint is equivalent to 0 <= k[i] <= m[i]. stoich_trans.add(problem.Constraint( k_var - m_var, ub=0, name="switch_{}".format(met.id))) stoich_trans.update() con_helpers.add_reaction_constraints( stoich_trans, internal_rxns, problem.Constraint) # The objective is to maximize the binary indicators k[i], subject to the # above inequality constraints. stoich_trans.objective = problem.Objective( Zero, sloppy=True, direction="max") stoich_trans.objective.set_linear_coefficients( {var: 1. for var in k_vars}) status = stoich_trans.optimize() if status == OPTIMAL: # TODO: See if that could be a Boolean test `bool(var.primal)`. return set([model.metabolites.get_by_id(var.name[2:]) for var in k_vars if var.primal < 0.8]) else: raise RuntimeError( "Could not compute list of unconserved metabolites." " Solver status is '{}' (only optimal expected).".format(status))
python
def find_unconserved_metabolites(model): problem = model.problem stoich_trans = problem.Model() internal_rxns = con_helpers.get_internals(model) metabolites = set(met for rxn in internal_rxns for met in rxn.metabolites) # The binary variables k[i] in the paper. k_vars = list() for met in metabolites: # The element m[i] of the mass vector. m_var = problem.Variable(met.id) k_var = problem.Variable("k_{}".format(met.id), type="binary") k_vars.append(k_var) stoich_trans.add([m_var, k_var]) # This constraint is equivalent to 0 <= k[i] <= m[i]. stoich_trans.add(problem.Constraint( k_var - m_var, ub=0, name="switch_{}".format(met.id))) stoich_trans.update() con_helpers.add_reaction_constraints( stoich_trans, internal_rxns, problem.Constraint) # The objective is to maximize the binary indicators k[i], subject to the # above inequality constraints. stoich_trans.objective = problem.Objective( Zero, sloppy=True, direction="max") stoich_trans.objective.set_linear_coefficients( {var: 1. for var in k_vars}) status = stoich_trans.optimize() if status == OPTIMAL: # TODO: See if that could be a Boolean test `bool(var.primal)`. return set([model.metabolites.get_by_id(var.name[2:]) for var in k_vars if var.primal < 0.8]) else: raise RuntimeError( "Could not compute list of unconserved metabolites." " Solver status is '{}' (only optimal expected).".format(status))
[ "def", "find_unconserved_metabolites", "(", "model", ")", ":", "problem", "=", "model", ".", "problem", "stoich_trans", "=", "problem", ".", "Model", "(", ")", "internal_rxns", "=", "con_helpers", ".", "get_internals", "(", "model", ")", "metabolites", "=", "set", "(", "met", "for", "rxn", "in", "internal_rxns", "for", "met", "in", "rxn", ".", "metabolites", ")", "# The binary variables k[i] in the paper.", "k_vars", "=", "list", "(", ")", "for", "met", "in", "metabolites", ":", "# The element m[i] of the mass vector.", "m_var", "=", "problem", ".", "Variable", "(", "met", ".", "id", ")", "k_var", "=", "problem", ".", "Variable", "(", "\"k_{}\"", ".", "format", "(", "met", ".", "id", ")", ",", "type", "=", "\"binary\"", ")", "k_vars", ".", "append", "(", "k_var", ")", "stoich_trans", ".", "add", "(", "[", "m_var", ",", "k_var", "]", ")", "# This constraint is equivalent to 0 <= k[i] <= m[i].", "stoich_trans", ".", "add", "(", "problem", ".", "Constraint", "(", "k_var", "-", "m_var", ",", "ub", "=", "0", ",", "name", "=", "\"switch_{}\"", ".", "format", "(", "met", ".", "id", ")", ")", ")", "stoich_trans", ".", "update", "(", ")", "con_helpers", ".", "add_reaction_constraints", "(", "stoich_trans", ",", "internal_rxns", ",", "problem", ".", "Constraint", ")", "# The objective is to maximize the binary indicators k[i], subject to the", "# above inequality constraints.", "stoich_trans", ".", "objective", "=", "problem", ".", "Objective", "(", "Zero", ",", "sloppy", "=", "True", ",", "direction", "=", "\"max\"", ")", "stoich_trans", ".", "objective", ".", "set_linear_coefficients", "(", "{", "var", ":", "1.", "for", "var", "in", "k_vars", "}", ")", "status", "=", "stoich_trans", ".", "optimize", "(", ")", "if", "status", "==", "OPTIMAL", ":", "# TODO: See if that could be a Boolean test `bool(var.primal)`.", "return", "set", "(", "[", "model", ".", "metabolites", ".", "get_by_id", "(", "var", ".", "name", "[", "2", ":", "]", ")", "for", "var", "in", "k_vars", "if", "var", ".", "primal", "<", "0.8", "]", ")", "else", ":", "raise", "RuntimeError", "(", "\"Could not compute list of unconserved metabolites.\"", "\" Solver status is '{}' (only optimal expected).\"", ".", "format", "(", "status", ")", ")" ]
Detect unconserved metabolites. Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- See [1]_ section 3.2 for a complete description of the algorithm. .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245.
[ "Detect", "unconserved", "metabolites", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L113-L165
2,406
opencobra/memote
memote/support/consistency.py
find_inconsistent_min_stoichiometry
def find_inconsistent_min_stoichiometry(model, atol=1e-13): """ Detect inconsistent minimal net stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. atol : float, optional Values below the absolute tolerance are treated as zero. Expected to be very small but larger than zero. Notes ----- See [1]_ section 3.3 for a complete description of the algorithm. References ---------- .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245. """ if check_stoichiometric_consistency(model): return set() Model, Constraint, Variable, Objective = con_helpers.get_interface(model) unconserved_mets = find_unconserved_metabolites(model) LOGGER.info("model has %d unconserved metabolites", len(unconserved_mets)) internal_rxns = con_helpers.get_internals(model) internal_mets = set( met for rxn in internal_rxns for met in rxn.metabolites) get_id = attrgetter("id") reactions = sorted(internal_rxns, key=get_id) metabolites = sorted(internal_mets, key=get_id) stoich, met_index, rxn_index = con_helpers.stoichiometry_matrix( metabolites, reactions) left_ns = con_helpers.nullspace(stoich.T) # deal with numerical instabilities left_ns[np.abs(left_ns) < atol] = 0.0 LOGGER.info("nullspace has dimension %d", left_ns.shape[1]) inc_minimal = set() (problem, indicators) = con_helpers.create_milp_problem( left_ns, metabolites, Model, Variable, Constraint, Objective) LOGGER.debug(str(problem)) cuts = list() for met in unconserved_mets: row = met_index[met] if (left_ns[row] == 0.0).all(): LOGGER.debug("%s: singleton minimal unconservable set", met.id) # singleton set! inc_minimal.add((met,)) continue # expect a positive mass for the unconserved metabolite problem.variables[met.id].lb = 1e-3 status = problem.optimize() while status == "optimal": LOGGER.debug("%s: status %s", met.id, status) LOGGER.debug("sum of all primal values: %f", sum(problem.primal_values.values())) LOGGER.debug("sum of binary indicators: %f", sum(var.primal for var in indicators)) solution = [model.metabolites.get_by_id(var.name[2:]) for var in indicators if var.primal > 0.2] LOGGER.debug("%s: set size %d", met.id, len(solution)) inc_minimal.add(tuple(solution)) if len(solution) == 1: break cuts.append(con_helpers.add_cut( problem, indicators, len(solution) - 1, Constraint)) status = problem.optimize() LOGGER.debug("%s: last status %s", met.id, status) # reset problem.variables[met.id].lb = 0.0 problem.remove(cuts) cuts.clear() return inc_minimal
python
def find_inconsistent_min_stoichiometry(model, atol=1e-13): if check_stoichiometric_consistency(model): return set() Model, Constraint, Variable, Objective = con_helpers.get_interface(model) unconserved_mets = find_unconserved_metabolites(model) LOGGER.info("model has %d unconserved metabolites", len(unconserved_mets)) internal_rxns = con_helpers.get_internals(model) internal_mets = set( met for rxn in internal_rxns for met in rxn.metabolites) get_id = attrgetter("id") reactions = sorted(internal_rxns, key=get_id) metabolites = sorted(internal_mets, key=get_id) stoich, met_index, rxn_index = con_helpers.stoichiometry_matrix( metabolites, reactions) left_ns = con_helpers.nullspace(stoich.T) # deal with numerical instabilities left_ns[np.abs(left_ns) < atol] = 0.0 LOGGER.info("nullspace has dimension %d", left_ns.shape[1]) inc_minimal = set() (problem, indicators) = con_helpers.create_milp_problem( left_ns, metabolites, Model, Variable, Constraint, Objective) LOGGER.debug(str(problem)) cuts = list() for met in unconserved_mets: row = met_index[met] if (left_ns[row] == 0.0).all(): LOGGER.debug("%s: singleton minimal unconservable set", met.id) # singleton set! inc_minimal.add((met,)) continue # expect a positive mass for the unconserved metabolite problem.variables[met.id].lb = 1e-3 status = problem.optimize() while status == "optimal": LOGGER.debug("%s: status %s", met.id, status) LOGGER.debug("sum of all primal values: %f", sum(problem.primal_values.values())) LOGGER.debug("sum of binary indicators: %f", sum(var.primal for var in indicators)) solution = [model.metabolites.get_by_id(var.name[2:]) for var in indicators if var.primal > 0.2] LOGGER.debug("%s: set size %d", met.id, len(solution)) inc_minimal.add(tuple(solution)) if len(solution) == 1: break cuts.append(con_helpers.add_cut( problem, indicators, len(solution) - 1, Constraint)) status = problem.optimize() LOGGER.debug("%s: last status %s", met.id, status) # reset problem.variables[met.id].lb = 0.0 problem.remove(cuts) cuts.clear() return inc_minimal
[ "def", "find_inconsistent_min_stoichiometry", "(", "model", ",", "atol", "=", "1e-13", ")", ":", "if", "check_stoichiometric_consistency", "(", "model", ")", ":", "return", "set", "(", ")", "Model", ",", "Constraint", ",", "Variable", ",", "Objective", "=", "con_helpers", ".", "get_interface", "(", "model", ")", "unconserved_mets", "=", "find_unconserved_metabolites", "(", "model", ")", "LOGGER", ".", "info", "(", "\"model has %d unconserved metabolites\"", ",", "len", "(", "unconserved_mets", ")", ")", "internal_rxns", "=", "con_helpers", ".", "get_internals", "(", "model", ")", "internal_mets", "=", "set", "(", "met", "for", "rxn", "in", "internal_rxns", "for", "met", "in", "rxn", ".", "metabolites", ")", "get_id", "=", "attrgetter", "(", "\"id\"", ")", "reactions", "=", "sorted", "(", "internal_rxns", ",", "key", "=", "get_id", ")", "metabolites", "=", "sorted", "(", "internal_mets", ",", "key", "=", "get_id", ")", "stoich", ",", "met_index", ",", "rxn_index", "=", "con_helpers", ".", "stoichiometry_matrix", "(", "metabolites", ",", "reactions", ")", "left_ns", "=", "con_helpers", ".", "nullspace", "(", "stoich", ".", "T", ")", "# deal with numerical instabilities", "left_ns", "[", "np", ".", "abs", "(", "left_ns", ")", "<", "atol", "]", "=", "0.0", "LOGGER", ".", "info", "(", "\"nullspace has dimension %d\"", ",", "left_ns", ".", "shape", "[", "1", "]", ")", "inc_minimal", "=", "set", "(", ")", "(", "problem", ",", "indicators", ")", "=", "con_helpers", ".", "create_milp_problem", "(", "left_ns", ",", "metabolites", ",", "Model", ",", "Variable", ",", "Constraint", ",", "Objective", ")", "LOGGER", ".", "debug", "(", "str", "(", "problem", ")", ")", "cuts", "=", "list", "(", ")", "for", "met", "in", "unconserved_mets", ":", "row", "=", "met_index", "[", "met", "]", "if", "(", "left_ns", "[", "row", "]", "==", "0.0", ")", ".", "all", "(", ")", ":", "LOGGER", ".", "debug", "(", "\"%s: singleton minimal unconservable set\"", ",", "met", ".", "id", ")", "# singleton set!", "inc_minimal", ".", "add", "(", "(", "met", ",", ")", ")", "continue", "# expect a positive mass for the unconserved metabolite", "problem", ".", "variables", "[", "met", ".", "id", "]", ".", "lb", "=", "1e-3", "status", "=", "problem", ".", "optimize", "(", ")", "while", "status", "==", "\"optimal\"", ":", "LOGGER", ".", "debug", "(", "\"%s: status %s\"", ",", "met", ".", "id", ",", "status", ")", "LOGGER", ".", "debug", "(", "\"sum of all primal values: %f\"", ",", "sum", "(", "problem", ".", "primal_values", ".", "values", "(", ")", ")", ")", "LOGGER", ".", "debug", "(", "\"sum of binary indicators: %f\"", ",", "sum", "(", "var", ".", "primal", "for", "var", "in", "indicators", ")", ")", "solution", "=", "[", "model", ".", "metabolites", ".", "get_by_id", "(", "var", ".", "name", "[", "2", ":", "]", ")", "for", "var", "in", "indicators", "if", "var", ".", "primal", ">", "0.2", "]", "LOGGER", ".", "debug", "(", "\"%s: set size %d\"", ",", "met", ".", "id", ",", "len", "(", "solution", ")", ")", "inc_minimal", ".", "add", "(", "tuple", "(", "solution", ")", ")", "if", "len", "(", "solution", ")", "==", "1", ":", "break", "cuts", ".", "append", "(", "con_helpers", ".", "add_cut", "(", "problem", ",", "indicators", ",", "len", "(", "solution", ")", "-", "1", ",", "Constraint", ")", ")", "status", "=", "problem", ".", "optimize", "(", ")", "LOGGER", ".", "debug", "(", "\"%s: last status %s\"", ",", "met", ".", "id", ",", "status", ")", "# reset", "problem", ".", "variables", "[", "met", ".", "id", "]", ".", "lb", "=", "0.0", "problem", ".", "remove", "(", "cuts", ")", "cuts", ".", "clear", "(", ")", "return", "inc_minimal" ]
Detect inconsistent minimal net stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. atol : float, optional Values below the absolute tolerance are treated as zero. Expected to be very small but larger than zero. Notes ----- See [1]_ section 3.3 for a complete description of the algorithm. References ---------- .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245.
[ "Detect", "inconsistent", "minimal", "net", "stoichiometries", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L170-L246
2,407
opencobra/memote
memote/support/consistency.py
detect_energy_generating_cycles
def detect_energy_generating_cycles(model, metabolite_id): u""" Detect erroneous energy-generating cycles for a a single metabolite. The function will first build a dissipation reaction corresponding to the input metabolite. This reaction is then set as the objective for optimization, after closing all exchanges. If the reaction was able to carry flux, an erroneous energy-generating cycle must be present. In this case a list of reactions with a flux greater than zero is returned. Otherwise, the function returns False. Parameters ---------- model : cobra.Model The metabolic model under investigation. metabolite_id : str The identifier of an energy metabolite. Notes ----- "[...] energy generating cycles (EGC) [...] charge energy metabolites without a source of energy. [...] To efficiently identify the existence of diverse EGCs, we first add a dissipation reaction to the metabolic network for each metabolite used to transmit cellular energy; e.g., for ATP, the irreversible reaction ATP + H2O → ADP + P + H+ is added. These dissipation reactions close any existing energy-generating cycles, thereby converting them to type-III pathways. Fluxes through any of the dissipation reactions at steady state indicate the generation of energy through the metabolic network. Second, all uptake reactions are constrained to zero. The sum of the fluxes through the energy dissipation reactions is now maximized using FBA. For a model without EGCs, these reactions cannot carry any flux without the uptake of nutrients. [1]_." References ---------- .. [1] Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J. (2017). Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Computational Biology, 13(4), 1–14. http://doi.org/10.1371/journal.pcbi.1005494 """ main_comp = helpers.find_compartment_id_in_model(model, 'c') met = helpers.find_met_in_model(model, metabolite_id, main_comp)[0] dissipation_rxn = Reaction('Dissipation') if metabolite_id in ['MNXM3', 'MNXM63', 'MNXM51', 'MNXM121', 'MNXM423']: # build nucleotide-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1, helpers.find_met_in_model(model, 'MNXM9', main_comp)[0]: 1, }) elif metabolite_id in ['MNXM6', 'MNXM10']: # build nicotinamide-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1 }) elif metabolite_id in ['MNXM38', 'MNXM208', 'MNXM191', 'MNXM223', 'MNXM7517', 'MNXM12233', 'MNXM558']: # build redox-partner-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 2 }) elif metabolite_id == 'MNXM21': dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1, helpers.find_met_in_model(model, 'MNXM26', main_comp)[0]: 1, }) elif metabolite_id == 'MNXM89557': dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 2, helpers.find_met_in_model(model, 'MNXM15', main_comp)[0]: 1, }) dissipation_product = helpers.find_met_in_model( model, ENERGY_COUPLES[metabolite_id], main_comp)[0] dissipation_rxn.add_metabolites( {met: -1, dissipation_product: 1}) helpers.close_boundaries_sensibly(model) model.add_reactions([dissipation_rxn]) model.objective = dissipation_rxn solution = model.optimize(raise_error=True) if solution.objective_value > 0.0: return solution.fluxes[solution.fluxes.abs() > 0.0].index. \ drop(["Dissipation"]).tolist() else: return []
python
def detect_energy_generating_cycles(model, metabolite_id): u""" Detect erroneous energy-generating cycles for a a single metabolite. The function will first build a dissipation reaction corresponding to the input metabolite. This reaction is then set as the objective for optimization, after closing all exchanges. If the reaction was able to carry flux, an erroneous energy-generating cycle must be present. In this case a list of reactions with a flux greater than zero is returned. Otherwise, the function returns False. Parameters ---------- model : cobra.Model The metabolic model under investigation. metabolite_id : str The identifier of an energy metabolite. Notes ----- "[...] energy generating cycles (EGC) [...] charge energy metabolites without a source of energy. [...] To efficiently identify the existence of diverse EGCs, we first add a dissipation reaction to the metabolic network for each metabolite used to transmit cellular energy; e.g., for ATP, the irreversible reaction ATP + H2O → ADP + P + H+ is added. These dissipation reactions close any existing energy-generating cycles, thereby converting them to type-III pathways. Fluxes through any of the dissipation reactions at steady state indicate the generation of energy through the metabolic network. Second, all uptake reactions are constrained to zero. The sum of the fluxes through the energy dissipation reactions is now maximized using FBA. For a model without EGCs, these reactions cannot carry any flux without the uptake of nutrients. [1]_." References ---------- .. [1] Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J. (2017). Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Computational Biology, 13(4), 1–14. http://doi.org/10.1371/journal.pcbi.1005494 """ main_comp = helpers.find_compartment_id_in_model(model, 'c') met = helpers.find_met_in_model(model, metabolite_id, main_comp)[0] dissipation_rxn = Reaction('Dissipation') if metabolite_id in ['MNXM3', 'MNXM63', 'MNXM51', 'MNXM121', 'MNXM423']: # build nucleotide-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1, helpers.find_met_in_model(model, 'MNXM9', main_comp)[0]: 1, }) elif metabolite_id in ['MNXM6', 'MNXM10']: # build nicotinamide-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1 }) elif metabolite_id in ['MNXM38', 'MNXM208', 'MNXM191', 'MNXM223', 'MNXM7517', 'MNXM12233', 'MNXM558']: # build redox-partner-type dissipation reaction dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 2 }) elif metabolite_id == 'MNXM21': dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 1, helpers.find_met_in_model(model, 'MNXM26', main_comp)[0]: 1, }) elif metabolite_id == 'MNXM89557': dissipation_rxn.add_metabolites({ helpers.find_met_in_model(model, 'MNXM2', main_comp)[0]: -1, helpers.find_met_in_model(model, 'MNXM1', main_comp)[0]: 2, helpers.find_met_in_model(model, 'MNXM15', main_comp)[0]: 1, }) dissipation_product = helpers.find_met_in_model( model, ENERGY_COUPLES[metabolite_id], main_comp)[0] dissipation_rxn.add_metabolites( {met: -1, dissipation_product: 1}) helpers.close_boundaries_sensibly(model) model.add_reactions([dissipation_rxn]) model.objective = dissipation_rxn solution = model.optimize(raise_error=True) if solution.objective_value > 0.0: return solution.fluxes[solution.fluxes.abs() > 0.0].index. \ drop(["Dissipation"]).tolist() else: return []
[ "def", "detect_energy_generating_cycles", "(", "model", ",", "metabolite_id", ")", ":", "main_comp", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "met", "=", "helpers", ".", "find_met_in_model", "(", "model", ",", "metabolite_id", ",", "main_comp", ")", "[", "0", "]", "dissipation_rxn", "=", "Reaction", "(", "'Dissipation'", ")", "if", "metabolite_id", "in", "[", "'MNXM3'", ",", "'MNXM63'", ",", "'MNXM51'", ",", "'MNXM121'", ",", "'MNXM423'", "]", ":", "# build nucleotide-type dissipation reaction", "dissipation_rxn", ".", "add_metabolites", "(", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM2'", ",", "main_comp", ")", "[", "0", "]", ":", "-", "1", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM1'", ",", "main_comp", ")", "[", "0", "]", ":", "1", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM9'", ",", "main_comp", ")", "[", "0", "]", ":", "1", ",", "}", ")", "elif", "metabolite_id", "in", "[", "'MNXM6'", ",", "'MNXM10'", "]", ":", "# build nicotinamide-type dissipation reaction", "dissipation_rxn", ".", "add_metabolites", "(", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM1'", ",", "main_comp", ")", "[", "0", "]", ":", "1", "}", ")", "elif", "metabolite_id", "in", "[", "'MNXM38'", ",", "'MNXM208'", ",", "'MNXM191'", ",", "'MNXM223'", ",", "'MNXM7517'", ",", "'MNXM12233'", ",", "'MNXM558'", "]", ":", "# build redox-partner-type dissipation reaction", "dissipation_rxn", ".", "add_metabolites", "(", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM1'", ",", "main_comp", ")", "[", "0", "]", ":", "2", "}", ")", "elif", "metabolite_id", "==", "'MNXM21'", ":", "dissipation_rxn", ".", "add_metabolites", "(", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM2'", ",", "main_comp", ")", "[", "0", "]", ":", "-", "1", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM1'", ",", "main_comp", ")", "[", "0", "]", ":", "1", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM26'", ",", "main_comp", ")", "[", "0", "]", ":", "1", ",", "}", ")", "elif", "metabolite_id", "==", "'MNXM89557'", ":", "dissipation_rxn", ".", "add_metabolites", "(", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM2'", ",", "main_comp", ")", "[", "0", "]", ":", "-", "1", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM1'", ",", "main_comp", ")", "[", "0", "]", ":", "2", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "'MNXM15'", ",", "main_comp", ")", "[", "0", "]", ":", "1", ",", "}", ")", "dissipation_product", "=", "helpers", ".", "find_met_in_model", "(", "model", ",", "ENERGY_COUPLES", "[", "metabolite_id", "]", ",", "main_comp", ")", "[", "0", "]", "dissipation_rxn", ".", "add_metabolites", "(", "{", "met", ":", "-", "1", ",", "dissipation_product", ":", "1", "}", ")", "helpers", ".", "close_boundaries_sensibly", "(", "model", ")", "model", ".", "add_reactions", "(", "[", "dissipation_rxn", "]", ")", "model", ".", "objective", "=", "dissipation_rxn", "solution", "=", "model", ".", "optimize", "(", "raise_error", "=", "True", ")", "if", "solution", ".", "objective_value", ">", "0.0", ":", "return", "solution", ".", "fluxes", "[", "solution", ".", "fluxes", ".", "abs", "(", ")", ">", "0.0", "]", ".", "index", ".", "drop", "(", "[", "\"Dissipation\"", "]", ")", ".", "tolist", "(", ")", "else", ":", "return", "[", "]" ]
u""" Detect erroneous energy-generating cycles for a a single metabolite. The function will first build a dissipation reaction corresponding to the input metabolite. This reaction is then set as the objective for optimization, after closing all exchanges. If the reaction was able to carry flux, an erroneous energy-generating cycle must be present. In this case a list of reactions with a flux greater than zero is returned. Otherwise, the function returns False. Parameters ---------- model : cobra.Model The metabolic model under investigation. metabolite_id : str The identifier of an energy metabolite. Notes ----- "[...] energy generating cycles (EGC) [...] charge energy metabolites without a source of energy. [...] To efficiently identify the existence of diverse EGCs, we first add a dissipation reaction to the metabolic network for each metabolite used to transmit cellular energy; e.g., for ATP, the irreversible reaction ATP + H2O → ADP + P + H+ is added. These dissipation reactions close any existing energy-generating cycles, thereby converting them to type-III pathways. Fluxes through any of the dissipation reactions at steady state indicate the generation of energy through the metabolic network. Second, all uptake reactions are constrained to zero. The sum of the fluxes through the energy dissipation reactions is now maximized using FBA. For a model without EGCs, these reactions cannot carry any flux without the uptake of nutrients. [1]_." References ---------- .. [1] Fritzemeier, C. J., Hartleb, D., Szappanos, B., Papp, B., & Lercher, M. J. (2017). Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Computational Biology, 13(4), 1–14. http://doi.org/10.1371/journal.pcbi.1005494
[ "u", "Detect", "erroneous", "energy", "-", "generating", "cycles", "for", "a", "a", "single", "metabolite", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L277-L369
2,408
opencobra/memote
memote/support/consistency.py
find_orphans
def find_orphans(model): """ Return metabolites that are only consumed in reactions. Metabolites that are involved in an exchange reaction are never considered to be orphaned. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ exchange = frozenset(model.exchanges) return [ met for met in model.metabolites if (len(met.reactions) > 0) and all( (not rxn.reversibility) and (rxn not in exchange) and (rxn.metabolites[met] < 0) for rxn in met.reactions ) ]
python
def find_orphans(model): exchange = frozenset(model.exchanges) return [ met for met in model.metabolites if (len(met.reactions) > 0) and all( (not rxn.reversibility) and (rxn not in exchange) and (rxn.metabolites[met] < 0) for rxn in met.reactions ) ]
[ "def", "find_orphans", "(", "model", ")", ":", "exchange", "=", "frozenset", "(", "model", ".", "exchanges", ")", "return", "[", "met", "for", "met", "in", "model", ".", "metabolites", "if", "(", "len", "(", "met", ".", "reactions", ")", ">", "0", ")", "and", "all", "(", "(", "not", "rxn", ".", "reversibility", ")", "and", "(", "rxn", "not", "in", "exchange", ")", "and", "(", "rxn", ".", "metabolites", "[", "met", "]", "<", "0", ")", "for", "rxn", "in", "met", ".", "reactions", ")", "]" ]
Return metabolites that are only consumed in reactions. Metabolites that are involved in an exchange reaction are never considered to be orphaned. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "metabolites", "that", "are", "only", "consumed", "in", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L434-L454
2,409
opencobra/memote
memote/support/consistency.py
find_metabolites_not_produced_with_open_bounds
def find_metabolites_not_produced_with_open_bounds(model): """ Return metabolites that cannot be produced with open exchange reactions. A perfect model should be able to produce each and every metabolite when all medium components are available. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Those metabolites that could not be produced. """ mets_not_produced = list() helpers.open_exchanges(model) for met in model.metabolites: with model: exch = model.add_boundary( met, type="irrex", reaction_id="IRREX", lb=0, ub=1000) solution = helpers.run_fba(model, exch.id) if np.isnan(solution) or solution < TOLERANCE_THRESHOLD: mets_not_produced.append(met) return mets_not_produced
python
def find_metabolites_not_produced_with_open_bounds(model): mets_not_produced = list() helpers.open_exchanges(model) for met in model.metabolites: with model: exch = model.add_boundary( met, type="irrex", reaction_id="IRREX", lb=0, ub=1000) solution = helpers.run_fba(model, exch.id) if np.isnan(solution) or solution < TOLERANCE_THRESHOLD: mets_not_produced.append(met) return mets_not_produced
[ "def", "find_metabolites_not_produced_with_open_bounds", "(", "model", ")", ":", "mets_not_produced", "=", "list", "(", ")", "helpers", ".", "open_exchanges", "(", "model", ")", "for", "met", "in", "model", ".", "metabolites", ":", "with", "model", ":", "exch", "=", "model", ".", "add_boundary", "(", "met", ",", "type", "=", "\"irrex\"", ",", "reaction_id", "=", "\"IRREX\"", ",", "lb", "=", "0", ",", "ub", "=", "1000", ")", "solution", "=", "helpers", ".", "run_fba", "(", "model", ",", "exch", ".", "id", ")", "if", "np", ".", "isnan", "(", "solution", ")", "or", "solution", "<", "TOLERANCE_THRESHOLD", ":", "mets_not_produced", ".", "append", "(", "met", ")", "return", "mets_not_produced" ]
Return metabolites that cannot be produced with open exchange reactions. A perfect model should be able to produce each and every metabolite when all medium components are available. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Those metabolites that could not be produced.
[ "Return", "metabolites", "that", "cannot", "be", "produced", "with", "open", "exchange", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L493-L520
2,410
opencobra/memote
memote/support/consistency.py
find_metabolites_not_consumed_with_open_bounds
def find_metabolites_not_consumed_with_open_bounds(model): """ Return metabolites that cannot be consumed with open boundary reactions. When all metabolites can be secreted, it should be possible for each and every metabolite to be consumed in some form. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Those metabolites that could not be consumed. """ mets_not_consumed = list() helpers.open_exchanges(model) for met in model.metabolites: with model: exch = model.add_boundary( met, type="irrex", reaction_id="IRREX", lb=-1000, ub=0) solution = helpers.run_fba(model, exch.id, direction="min") if np.isnan(solution) or abs(solution) < TOLERANCE_THRESHOLD: mets_not_consumed.append(met) return mets_not_consumed
python
def find_metabolites_not_consumed_with_open_bounds(model): mets_not_consumed = list() helpers.open_exchanges(model) for met in model.metabolites: with model: exch = model.add_boundary( met, type="irrex", reaction_id="IRREX", lb=-1000, ub=0) solution = helpers.run_fba(model, exch.id, direction="min") if np.isnan(solution) or abs(solution) < TOLERANCE_THRESHOLD: mets_not_consumed.append(met) return mets_not_consumed
[ "def", "find_metabolites_not_consumed_with_open_bounds", "(", "model", ")", ":", "mets_not_consumed", "=", "list", "(", ")", "helpers", ".", "open_exchanges", "(", "model", ")", "for", "met", "in", "model", ".", "metabolites", ":", "with", "model", ":", "exch", "=", "model", ".", "add_boundary", "(", "met", ",", "type", "=", "\"irrex\"", ",", "reaction_id", "=", "\"IRREX\"", ",", "lb", "=", "-", "1000", ",", "ub", "=", "0", ")", "solution", "=", "helpers", ".", "run_fba", "(", "model", ",", "exch", ".", "id", ",", "direction", "=", "\"min\"", ")", "if", "np", ".", "isnan", "(", "solution", ")", "or", "abs", "(", "solution", ")", "<", "TOLERANCE_THRESHOLD", ":", "mets_not_consumed", ".", "append", "(", "met", ")", "return", "mets_not_consumed" ]
Return metabolites that cannot be consumed with open boundary reactions. When all metabolites can be secreted, it should be possible for each and every metabolite to be consumed in some form. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Those metabolites that could not be consumed.
[ "Return", "metabolites", "that", "cannot", "be", "consumed", "with", "open", "boundary", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L523-L550
2,411
opencobra/memote
memote/support/consistency.py
find_reactions_with_unbounded_flux_default_condition
def find_reactions_with_unbounded_flux_default_condition(model): """ Return list of reactions whose flux is unbounded in the default condition. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- tuple list A list of reactions that in default modeling conditions are able to carry flux as high/low as the systems maximal and minimal bounds. float The fraction of the amount of unbounded reactions to the amount of non-blocked reactions. list A list of reactions that in default modeling conditions are not able to carry flux at all. """ try: fva_result = flux_variability_analysis(model, fraction_of_optimum=1.0) except Infeasible as err: LOGGER.error("Failed to find reactions with unbounded flux " "because '{}'. This may be a bug.".format(err)) raise Infeasible("It was not possible to run flux variability " "analysis on the model. Make sure that the model " "can be solved! Check if the constraints are not " "too strict.") # Per reaction (row) the flux is below threshold (close to zero). conditionally_blocked = fva_result.loc[ fva_result.abs().max(axis=1) < TOLERANCE_THRESHOLD ].index.tolist() small, large = helpers.find_bounds(model) # Find those reactions whose flux is close to or outside of the median # upper or lower bound, i.e., appears unconstrained. unlimited_flux = fva_result.loc[ np.isclose(fva_result["maximum"], large, atol=TOLERANCE_THRESHOLD) | (fva_result["maximum"] > large) | np.isclose(fva_result["minimum"], small, atol=TOLERANCE_THRESHOLD) | (fva_result["minimum"] < small) ].index.tolist() try: fraction = len(unlimited_flux) / \ (len(model.reactions) - len(conditionally_blocked)) except ZeroDivisionError: LOGGER.error("Division by Zero! Failed to calculate the " "fraction of unbounded reactions. Does this model " "have any reactions at all?") raise ZeroDivisionError("It was not possible to calculate the " "fraction of unbounded reactions to " "un-blocked reactions. This may be because" "the model doesn't have any reactions at " "all or that none of the reactions can " "carry a flux larger than zero!") return unlimited_flux, fraction, conditionally_blocked
python
def find_reactions_with_unbounded_flux_default_condition(model): try: fva_result = flux_variability_analysis(model, fraction_of_optimum=1.0) except Infeasible as err: LOGGER.error("Failed to find reactions with unbounded flux " "because '{}'. This may be a bug.".format(err)) raise Infeasible("It was not possible to run flux variability " "analysis on the model. Make sure that the model " "can be solved! Check if the constraints are not " "too strict.") # Per reaction (row) the flux is below threshold (close to zero). conditionally_blocked = fva_result.loc[ fva_result.abs().max(axis=1) < TOLERANCE_THRESHOLD ].index.tolist() small, large = helpers.find_bounds(model) # Find those reactions whose flux is close to or outside of the median # upper or lower bound, i.e., appears unconstrained. unlimited_flux = fva_result.loc[ np.isclose(fva_result["maximum"], large, atol=TOLERANCE_THRESHOLD) | (fva_result["maximum"] > large) | np.isclose(fva_result["minimum"], small, atol=TOLERANCE_THRESHOLD) | (fva_result["minimum"] < small) ].index.tolist() try: fraction = len(unlimited_flux) / \ (len(model.reactions) - len(conditionally_blocked)) except ZeroDivisionError: LOGGER.error("Division by Zero! Failed to calculate the " "fraction of unbounded reactions. Does this model " "have any reactions at all?") raise ZeroDivisionError("It was not possible to calculate the " "fraction of unbounded reactions to " "un-blocked reactions. This may be because" "the model doesn't have any reactions at " "all or that none of the reactions can " "carry a flux larger than zero!") return unlimited_flux, fraction, conditionally_blocked
[ "def", "find_reactions_with_unbounded_flux_default_condition", "(", "model", ")", ":", "try", ":", "fva_result", "=", "flux_variability_analysis", "(", "model", ",", "fraction_of_optimum", "=", "1.0", ")", "except", "Infeasible", "as", "err", ":", "LOGGER", ".", "error", "(", "\"Failed to find reactions with unbounded flux \"", "\"because '{}'. This may be a bug.\"", ".", "format", "(", "err", ")", ")", "raise", "Infeasible", "(", "\"It was not possible to run flux variability \"", "\"analysis on the model. Make sure that the model \"", "\"can be solved! Check if the constraints are not \"", "\"too strict.\"", ")", "# Per reaction (row) the flux is below threshold (close to zero).", "conditionally_blocked", "=", "fva_result", ".", "loc", "[", "fva_result", ".", "abs", "(", ")", ".", "max", "(", "axis", "=", "1", ")", "<", "TOLERANCE_THRESHOLD", "]", ".", "index", ".", "tolist", "(", ")", "small", ",", "large", "=", "helpers", ".", "find_bounds", "(", "model", ")", "# Find those reactions whose flux is close to or outside of the median", "# upper or lower bound, i.e., appears unconstrained.", "unlimited_flux", "=", "fva_result", ".", "loc", "[", "np", ".", "isclose", "(", "fva_result", "[", "\"maximum\"", "]", ",", "large", ",", "atol", "=", "TOLERANCE_THRESHOLD", ")", "|", "(", "fva_result", "[", "\"maximum\"", "]", ">", "large", ")", "|", "np", ".", "isclose", "(", "fva_result", "[", "\"minimum\"", "]", ",", "small", ",", "atol", "=", "TOLERANCE_THRESHOLD", ")", "|", "(", "fva_result", "[", "\"minimum\"", "]", "<", "small", ")", "]", ".", "index", ".", "tolist", "(", ")", "try", ":", "fraction", "=", "len", "(", "unlimited_flux", ")", "/", "(", "len", "(", "model", ".", "reactions", ")", "-", "len", "(", "conditionally_blocked", ")", ")", "except", "ZeroDivisionError", ":", "LOGGER", ".", "error", "(", "\"Division by Zero! Failed to calculate the \"", "\"fraction of unbounded reactions. Does this model \"", "\"have any reactions at all?\"", ")", "raise", "ZeroDivisionError", "(", "\"It was not possible to calculate the \"", "\"fraction of unbounded reactions to \"", "\"un-blocked reactions. This may be because\"", "\"the model doesn't have any reactions at \"", "\"all or that none of the reactions can \"", "\"carry a flux larger than zero!\"", ")", "return", "unlimited_flux", ",", "fraction", ",", "conditionally_blocked" ]
Return list of reactions whose flux is unbounded in the default condition. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- tuple list A list of reactions that in default modeling conditions are able to carry flux as high/low as the systems maximal and minimal bounds. float The fraction of the amount of unbounded reactions to the amount of non-blocked reactions. list A list of reactions that in default modeling conditions are not able to carry flux at all.
[ "Return", "list", "of", "reactions", "whose", "flux", "is", "unbounded", "in", "the", "default", "condition", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency.py#L553-L612
2,412
opencobra/memote
memote/experimental/tabular.py
read_tabular
def read_tabular(filename, dtype_conversion=None): """ Read a tabular data file which can be CSV, TSV, XLS or XLSX. Parameters ---------- filename : str or pathlib.Path The full file path. May be a compressed file. dtype_conversion : dict Column names as keys and corresponding type for loading the data. Please take a look at the `pandas documentation <https://pandas.pydata.org/pandas-docs/stable/io.html#specifying-column-data-types>`__ for detailed explanations. Returns ------- pandas.DataFrame The data table. """ if dtype_conversion is None: dtype_conversion = {} name, ext = filename.split(".", 1) ext = ext.lower() # Completely empty columns are interpreted as float by default. dtype_conversion["comment"] = str if "csv" in ext: df = pd.read_csv(filename, dtype=dtype_conversion, encoding="utf-8") elif "tsv" in ext: df = pd.read_table(filename, dtype=dtype_conversion, encoding="utf-8") elif "xls" in ext or "xlsx" in ext: df = pd.read_excel(filename, dtype=dtype_conversion, encoding="utf-8") # TODO: Add a function to parse ODS data into a pandas data frame. else: raise ValueError("Unknown file format '{}'.".format(ext)) return df
python
def read_tabular(filename, dtype_conversion=None): if dtype_conversion is None: dtype_conversion = {} name, ext = filename.split(".", 1) ext = ext.lower() # Completely empty columns are interpreted as float by default. dtype_conversion["comment"] = str if "csv" in ext: df = pd.read_csv(filename, dtype=dtype_conversion, encoding="utf-8") elif "tsv" in ext: df = pd.read_table(filename, dtype=dtype_conversion, encoding="utf-8") elif "xls" in ext or "xlsx" in ext: df = pd.read_excel(filename, dtype=dtype_conversion, encoding="utf-8") # TODO: Add a function to parse ODS data into a pandas data frame. else: raise ValueError("Unknown file format '{}'.".format(ext)) return df
[ "def", "read_tabular", "(", "filename", ",", "dtype_conversion", "=", "None", ")", ":", "if", "dtype_conversion", "is", "None", ":", "dtype_conversion", "=", "{", "}", "name", ",", "ext", "=", "filename", ".", "split", "(", "\".\"", ",", "1", ")", "ext", "=", "ext", ".", "lower", "(", ")", "# Completely empty columns are interpreted as float by default.", "dtype_conversion", "[", "\"comment\"", "]", "=", "str", "if", "\"csv\"", "in", "ext", ":", "df", "=", "pd", ".", "read_csv", "(", "filename", ",", "dtype", "=", "dtype_conversion", ",", "encoding", "=", "\"utf-8\"", ")", "elif", "\"tsv\"", "in", "ext", ":", "df", "=", "pd", ".", "read_table", "(", "filename", ",", "dtype", "=", "dtype_conversion", ",", "encoding", "=", "\"utf-8\"", ")", "elif", "\"xls\"", "in", "ext", "or", "\"xlsx\"", "in", "ext", ":", "df", "=", "pd", ".", "read_excel", "(", "filename", ",", "dtype", "=", "dtype_conversion", ",", "encoding", "=", "\"utf-8\"", ")", "# TODO: Add a function to parse ODS data into a pandas data frame.", "else", ":", "raise", "ValueError", "(", "\"Unknown file format '{}'.\"", ".", "format", "(", "ext", ")", ")", "return", "df" ]
Read a tabular data file which can be CSV, TSV, XLS or XLSX. Parameters ---------- filename : str or pathlib.Path The full file path. May be a compressed file. dtype_conversion : dict Column names as keys and corresponding type for loading the data. Please take a look at the `pandas documentation <https://pandas.pydata.org/pandas-docs/stable/io.html#specifying-column-data-types>`__ for detailed explanations. Returns ------- pandas.DataFrame The data table.
[ "Read", "a", "tabular", "data", "file", "which", "can", "be", "CSV", "TSV", "XLS", "or", "XLSX", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/tabular.py#L25-L60
2,413
opencobra/memote
memote/suite/cli/reports.py
snapshot
def snapshot(model, filename, pytest_args, exclusive, skip, solver, experimental, custom_tests, custom_config): """ Take a snapshot of a model's state and generate a report. MODEL: Path to model file. Can also be supplied via the environment variable MEMOTE_MODEL or configured in 'setup.cfg' or 'memote.ini'. """ model_obj, sbml_ver, notifications = api.validate_model( model) if model_obj is None: LOGGER.critical( "The model could not be loaded due to the following SBML errors.") utils.stdout_notifications(notifications) api.validation_report(model, notifications, filename) sys.exit(1) if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "no"] + pytest_args # Add further directories to search for tests. pytest_args.extend(custom_tests) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) model_obj.solver = solver _, results = api.test_model(model_obj, sbml_version=sbml_ver, results=True, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) with open(filename, "w", encoding="utf-8") as file_handle: LOGGER.info("Writing snapshot report to '%s'.", filename) file_handle.write(api.snapshot_report(results, config))
python
def snapshot(model, filename, pytest_args, exclusive, skip, solver, experimental, custom_tests, custom_config): model_obj, sbml_ver, notifications = api.validate_model( model) if model_obj is None: LOGGER.critical( "The model could not be loaded due to the following SBML errors.") utils.stdout_notifications(notifications) api.validation_report(model, notifications, filename) sys.exit(1) if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "no"] + pytest_args # Add further directories to search for tests. pytest_args.extend(custom_tests) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) model_obj.solver = solver _, results = api.test_model(model_obj, sbml_version=sbml_ver, results=True, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) with open(filename, "w", encoding="utf-8") as file_handle: LOGGER.info("Writing snapshot report to '%s'.", filename) file_handle.write(api.snapshot_report(results, config))
[ "def", "snapshot", "(", "model", ",", "filename", ",", "pytest_args", ",", "exclusive", ",", "skip", ",", "solver", ",", "experimental", ",", "custom_tests", ",", "custom_config", ")", ":", "model_obj", ",", "sbml_ver", ",", "notifications", "=", "api", ".", "validate_model", "(", "model", ")", "if", "model_obj", "is", "None", ":", "LOGGER", ".", "critical", "(", "\"The model could not be loaded due to the following SBML errors.\"", ")", "utils", ".", "stdout_notifications", "(", "notifications", ")", "api", ".", "validation_report", "(", "model", ",", "notifications", ",", "filename", ")", "sys", ".", "exit", "(", "1", ")", "if", "not", "any", "(", "a", ".", "startswith", "(", "\"--tb\"", ")", "for", "a", "in", "pytest_args", ")", ":", "pytest_args", "=", "[", "\"--tb\"", ",", "\"no\"", "]", "+", "pytest_args", "# Add further directories to search for tests.", "pytest_args", ".", "extend", "(", "custom_tests", ")", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "# Update the default test configuration with custom ones (if any).", "for", "custom", "in", "custom_config", ":", "config", ".", "merge", "(", "ReportConfiguration", ".", "load", "(", "custom", ")", ")", "model_obj", ".", "solver", "=", "solver", "_", ",", "results", "=", "api", ".", "test_model", "(", "model_obj", ",", "sbml_version", "=", "sbml_ver", ",", "results", "=", "True", ",", "pytest_args", "=", "pytest_args", ",", "skip", "=", "skip", ",", "exclusive", "=", "exclusive", ",", "experimental", "=", "experimental", ")", "with", "open", "(", "filename", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "LOGGER", ".", "info", "(", "\"Writing snapshot report to '%s'.\"", ",", "filename", ")", "file_handle", ".", "write", "(", "api", ".", "snapshot_report", "(", "results", ",", "config", ")", ")" ]
Take a snapshot of a model's state and generate a report. MODEL: Path to model file. Can also be supplied via the environment variable MEMOTE_MODEL or configured in 'setup.cfg' or 'memote.ini'.
[ "Take", "a", "snapshot", "of", "a", "model", "s", "state", "and", "generate", "a", "report", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/reports.py#L89-L119
2,414
opencobra/memote
memote/suite/cli/reports.py
history
def history(location, model, filename, deployment, custom_config): """Generate a report over a model's git commit history.""" callbacks.git_installed() LOGGER.info("Initialising history report generation.") if location is None: raise click.BadParameter("No 'location' given or configured.") try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.critical( "The history report requires a git repository in order to check " "the model's commit history.") sys.exit(1) LOGGER.info("Obtaining history of results from " "the deployment branch {}.".format(deployment)) repo.git.checkout(deployment) try: manager = managers.SQLResultManager(repository=repo, location=location) except (AttributeError, ArgumentError): manager = managers.RepoResultManager( repository=repo, location=location) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) LOGGER.info("Tracing the commit history.") history = managers.HistoryManager(repository=repo, manager=manager) history.load_history(model, skip={deployment}) LOGGER.info("Composing the history report.") report = api.history_report(history, config=config) with open(filename, "w", encoding="utf-8") as file_handle: file_handle.write(report)
python
def history(location, model, filename, deployment, custom_config): callbacks.git_installed() LOGGER.info("Initialising history report generation.") if location is None: raise click.BadParameter("No 'location' given or configured.") try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.critical( "The history report requires a git repository in order to check " "the model's commit history.") sys.exit(1) LOGGER.info("Obtaining history of results from " "the deployment branch {}.".format(deployment)) repo.git.checkout(deployment) try: manager = managers.SQLResultManager(repository=repo, location=location) except (AttributeError, ArgumentError): manager = managers.RepoResultManager( repository=repo, location=location) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) LOGGER.info("Tracing the commit history.") history = managers.HistoryManager(repository=repo, manager=manager) history.load_history(model, skip={deployment}) LOGGER.info("Composing the history report.") report = api.history_report(history, config=config) with open(filename, "w", encoding="utf-8") as file_handle: file_handle.write(report)
[ "def", "history", "(", "location", ",", "model", ",", "filename", ",", "deployment", ",", "custom_config", ")", ":", "callbacks", ".", "git_installed", "(", ")", "LOGGER", ".", "info", "(", "\"Initialising history report generation.\"", ")", "if", "location", "is", "None", ":", "raise", "click", ".", "BadParameter", "(", "\"No 'location' given or configured.\"", ")", "try", ":", "repo", "=", "git", ".", "Repo", "(", ")", "except", "git", ".", "InvalidGitRepositoryError", ":", "LOGGER", ".", "critical", "(", "\"The history report requires a git repository in order to check \"", "\"the model's commit history.\"", ")", "sys", ".", "exit", "(", "1", ")", "LOGGER", ".", "info", "(", "\"Obtaining history of results from \"", "\"the deployment branch {}.\"", ".", "format", "(", "deployment", ")", ")", "repo", ".", "git", ".", "checkout", "(", "deployment", ")", "try", ":", "manager", "=", "managers", ".", "SQLResultManager", "(", "repository", "=", "repo", ",", "location", "=", "location", ")", "except", "(", "AttributeError", ",", "ArgumentError", ")", ":", "manager", "=", "managers", ".", "RepoResultManager", "(", "repository", "=", "repo", ",", "location", "=", "location", ")", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "# Update the default test configuration with custom ones (if any).", "for", "custom", "in", "custom_config", ":", "config", ".", "merge", "(", "ReportConfiguration", ".", "load", "(", "custom", ")", ")", "LOGGER", ".", "info", "(", "\"Tracing the commit history.\"", ")", "history", "=", "managers", ".", "HistoryManager", "(", "repository", "=", "repo", ",", "manager", "=", "manager", ")", "history", ".", "load_history", "(", "model", ",", "skip", "=", "{", "deployment", "}", ")", "LOGGER", ".", "info", "(", "\"Composing the history report.\"", ")", "report", "=", "api", ".", "history_report", "(", "history", ",", "config", "=", "config", ")", "with", "open", "(", "filename", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "file_handle", ".", "write", "(", "report", ")" ]
Generate a report over a model's git commit history.
[ "Generate", "a", "report", "over", "a", "model", "s", "git", "commit", "history", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/reports.py#L144-L175
2,415
opencobra/memote
memote/suite/cli/reports.py
diff
def diff(models, filename, pytest_args, exclusive, skip, solver, experimental, custom_tests, custom_config): """ Take a snapshot of all the supplied models and generate a diff report. MODELS: List of paths to two or more model files. """ if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "no"] + pytest_args # Add further directories to search for tests. pytest_args.extend(custom_tests) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) # Build the diff report specific data structure diff_results = dict() model_and_model_ver_tuple = list() for model_path in models: try: model_filename = os.path.basename(model_path) diff_results.setdefault(model_filename, dict()) model, model_ver, notifications = api.validate_model(model_path) if model is None: head, tail = os.path.split(filename) report_path = os.path.join( head, '{}_structural_report.html'.format(model_filename)) api.validation_report( model_path, notifications, report_path) LOGGER.critical( "The model {} could not be loaded due to SBML errors " "reported in {}.".format(model_filename, report_path)) continue model.solver = solver model_and_model_ver_tuple.append((model, model_ver)) except (IOError, SBMLError): LOGGER.debug(exc_info=True) LOGGER.warning("An error occurred while loading the model '%s'. " "Skipping.", model_filename) # Abort the diff report unless at least two models can be loaded # successfully. if len(model_and_model_ver_tuple) < 2: LOGGER.critical( "Out of the %d provided models only %d could be loaded. Please, " "check if the models that could not be loaded are valid SBML. " "Aborting.", len(models), len(model_and_model_ver_tuple)) sys.exit(1) # Running pytest in individual processes to avoid interference partial_test_diff = partial(_test_diff, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) pool = Pool(min(len(models), cpu_count())) results = pool.map(partial_test_diff, model_and_model_ver_tuple) for model_path, result in zip(models, results): model_filename = os.path.basename(model_path) diff_results[model_filename] = result with open(filename, "w", encoding="utf-8") as file_handle: LOGGER.info("Writing diff report to '%s'.", filename) file_handle.write(api.diff_report(diff_results, config))
python
def diff(models, filename, pytest_args, exclusive, skip, solver, experimental, custom_tests, custom_config): if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "no"] + pytest_args # Add further directories to search for tests. pytest_args.extend(custom_tests) config = ReportConfiguration.load() # Update the default test configuration with custom ones (if any). for custom in custom_config: config.merge(ReportConfiguration.load(custom)) # Build the diff report specific data structure diff_results = dict() model_and_model_ver_tuple = list() for model_path in models: try: model_filename = os.path.basename(model_path) diff_results.setdefault(model_filename, dict()) model, model_ver, notifications = api.validate_model(model_path) if model is None: head, tail = os.path.split(filename) report_path = os.path.join( head, '{}_structural_report.html'.format(model_filename)) api.validation_report( model_path, notifications, report_path) LOGGER.critical( "The model {} could not be loaded due to SBML errors " "reported in {}.".format(model_filename, report_path)) continue model.solver = solver model_and_model_ver_tuple.append((model, model_ver)) except (IOError, SBMLError): LOGGER.debug(exc_info=True) LOGGER.warning("An error occurred while loading the model '%s'. " "Skipping.", model_filename) # Abort the diff report unless at least two models can be loaded # successfully. if len(model_and_model_ver_tuple) < 2: LOGGER.critical( "Out of the %d provided models only %d could be loaded. Please, " "check if the models that could not be loaded are valid SBML. " "Aborting.", len(models), len(model_and_model_ver_tuple)) sys.exit(1) # Running pytest in individual processes to avoid interference partial_test_diff = partial(_test_diff, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) pool = Pool(min(len(models), cpu_count())) results = pool.map(partial_test_diff, model_and_model_ver_tuple) for model_path, result in zip(models, results): model_filename = os.path.basename(model_path) diff_results[model_filename] = result with open(filename, "w", encoding="utf-8") as file_handle: LOGGER.info("Writing diff report to '%s'.", filename) file_handle.write(api.diff_report(diff_results, config))
[ "def", "diff", "(", "models", ",", "filename", ",", "pytest_args", ",", "exclusive", ",", "skip", ",", "solver", ",", "experimental", ",", "custom_tests", ",", "custom_config", ")", ":", "if", "not", "any", "(", "a", ".", "startswith", "(", "\"--tb\"", ")", "for", "a", "in", "pytest_args", ")", ":", "pytest_args", "=", "[", "\"--tb\"", ",", "\"no\"", "]", "+", "pytest_args", "# Add further directories to search for tests.", "pytest_args", ".", "extend", "(", "custom_tests", ")", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "# Update the default test configuration with custom ones (if any).", "for", "custom", "in", "custom_config", ":", "config", ".", "merge", "(", "ReportConfiguration", ".", "load", "(", "custom", ")", ")", "# Build the diff report specific data structure", "diff_results", "=", "dict", "(", ")", "model_and_model_ver_tuple", "=", "list", "(", ")", "for", "model_path", "in", "models", ":", "try", ":", "model_filename", "=", "os", ".", "path", ".", "basename", "(", "model_path", ")", "diff_results", ".", "setdefault", "(", "model_filename", ",", "dict", "(", ")", ")", "model", ",", "model_ver", ",", "notifications", "=", "api", ".", "validate_model", "(", "model_path", ")", "if", "model", "is", "None", ":", "head", ",", "tail", "=", "os", ".", "path", ".", "split", "(", "filename", ")", "report_path", "=", "os", ".", "path", ".", "join", "(", "head", ",", "'{}_structural_report.html'", ".", "format", "(", "model_filename", ")", ")", "api", ".", "validation_report", "(", "model_path", ",", "notifications", ",", "report_path", ")", "LOGGER", ".", "critical", "(", "\"The model {} could not be loaded due to SBML errors \"", "\"reported in {}.\"", ".", "format", "(", "model_filename", ",", "report_path", ")", ")", "continue", "model", ".", "solver", "=", "solver", "model_and_model_ver_tuple", ".", "append", "(", "(", "model", ",", "model_ver", ")", ")", "except", "(", "IOError", ",", "SBMLError", ")", ":", "LOGGER", ".", "debug", "(", "exc_info", "=", "True", ")", "LOGGER", ".", "warning", "(", "\"An error occurred while loading the model '%s'. \"", "\"Skipping.\"", ",", "model_filename", ")", "# Abort the diff report unless at least two models can be loaded", "# successfully.", "if", "len", "(", "model_and_model_ver_tuple", ")", "<", "2", ":", "LOGGER", ".", "critical", "(", "\"Out of the %d provided models only %d could be loaded. Please, \"", "\"check if the models that could not be loaded are valid SBML. \"", "\"Aborting.\"", ",", "len", "(", "models", ")", ",", "len", "(", "model_and_model_ver_tuple", ")", ")", "sys", ".", "exit", "(", "1", ")", "# Running pytest in individual processes to avoid interference", "partial_test_diff", "=", "partial", "(", "_test_diff", ",", "pytest_args", "=", "pytest_args", ",", "skip", "=", "skip", ",", "exclusive", "=", "exclusive", ",", "experimental", "=", "experimental", ")", "pool", "=", "Pool", "(", "min", "(", "len", "(", "models", ")", ",", "cpu_count", "(", ")", ")", ")", "results", "=", "pool", ".", "map", "(", "partial_test_diff", ",", "model_and_model_ver_tuple", ")", "for", "model_path", ",", "result", "in", "zip", "(", "models", ",", "results", ")", ":", "model_filename", "=", "os", ".", "path", ".", "basename", "(", "model_path", ")", "diff_results", "[", "model_filename", "]", "=", "result", "with", "open", "(", "filename", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "LOGGER", ".", "info", "(", "\"Writing diff report to '%s'.\"", ",", "filename", ")", "file_handle", ".", "write", "(", "api", ".", "diff_report", "(", "diff_results", ",", "config", ")", ")" ]
Take a snapshot of all the supplied models and generate a diff report. MODELS: List of paths to two or more model files.
[ "Take", "a", "snapshot", "of", "all", "the", "supplied", "models", "and", "generate", "a", "diff", "report", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/reports.py#L226-L287
2,416
opencobra/memote
memote/suite/results/history_manager.py
HistoryManager.build_branch_structure
def build_branch_structure(self, model, skip): """Inspect and record the repo's branches and their history.""" self._history = dict() self._history["commits"] = commits = dict() self._history["branches"] = branches = dict() for branch in self._repo.refs: LOGGER.debug(branch.name) if branch.name in skip: continue branches[branch.name] = branch_history = list() latest = branch.commit history = [latest] + list(latest.iter_parents()) for commit in history: # Find model in committed files. if not is_modified(model, commit): LOGGER.info( "The model was not modified in commit '{}'. " "Skipping.".format(commit)) continue branch_history.append(commit.hexsha) if commit.hexsha not in commits: commits[commit.hexsha] = sub = dict() sub["timestamp"] = commit.authored_datetime.isoformat(" ") sub["author"] = commit.author.name sub["email"] = commit.author.email LOGGER.debug("%s", json.dumps(self._history, indent=2))
python
def build_branch_structure(self, model, skip): self._history = dict() self._history["commits"] = commits = dict() self._history["branches"] = branches = dict() for branch in self._repo.refs: LOGGER.debug(branch.name) if branch.name in skip: continue branches[branch.name] = branch_history = list() latest = branch.commit history = [latest] + list(latest.iter_parents()) for commit in history: # Find model in committed files. if not is_modified(model, commit): LOGGER.info( "The model was not modified in commit '{}'. " "Skipping.".format(commit)) continue branch_history.append(commit.hexsha) if commit.hexsha not in commits: commits[commit.hexsha] = sub = dict() sub["timestamp"] = commit.authored_datetime.isoformat(" ") sub["author"] = commit.author.name sub["email"] = commit.author.email LOGGER.debug("%s", json.dumps(self._history, indent=2))
[ "def", "build_branch_structure", "(", "self", ",", "model", ",", "skip", ")", ":", "self", ".", "_history", "=", "dict", "(", ")", "self", ".", "_history", "[", "\"commits\"", "]", "=", "commits", "=", "dict", "(", ")", "self", ".", "_history", "[", "\"branches\"", "]", "=", "branches", "=", "dict", "(", ")", "for", "branch", "in", "self", ".", "_repo", ".", "refs", ":", "LOGGER", ".", "debug", "(", "branch", ".", "name", ")", "if", "branch", ".", "name", "in", "skip", ":", "continue", "branches", "[", "branch", ".", "name", "]", "=", "branch_history", "=", "list", "(", ")", "latest", "=", "branch", ".", "commit", "history", "=", "[", "latest", "]", "+", "list", "(", "latest", ".", "iter_parents", "(", ")", ")", "for", "commit", "in", "history", ":", "# Find model in committed files.", "if", "not", "is_modified", "(", "model", ",", "commit", ")", ":", "LOGGER", ".", "info", "(", "\"The model was not modified in commit '{}'. \"", "\"Skipping.\"", ".", "format", "(", "commit", ")", ")", "continue", "branch_history", ".", "append", "(", "commit", ".", "hexsha", ")", "if", "commit", ".", "hexsha", "not", "in", "commits", ":", "commits", "[", "commit", ".", "hexsha", "]", "=", "sub", "=", "dict", "(", ")", "sub", "[", "\"timestamp\"", "]", "=", "commit", ".", "authored_datetime", ".", "isoformat", "(", "\" \"", ")", "sub", "[", "\"author\"", "]", "=", "commit", ".", "author", ".", "name", "sub", "[", "\"email\"", "]", "=", "commit", ".", "author", ".", "email", "LOGGER", ".", "debug", "(", "\"%s\"", ",", "json", ".", "dumps", "(", "self", ".", "_history", ",", "indent", "=", "2", ")", ")" ]
Inspect and record the repo's branches and their history.
[ "Inspect", "and", "record", "the", "repo", "s", "branches", "and", "their", "history", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/history_manager.py#L65-L90
2,417
opencobra/memote
memote/suite/results/history_manager.py
HistoryManager.load_history
def load_history(self, model, skip={"gh-pages"}): """ Load the entire results history into memory. Could be a bad idea in a far future. """ if self._history is None: self.build_branch_structure(model, skip) self._results = dict() all_commits = list(self._history["commits"]) for commit in all_commits: try: self._results[commit] = self.manager.load(commit) except (IOError, NoResultFound) as err: LOGGER.error("Could not load result '%s'.", commit) LOGGER.debug("%s", str(err))
python
def load_history(self, model, skip={"gh-pages"}): if self._history is None: self.build_branch_structure(model, skip) self._results = dict() all_commits = list(self._history["commits"]) for commit in all_commits: try: self._results[commit] = self.manager.load(commit) except (IOError, NoResultFound) as err: LOGGER.error("Could not load result '%s'.", commit) LOGGER.debug("%s", str(err))
[ "def", "load_history", "(", "self", ",", "model", ",", "skip", "=", "{", "\"gh-pages\"", "}", ")", ":", "if", "self", ".", "_history", "is", "None", ":", "self", ".", "build_branch_structure", "(", "model", ",", "skip", ")", "self", ".", "_results", "=", "dict", "(", ")", "all_commits", "=", "list", "(", "self", ".", "_history", "[", "\"commits\"", "]", ")", "for", "commit", "in", "all_commits", ":", "try", ":", "self", ".", "_results", "[", "commit", "]", "=", "self", ".", "manager", ".", "load", "(", "commit", ")", "except", "(", "IOError", ",", "NoResultFound", ")", "as", "err", ":", "LOGGER", ".", "error", "(", "\"Could not load result '%s'.\"", ",", "commit", ")", "LOGGER", ".", "debug", "(", "\"%s\"", ",", "str", "(", "err", ")", ")" ]
Load the entire results history into memory. Could be a bad idea in a far future.
[ "Load", "the", "entire", "results", "history", "into", "memory", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/history_manager.py#L100-L116
2,418
opencobra/memote
memote/suite/results/history_manager.py
HistoryManager.get_result
def get_result(self, commit, default=MemoteResult()): """Return an individual result from the history if it exists.""" assert self._results is not None, \ "Please call the method `load_history` first." return self._results.get(commit, default)
python
def get_result(self, commit, default=MemoteResult()): assert self._results is not None, \ "Please call the method `load_history` first." return self._results.get(commit, default)
[ "def", "get_result", "(", "self", ",", "commit", ",", "default", "=", "MemoteResult", "(", ")", ")", ":", "assert", "self", ".", "_results", "is", "not", "None", ",", "\"Please call the method `load_history` first.\"", "return", "self", ".", "_results", ".", "get", "(", "commit", ",", "default", ")" ]
Return an individual result from the history if it exists.
[ "Return", "an", "individual", "result", "from", "the", "history", "if", "it", "exists", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/history_manager.py#L118-L122
2,419
opencobra/memote
memote/support/matrix.py
absolute_extreme_coefficient_ratio
def absolute_extreme_coefficient_ratio(model): """ Return the maximum and minimum absolute, non-zero coefficients. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) abs_matrix = np.abs(s_matrix) return abs_matrix.max(), abs_matrix[abs_matrix > 0].min()
python
def absolute_extreme_coefficient_ratio(model): s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) abs_matrix = np.abs(s_matrix) return abs_matrix.max(), abs_matrix[abs_matrix > 0].min()
[ "def", "absolute_extreme_coefficient_ratio", "(", "model", ")", ":", "s_matrix", ",", "_", ",", "_", "=", "con_helpers", ".", "stoichiometry_matrix", "(", "model", ".", "metabolites", ",", "model", ".", "reactions", ")", "abs_matrix", "=", "np", ".", "abs", "(", "s_matrix", ")", "return", "abs_matrix", ".", "max", "(", ")", ",", "abs_matrix", "[", "abs_matrix", ">", "0", "]", ".", "min", "(", ")" ]
Return the maximum and minimum absolute, non-zero coefficients. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "the", "maximum", "and", "minimum", "absolute", "non", "-", "zero", "coefficients", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/matrix.py#L29-L43
2,420
opencobra/memote
memote/support/matrix.py
number_independent_conservation_relations
def number_independent_conservation_relations(model): """ Return the number of conserved metabolite pools. This number is given by the left null space of the stoichiometric matrix. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) ln_matrix = con_helpers.nullspace(s_matrix.T) return ln_matrix.shape[1]
python
def number_independent_conservation_relations(model): s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) ln_matrix = con_helpers.nullspace(s_matrix.T) return ln_matrix.shape[1]
[ "def", "number_independent_conservation_relations", "(", "model", ")", ":", "s_matrix", ",", "_", ",", "_", "=", "con_helpers", ".", "stoichiometry_matrix", "(", "model", ".", "metabolites", ",", "model", ".", "reactions", ")", "ln_matrix", "=", "con_helpers", ".", "nullspace", "(", "s_matrix", ".", "T", ")", "return", "ln_matrix", ".", "shape", "[", "1", "]" ]
Return the number of conserved metabolite pools. This number is given by the left null space of the stoichiometric matrix. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "the", "number", "of", "conserved", "metabolite", "pools", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/matrix.py#L46-L62
2,421
opencobra/memote
memote/support/matrix.py
matrix_rank
def matrix_rank(model): """ Return the rank of the model's stoichiometric matrix. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) return con_helpers.rank(s_matrix)
python
def matrix_rank(model): s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) return con_helpers.rank(s_matrix)
[ "def", "matrix_rank", "(", "model", ")", ":", "s_matrix", ",", "_", ",", "_", "=", "con_helpers", ".", "stoichiometry_matrix", "(", "model", ".", "metabolites", ",", "model", ".", "reactions", ")", "return", "con_helpers", ".", "rank", "(", "s_matrix", ")" ]
Return the rank of the model's stoichiometric matrix. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "the", "rank", "of", "the", "model", "s", "stoichiometric", "matrix", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/matrix.py#L65-L78
2,422
opencobra/memote
memote/support/matrix.py
degrees_of_freedom
def degrees_of_freedom(model): """ Return the degrees of freedom, i.e., number of "free variables". Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- This specifically refers to the dimensionality of the (right) null space of the stoichiometric matrix, as dim(Null(S)) corresponds directly to the number of free variables in the system [1]_. The formula used calculates this using the rank-nullity theorem [2]_. References ---------- .. [1] Fukuda, K. & Terlaky, T. Criss-cross methods: A fresh view on pivot algorithms. Mathematical Programming 79, 369-395 (1997). .. [2] Alama, J. The Rank+Nullity Theorem. Formalized Mathematics 15, (2007). """ s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) return s_matrix.shape[1] - matrix_rank(model)
python
def degrees_of_freedom(model): s_matrix, _, _ = con_helpers.stoichiometry_matrix( model.metabolites, model.reactions ) return s_matrix.shape[1] - matrix_rank(model)
[ "def", "degrees_of_freedom", "(", "model", ")", ":", "s_matrix", ",", "_", ",", "_", "=", "con_helpers", ".", "stoichiometry_matrix", "(", "model", ".", "metabolites", ",", "model", ".", "reactions", ")", "return", "s_matrix", ".", "shape", "[", "1", "]", "-", "matrix_rank", "(", "model", ")" ]
Return the degrees of freedom, i.e., number of "free variables". Parameters ---------- model : cobra.Model The metabolic model under investigation. Notes ----- This specifically refers to the dimensionality of the (right) null space of the stoichiometric matrix, as dim(Null(S)) corresponds directly to the number of free variables in the system [1]_. The formula used calculates this using the rank-nullity theorem [2]_. References ---------- .. [1] Fukuda, K. & Terlaky, T. Criss-cross methods: A fresh view on pivot algorithms. Mathematical Programming 79, 369-395 (1997). .. [2] Alama, J. The Rank+Nullity Theorem. Formalized Mathematics 15, (2007).
[ "Return", "the", "degrees", "of", "freedom", "i", ".", "e", ".", "number", "of", "free", "variables", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/matrix.py#L81-L109
2,423
opencobra/memote
memote/experimental/config.py
ExperimentConfiguration.load
def load(self, model): """ Load all information from an experimental configuration file. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ self.load_medium(model) self.load_essentiality(model) self.load_growth(model) # self.load_experiment(config.config.get("growth"), model) return self
python
def load(self, model): self.load_medium(model) self.load_essentiality(model) self.load_growth(model) # self.load_experiment(config.config.get("growth"), model) return self
[ "def", "load", "(", "self", ",", "model", ")", ":", "self", ".", "load_medium", "(", "model", ")", "self", ".", "load_essentiality", "(", "model", ")", "self", ".", "load_growth", "(", "model", ")", "# self.load_experiment(config.config.get(\"growth\"), model)", "return", "self" ]
Load all information from an experimental configuration file. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Load", "all", "information", "from", "an", "experimental", "configuration", "file", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/config.py#L67-L81
2,424
opencobra/memote
memote/experimental/config.py
ExperimentConfiguration.validate
def validate(self): """Validate the configuration file.""" validator = Draft4Validator(self.SCHEMA) if not validator.is_valid(self.config): for err in validator.iter_errors(self.config): LOGGER.error(str(err.message)) validator.validate(self.config)
python
def validate(self): validator = Draft4Validator(self.SCHEMA) if not validator.is_valid(self.config): for err in validator.iter_errors(self.config): LOGGER.error(str(err.message)) validator.validate(self.config)
[ "def", "validate", "(", "self", ")", ":", "validator", "=", "Draft4Validator", "(", "self", ".", "SCHEMA", ")", "if", "not", "validator", ".", "is_valid", "(", "self", ".", "config", ")", ":", "for", "err", "in", "validator", ".", "iter_errors", "(", "self", ".", "config", ")", ":", "LOGGER", ".", "error", "(", "str", "(", "err", ".", "message", ")", ")", "validator", ".", "validate", "(", "self", ".", "config", ")" ]
Validate the configuration file.
[ "Validate", "the", "configuration", "file", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/config.py#L83-L89
2,425
opencobra/memote
memote/experimental/config.py
ExperimentConfiguration.load_medium
def load_medium(self, model): """Load and validate all media.""" media = self.config.get("medium") if media is None: return definitions = media.get("definitions") if definitions is None or len(definitions) == 0: return path = self.get_path(media, join("data", "experimental", "media")) for medium_id, medium in iteritems(definitions): if medium is None: medium = dict() filename = medium.get("filename") if filename is None: filename = join(path, "{}.csv".format(medium_id)) elif not isabs(filename): filename = join(path, filename) tmp = Medium(identifier=medium_id, obj=medium, filename=filename) tmp.load() tmp.validate(model) self.media[medium_id] = tmp
python
def load_medium(self, model): media = self.config.get("medium") if media is None: return definitions = media.get("definitions") if definitions is None or len(definitions) == 0: return path = self.get_path(media, join("data", "experimental", "media")) for medium_id, medium in iteritems(definitions): if medium is None: medium = dict() filename = medium.get("filename") if filename is None: filename = join(path, "{}.csv".format(medium_id)) elif not isabs(filename): filename = join(path, filename) tmp = Medium(identifier=medium_id, obj=medium, filename=filename) tmp.load() tmp.validate(model) self.media[medium_id] = tmp
[ "def", "load_medium", "(", "self", ",", "model", ")", ":", "media", "=", "self", ".", "config", ".", "get", "(", "\"medium\"", ")", "if", "media", "is", "None", ":", "return", "definitions", "=", "media", ".", "get", "(", "\"definitions\"", ")", "if", "definitions", "is", "None", "or", "len", "(", "definitions", ")", "==", "0", ":", "return", "path", "=", "self", ".", "get_path", "(", "media", ",", "join", "(", "\"data\"", ",", "\"experimental\"", ",", "\"media\"", ")", ")", "for", "medium_id", ",", "medium", "in", "iteritems", "(", "definitions", ")", ":", "if", "medium", "is", "None", ":", "medium", "=", "dict", "(", ")", "filename", "=", "medium", ".", "get", "(", "\"filename\"", ")", "if", "filename", "is", "None", ":", "filename", "=", "join", "(", "path", ",", "\"{}.csv\"", ".", "format", "(", "medium_id", ")", ")", "elif", "not", "isabs", "(", "filename", ")", ":", "filename", "=", "join", "(", "path", ",", "filename", ")", "tmp", "=", "Medium", "(", "identifier", "=", "medium_id", ",", "obj", "=", "medium", ",", "filename", "=", "filename", ")", "tmp", ".", "load", "(", ")", "tmp", ".", "validate", "(", "model", ")", "self", ".", "media", "[", "medium_id", "]", "=", "tmp" ]
Load and validate all media.
[ "Load", "and", "validate", "all", "media", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/config.py#L91-L111
2,426
opencobra/memote
memote/experimental/config.py
ExperimentConfiguration.get_path
def get_path(self, obj, default): """Return a relative or absolute path to experimental data.""" path = obj.get("path") if path is None: path = join(self._base, default) if not isabs(path): path = join(self._base, path) return path
python
def get_path(self, obj, default): path = obj.get("path") if path is None: path = join(self._base, default) if not isabs(path): path = join(self._base, path) return path
[ "def", "get_path", "(", "self", ",", "obj", ",", "default", ")", ":", "path", "=", "obj", ".", "get", "(", "\"path\"", ")", "if", "path", "is", "None", ":", "path", "=", "join", "(", "self", ".", "_base", ",", "default", ")", "if", "not", "isabs", "(", "path", ")", ":", "path", "=", "join", "(", "self", ".", "_base", ",", "path", ")", "return", "path" ]
Return a relative or absolute path to experimental data.
[ "Return", "a", "relative", "or", "absolute", "path", "to", "experimental", "data", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/config.py#L171-L178
2,427
opencobra/memote
memote/support/annotation.py
find_components_without_annotation
def find_components_without_annotation(model, components): """ Find model components with empty annotation attributes. Parameters ---------- model : cobra.Model A cobrapy metabolic model. components : {"metabolites", "reactions", "genes"} A string denoting `cobra.Model` components. Returns ------- list The components without any annotation. """ return [elem for elem in getattr(model, components) if elem.annotation is None or len(elem.annotation) == 0]
python
def find_components_without_annotation(model, components): return [elem for elem in getattr(model, components) if elem.annotation is None or len(elem.annotation) == 0]
[ "def", "find_components_without_annotation", "(", "model", ",", "components", ")", ":", "return", "[", "elem", "for", "elem", "in", "getattr", "(", "model", ",", "components", ")", "if", "elem", ".", "annotation", "is", "None", "or", "len", "(", "elem", ".", "annotation", ")", "==", "0", "]" ]
Find model components with empty annotation attributes. Parameters ---------- model : cobra.Model A cobrapy metabolic model. components : {"metabolites", "reactions", "genes"} A string denoting `cobra.Model` components. Returns ------- list The components without any annotation.
[ "Find", "model", "components", "with", "empty", "annotation", "attributes", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/annotation.py#L125-L143
2,428
opencobra/memote
memote/support/annotation.py
generate_component_annotation_miriam_match
def generate_component_annotation_miriam_match(elements, component, db): """ Tabulate which MIRIAM databases the element's annotation match. If the relevant MIRIAM identifier is not in an element's annotation it is ignored. Parameters ---------- elements : list Elements of a model, either metabolites or reactions. component : {"metabolites", "reactions"} A string denoting a type of ``cobra.Model`` component. db : str One of the MIRIAM database identifiers. Returns ------- list The components whose annotation does not match the pattern for the MIRIAM database. """ def is_faulty(annotation, key, pattern): # Ignore missing annotation for this database. if key not in annotation: return False test = annotation[key] if isinstance(test, native_str): return pattern.match(test) is None else: return any(pattern.match(elem) is None for elem in test) pattern = { "metabolites": METABOLITE_ANNOTATIONS, "reactions": REACTION_ANNOTATIONS, "genes": GENE_PRODUCT_ANNOTATIONS }[component][db] return [elem for elem in elements if is_faulty(elem.annotation, db, pattern)]
python
def generate_component_annotation_miriam_match(elements, component, db): def is_faulty(annotation, key, pattern): # Ignore missing annotation for this database. if key not in annotation: return False test = annotation[key] if isinstance(test, native_str): return pattern.match(test) is None else: return any(pattern.match(elem) is None for elem in test) pattern = { "metabolites": METABOLITE_ANNOTATIONS, "reactions": REACTION_ANNOTATIONS, "genes": GENE_PRODUCT_ANNOTATIONS }[component][db] return [elem for elem in elements if is_faulty(elem.annotation, db, pattern)]
[ "def", "generate_component_annotation_miriam_match", "(", "elements", ",", "component", ",", "db", ")", ":", "def", "is_faulty", "(", "annotation", ",", "key", ",", "pattern", ")", ":", "# Ignore missing annotation for this database.", "if", "key", "not", "in", "annotation", ":", "return", "False", "test", "=", "annotation", "[", "key", "]", "if", "isinstance", "(", "test", ",", "native_str", ")", ":", "return", "pattern", ".", "match", "(", "test", ")", "is", "None", "else", ":", "return", "any", "(", "pattern", ".", "match", "(", "elem", ")", "is", "None", "for", "elem", "in", "test", ")", "pattern", "=", "{", "\"metabolites\"", ":", "METABOLITE_ANNOTATIONS", ",", "\"reactions\"", ":", "REACTION_ANNOTATIONS", ",", "\"genes\"", ":", "GENE_PRODUCT_ANNOTATIONS", "}", "[", "component", "]", "[", "db", "]", "return", "[", "elem", "for", "elem", "in", "elements", "if", "is_faulty", "(", "elem", ".", "annotation", ",", "db", ",", "pattern", ")", "]" ]
Tabulate which MIRIAM databases the element's annotation match. If the relevant MIRIAM identifier is not in an element's annotation it is ignored. Parameters ---------- elements : list Elements of a model, either metabolites or reactions. component : {"metabolites", "reactions"} A string denoting a type of ``cobra.Model`` component. db : str One of the MIRIAM database identifiers. Returns ------- list The components whose annotation does not match the pattern for the MIRIAM database.
[ "Tabulate", "which", "MIRIAM", "databases", "the", "element", "s", "annotation", "match", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/annotation.py#L167-L206
2,429
opencobra/memote
memote/support/annotation.py
generate_component_id_namespace_overview
def generate_component_id_namespace_overview(model, components): """ Tabulate which MIRIAM databases the component's identifier matches. Parameters ---------- model : cobra.Model A cobrapy metabolic model. components : {"metabolites", "reactions", "genes"} A string denoting `cobra.Model` components. Returns ------- pandas.DataFrame The index of the table is given by the component identifiers. Each column corresponds to one MIRIAM database and a Boolean entry determines whether the annotation matches. """ patterns = { "metabolites": METABOLITE_ANNOTATIONS, "reactions": REACTION_ANNOTATIONS, "genes": GENE_PRODUCT_ANNOTATIONS }[components] databases = list(patterns) data = list() index = list() for elem in getattr(model, components): index.append(elem.id) data.append(tuple(patterns[db].match(elem.id) is not None for db in databases)) df = pd.DataFrame(data, index=index, columns=databases) if components != "genes": # Clean up of the dataframe. Unfortunately the Biocyc patterns match # broadly. Hence, whenever a Metabolite or Reaction ID matches to any # DB pattern AND the Biocyc pattern we have to assume that this is a # false positive. # First determine all rows in which 'biocyc' and other entries are # True simultaneously and use this Boolean series to create another # column temporarily. df['duplicate'] = df[df['biocyc']].sum(axis=1) >= 2 # Replace all nan values with False df['duplicate'].fillna(False, inplace=True) # Use the additional column to index the original dataframe to identify # false positive biocyc hits and set them to False. df.loc[df['duplicate'], 'biocyc'] = False # Delete the additional column del df['duplicate'] return df
python
def generate_component_id_namespace_overview(model, components): patterns = { "metabolites": METABOLITE_ANNOTATIONS, "reactions": REACTION_ANNOTATIONS, "genes": GENE_PRODUCT_ANNOTATIONS }[components] databases = list(patterns) data = list() index = list() for elem in getattr(model, components): index.append(elem.id) data.append(tuple(patterns[db].match(elem.id) is not None for db in databases)) df = pd.DataFrame(data, index=index, columns=databases) if components != "genes": # Clean up of the dataframe. Unfortunately the Biocyc patterns match # broadly. Hence, whenever a Metabolite or Reaction ID matches to any # DB pattern AND the Biocyc pattern we have to assume that this is a # false positive. # First determine all rows in which 'biocyc' and other entries are # True simultaneously and use this Boolean series to create another # column temporarily. df['duplicate'] = df[df['biocyc']].sum(axis=1) >= 2 # Replace all nan values with False df['duplicate'].fillna(False, inplace=True) # Use the additional column to index the original dataframe to identify # false positive biocyc hits and set them to False. df.loc[df['duplicate'], 'biocyc'] = False # Delete the additional column del df['duplicate'] return df
[ "def", "generate_component_id_namespace_overview", "(", "model", ",", "components", ")", ":", "patterns", "=", "{", "\"metabolites\"", ":", "METABOLITE_ANNOTATIONS", ",", "\"reactions\"", ":", "REACTION_ANNOTATIONS", ",", "\"genes\"", ":", "GENE_PRODUCT_ANNOTATIONS", "}", "[", "components", "]", "databases", "=", "list", "(", "patterns", ")", "data", "=", "list", "(", ")", "index", "=", "list", "(", ")", "for", "elem", "in", "getattr", "(", "model", ",", "components", ")", ":", "index", ".", "append", "(", "elem", ".", "id", ")", "data", ".", "append", "(", "tuple", "(", "patterns", "[", "db", "]", ".", "match", "(", "elem", ".", "id", ")", "is", "not", "None", "for", "db", "in", "databases", ")", ")", "df", "=", "pd", ".", "DataFrame", "(", "data", ",", "index", "=", "index", ",", "columns", "=", "databases", ")", "if", "components", "!=", "\"genes\"", ":", "# Clean up of the dataframe. Unfortunately the Biocyc patterns match", "# broadly. Hence, whenever a Metabolite or Reaction ID matches to any", "# DB pattern AND the Biocyc pattern we have to assume that this is a", "# false positive.", "# First determine all rows in which 'biocyc' and other entries are", "# True simultaneously and use this Boolean series to create another", "# column temporarily.", "df", "[", "'duplicate'", "]", "=", "df", "[", "df", "[", "'biocyc'", "]", "]", ".", "sum", "(", "axis", "=", "1", ")", ">=", "2", "# Replace all nan values with False", "df", "[", "'duplicate'", "]", ".", "fillna", "(", "False", ",", "inplace", "=", "True", ")", "# Use the additional column to index the original dataframe to identify", "# false positive biocyc hits and set them to False.", "df", ".", "loc", "[", "df", "[", "'duplicate'", "]", ",", "'biocyc'", "]", "=", "False", "# Delete the additional column", "del", "df", "[", "'duplicate'", "]", "return", "df" ]
Tabulate which MIRIAM databases the component's identifier matches. Parameters ---------- model : cobra.Model A cobrapy metabolic model. components : {"metabolites", "reactions", "genes"} A string denoting `cobra.Model` components. Returns ------- pandas.DataFrame The index of the table is given by the component identifiers. Each column corresponds to one MIRIAM database and a Boolean entry determines whether the annotation matches.
[ "Tabulate", "which", "MIRIAM", "databases", "the", "component", "s", "identifier", "matches", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/annotation.py#L209-L257
2,430
opencobra/memote
memote/support/essentiality.py
confusion_matrix
def confusion_matrix(predicted_essential, expected_essential, predicted_nonessential, expected_nonessential): """ Compute a representation of the confusion matrix. Parameters ---------- predicted_essential : set expected_essential : set predicted_nonessential : set expected_nonessential : set Returns ------- dict Confusion matrix as different keys of a dictionary. The abbreviated keys correspond to the ones used in [1]_. References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_ """ true_positive = predicted_essential & expected_essential tp = len(true_positive) true_negative = predicted_nonessential & expected_nonessential tn = len(true_negative) false_positive = predicted_essential - expected_essential fp = len(false_positive) false_negative = predicted_nonessential - expected_nonessential fn = len(false_negative) # sensitivity or true positive rate try: tpr = tp / (tp + fn) except ZeroDivisionError: tpr = None # specificity or true negative rate try: tnr = tn / (tn + fp) except ZeroDivisionError: tnr = None # precision or positive predictive value try: ppv = tp / (tp + fp) except ZeroDivisionError: ppv = None # false discovery rate fdr = 1 - ppv # accuracy try: acc = (tp + tn) / (tp + tn + fp + fn) except ZeroDivisionError: acc = None # Compute Matthews correlation coefficient. try: mcc = (tp * tn - fp * fn) /\ sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) except ZeroDivisionError: mcc = None return { "TP": list(true_positive), "TN": list(true_negative), "FP": list(false_positive), "FN": list(false_negative), "TPR": tpr, "TNR": tnr, "PPV": ppv, "FDR": fdr, "ACC": acc, "MCC": mcc }
python
def confusion_matrix(predicted_essential, expected_essential, predicted_nonessential, expected_nonessential): true_positive = predicted_essential & expected_essential tp = len(true_positive) true_negative = predicted_nonessential & expected_nonessential tn = len(true_negative) false_positive = predicted_essential - expected_essential fp = len(false_positive) false_negative = predicted_nonessential - expected_nonessential fn = len(false_negative) # sensitivity or true positive rate try: tpr = tp / (tp + fn) except ZeroDivisionError: tpr = None # specificity or true negative rate try: tnr = tn / (tn + fp) except ZeroDivisionError: tnr = None # precision or positive predictive value try: ppv = tp / (tp + fp) except ZeroDivisionError: ppv = None # false discovery rate fdr = 1 - ppv # accuracy try: acc = (tp + tn) / (tp + tn + fp + fn) except ZeroDivisionError: acc = None # Compute Matthews correlation coefficient. try: mcc = (tp * tn - fp * fn) /\ sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) except ZeroDivisionError: mcc = None return { "TP": list(true_positive), "TN": list(true_negative), "FP": list(false_positive), "FN": list(false_negative), "TPR": tpr, "TNR": tnr, "PPV": ppv, "FDR": fdr, "ACC": acc, "MCC": mcc }
[ "def", "confusion_matrix", "(", "predicted_essential", ",", "expected_essential", ",", "predicted_nonessential", ",", "expected_nonessential", ")", ":", "true_positive", "=", "predicted_essential", "&", "expected_essential", "tp", "=", "len", "(", "true_positive", ")", "true_negative", "=", "predicted_nonessential", "&", "expected_nonessential", "tn", "=", "len", "(", "true_negative", ")", "false_positive", "=", "predicted_essential", "-", "expected_essential", "fp", "=", "len", "(", "false_positive", ")", "false_negative", "=", "predicted_nonessential", "-", "expected_nonessential", "fn", "=", "len", "(", "false_negative", ")", "# sensitivity or true positive rate", "try", ":", "tpr", "=", "tp", "/", "(", "tp", "+", "fn", ")", "except", "ZeroDivisionError", ":", "tpr", "=", "None", "# specificity or true negative rate", "try", ":", "tnr", "=", "tn", "/", "(", "tn", "+", "fp", ")", "except", "ZeroDivisionError", ":", "tnr", "=", "None", "# precision or positive predictive value", "try", ":", "ppv", "=", "tp", "/", "(", "tp", "+", "fp", ")", "except", "ZeroDivisionError", ":", "ppv", "=", "None", "# false discovery rate", "fdr", "=", "1", "-", "ppv", "# accuracy", "try", ":", "acc", "=", "(", "tp", "+", "tn", ")", "/", "(", "tp", "+", "tn", "+", "fp", "+", "fn", ")", "except", "ZeroDivisionError", ":", "acc", "=", "None", "# Compute Matthews correlation coefficient.", "try", ":", "mcc", "=", "(", "tp", "*", "tn", "-", "fp", "*", "fn", ")", "/", "sqrt", "(", "(", "tp", "+", "fp", ")", "*", "(", "tp", "+", "fn", ")", "*", "(", "tn", "+", "fp", ")", "*", "(", "tn", "+", "fn", ")", ")", "except", "ZeroDivisionError", ":", "mcc", "=", "None", "return", "{", "\"TP\"", ":", "list", "(", "true_positive", ")", ",", "\"TN\"", ":", "list", "(", "true_negative", ")", ",", "\"FP\"", ":", "list", "(", "false_positive", ")", ",", "\"FN\"", ":", "list", "(", "false_negative", ")", ",", "\"TPR\"", ":", "tpr", ",", "\"TNR\"", ":", "tnr", ",", "\"PPV\"", ":", "ppv", ",", "\"FDR\"", ":", "fdr", ",", "\"ACC\"", ":", "acc", ",", "\"MCC\"", ":", "mcc", "}" ]
Compute a representation of the confusion matrix. Parameters ---------- predicted_essential : set expected_essential : set predicted_nonessential : set expected_nonessential : set Returns ------- dict Confusion matrix as different keys of a dictionary. The abbreviated keys correspond to the ones used in [1]_. References ---------- .. [1] `Wikipedia entry for the Confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix>`_
[ "Compute", "a", "representation", "of", "the", "confusion", "matrix", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/essentiality.py#L29-L100
2,431
opencobra/memote
memote/suite/api.py
validate_model
def validate_model(path): """ Validate a model structurally and optionally store results as JSON. Parameters ---------- path : Path to model file. Returns ------- tuple cobra.Model The metabolic model under investigation. tuple A tuple reporting on the SBML level, version, and FBC package version used (if any) in the SBML document. dict A simple dictionary containing a list of errors and warnings. """ notifications = {"warnings": [], "errors": []} model, sbml_ver = val.load_cobra_model(path, notifications) return model, sbml_ver, notifications
python
def validate_model(path): notifications = {"warnings": [], "errors": []} model, sbml_ver = val.load_cobra_model(path, notifications) return model, sbml_ver, notifications
[ "def", "validate_model", "(", "path", ")", ":", "notifications", "=", "{", "\"warnings\"", ":", "[", "]", ",", "\"errors\"", ":", "[", "]", "}", "model", ",", "sbml_ver", "=", "val", ".", "load_cobra_model", "(", "path", ",", "notifications", ")", "return", "model", ",", "sbml_ver", ",", "notifications" ]
Validate a model structurally and optionally store results as JSON. Parameters ---------- path : Path to model file. Returns ------- tuple cobra.Model The metabolic model under investigation. tuple A tuple reporting on the SBML level, version, and FBC package version used (if any) in the SBML document. dict A simple dictionary containing a list of errors and warnings.
[ "Validate", "a", "model", "structurally", "and", "optionally", "store", "results", "as", "JSON", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/api.py#L41-L64
2,432
opencobra/memote
memote/suite/api.py
snapshot_report
def snapshot_report(result, config=None, html=True): """ Generate a snapshot report from a result set and configuration. Parameters ---------- result : memote.MemoteResult Nested dictionary structure as returned from the test suite. config : dict, optional The final test report configuration (default None). html : bool, optional Whether to render the report as full HTML or JSON (default True). """ if config is None: config = ReportConfiguration.load() report = SnapshotReport(result=result, configuration=config) if html: return report.render_html() else: return report.render_json()
python
def snapshot_report(result, config=None, html=True): if config is None: config = ReportConfiguration.load() report = SnapshotReport(result=result, configuration=config) if html: return report.render_html() else: return report.render_json()
[ "def", "snapshot_report", "(", "result", ",", "config", "=", "None", ",", "html", "=", "True", ")", ":", "if", "config", "is", "None", ":", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "report", "=", "SnapshotReport", "(", "result", "=", "result", ",", "configuration", "=", "config", ")", "if", "html", ":", "return", "report", ".", "render_html", "(", ")", "else", ":", "return", "report", ".", "render_json", "(", ")" ]
Generate a snapshot report from a result set and configuration. Parameters ---------- result : memote.MemoteResult Nested dictionary structure as returned from the test suite. config : dict, optional The final test report configuration (default None). html : bool, optional Whether to render the report as full HTML or JSON (default True).
[ "Generate", "a", "snapshot", "report", "from", "a", "result", "set", "and", "configuration", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/api.py#L112-L132
2,433
opencobra/memote
memote/suite/api.py
history_report
def history_report(history, config=None, html=True): """ Test a model and save a history report. Parameters ---------- history : memote.HistoryManager The manager grants access to previous results. config : dict, optional The final test report configuration. html : bool, optional Whether to render the report as full HTML or JSON (default True). """ if config is None: config = ReportConfiguration.load() report = HistoryReport(history=history, configuration=config) if html: return report.render_html() else: return report.render_json()
python
def history_report(history, config=None, html=True): if config is None: config = ReportConfiguration.load() report = HistoryReport(history=history, configuration=config) if html: return report.render_html() else: return report.render_json()
[ "def", "history_report", "(", "history", ",", "config", "=", "None", ",", "html", "=", "True", ")", ":", "if", "config", "is", "None", ":", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "report", "=", "HistoryReport", "(", "history", "=", "history", ",", "configuration", "=", "config", ")", "if", "html", ":", "return", "report", ".", "render_html", "(", ")", "else", ":", "return", "report", ".", "render_json", "(", ")" ]
Test a model and save a history report. Parameters ---------- history : memote.HistoryManager The manager grants access to previous results. config : dict, optional The final test report configuration. html : bool, optional Whether to render the report as full HTML or JSON (default True).
[ "Test", "a", "model", "and", "save", "a", "history", "report", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/api.py#L135-L155
2,434
opencobra/memote
memote/suite/api.py
diff_report
def diff_report(diff_results, config=None, html=True): """ Generate a diff report from a result set and configuration. Parameters ---------- diff_results : iterable of memote.MemoteResult Nested dictionary structure as returned from the test suite. config : dict, optional The final test report configuration (default None). html : bool, optional Whether to render the report as full HTML or JSON (default True). """ if config is None: config = ReportConfiguration.load() report = DiffReport(diff_results=diff_results, configuration=config) if html: return report.render_html() else: return report.render_json()
python
def diff_report(diff_results, config=None, html=True): if config is None: config = ReportConfiguration.load() report = DiffReport(diff_results=diff_results, configuration=config) if html: return report.render_html() else: return report.render_json()
[ "def", "diff_report", "(", "diff_results", ",", "config", "=", "None", ",", "html", "=", "True", ")", ":", "if", "config", "is", "None", ":", "config", "=", "ReportConfiguration", ".", "load", "(", ")", "report", "=", "DiffReport", "(", "diff_results", "=", "diff_results", ",", "configuration", "=", "config", ")", "if", "html", ":", "return", "report", ".", "render_html", "(", ")", "else", ":", "return", "report", ".", "render_json", "(", ")" ]
Generate a diff report from a result set and configuration. Parameters ---------- diff_results : iterable of memote.MemoteResult Nested dictionary structure as returned from the test suite. config : dict, optional The final test report configuration (default None). html : bool, optional Whether to render the report as full HTML or JSON (default True).
[ "Generate", "a", "diff", "report", "from", "a", "result", "set", "and", "configuration", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/api.py#L158-L178
2,435
opencobra/memote
memote/suite/api.py
validation_report
def validation_report(path, notifications, filename): """ Generate a validation report from a notification object. Parameters ---------- path : string Path to model file. notifications : dict A simple dictionary structure containing a list of errors and warnings. """ env = Environment( loader=PackageLoader('memote.suite', 'templates'), autoescape=select_autoescape(['html', 'xml']) ) template = env.get_template('validation_template.html') model = os.path.basename(path) with open(filename, "w") as file_h: file_h.write(template.render(model=model, notifications=notifications))
python
def validation_report(path, notifications, filename): env = Environment( loader=PackageLoader('memote.suite', 'templates'), autoescape=select_autoescape(['html', 'xml']) ) template = env.get_template('validation_template.html') model = os.path.basename(path) with open(filename, "w") as file_h: file_h.write(template.render(model=model, notifications=notifications))
[ "def", "validation_report", "(", "path", ",", "notifications", ",", "filename", ")", ":", "env", "=", "Environment", "(", "loader", "=", "PackageLoader", "(", "'memote.suite'", ",", "'templates'", ")", ",", "autoescape", "=", "select_autoescape", "(", "[", "'html'", ",", "'xml'", "]", ")", ")", "template", "=", "env", ".", "get_template", "(", "'validation_template.html'", ")", "model", "=", "os", ".", "path", ".", "basename", "(", "path", ")", "with", "open", "(", "filename", ",", "\"w\"", ")", "as", "file_h", ":", "file_h", ".", "write", "(", "template", ".", "render", "(", "model", "=", "model", ",", "notifications", "=", "notifications", ")", ")" ]
Generate a validation report from a notification object. Parameters ---------- path : string Path to model file. notifications : dict A simple dictionary structure containing a list of errors and warnings.
[ "Generate", "a", "validation", "report", "from", "a", "notification", "object", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/api.py#L181-L200
2,436
opencobra/memote
memote/suite/reporting/config.py
ReportConfiguration.load
def load(cls, filename=None): """Load a test report configuration.""" if filename is None: LOGGER.debug("Loading default configuration.") with open_text(templates, "test_config.yml", encoding="utf-8") as file_handle: content = yaml.load(file_handle) else: LOGGER.debug("Loading custom configuration '%s'.", filename) try: with open(filename, encoding="utf-8") as file_handle: content = yaml.load(file_handle) except IOError as err: LOGGER.error( "Failed to load the custom configuration '%s'. Skipping.", filename) LOGGER.debug(str(err)) content = dict() return cls(content)
python
def load(cls, filename=None): if filename is None: LOGGER.debug("Loading default configuration.") with open_text(templates, "test_config.yml", encoding="utf-8") as file_handle: content = yaml.load(file_handle) else: LOGGER.debug("Loading custom configuration '%s'.", filename) try: with open(filename, encoding="utf-8") as file_handle: content = yaml.load(file_handle) except IOError as err: LOGGER.error( "Failed to load the custom configuration '%s'. Skipping.", filename) LOGGER.debug(str(err)) content = dict() return cls(content)
[ "def", "load", "(", "cls", ",", "filename", "=", "None", ")", ":", "if", "filename", "is", "None", ":", "LOGGER", ".", "debug", "(", "\"Loading default configuration.\"", ")", "with", "open_text", "(", "templates", ",", "\"test_config.yml\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "content", "=", "yaml", ".", "load", "(", "file_handle", ")", "else", ":", "LOGGER", ".", "debug", "(", "\"Loading custom configuration '%s'.\"", ",", "filename", ")", "try", ":", "with", "open", "(", "filename", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "content", "=", "yaml", ".", "load", "(", "file_handle", ")", "except", "IOError", "as", "err", ":", "LOGGER", ".", "error", "(", "\"Failed to load the custom configuration '%s'. Skipping.\"", ",", "filename", ")", "LOGGER", ".", "debug", "(", "str", "(", "err", ")", ")", "content", "=", "dict", "(", ")", "return", "cls", "(", "content", ")" ]
Load a test report configuration.
[ "Load", "a", "test", "report", "configuration", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/reporting/config.py#L52-L70
2,437
opencobra/memote
memote/support/gpr_helpers.py
find_top_level_complex
def find_top_level_complex(gpr): """ Find unique elements of both branches of the top level logical AND. Parameters ---------- gpr : str The gene-protein-reaction association as a string. Returns ------- int The size of the symmetric difference between the set of elements to the left of the top level logical AND and the right set. """ logger.debug("%r", gpr) conform = logical_and.sub("and", gpr) conform = logical_or.sub("or", conform) conform = escape_chars.sub("_", conform) expression = ast.parse(conform) walker = GPRVisitor() walker.visit(expression) return len(walker.left ^ walker.right)
python
def find_top_level_complex(gpr): logger.debug("%r", gpr) conform = logical_and.sub("and", gpr) conform = logical_or.sub("or", conform) conform = escape_chars.sub("_", conform) expression = ast.parse(conform) walker = GPRVisitor() walker.visit(expression) return len(walker.left ^ walker.right)
[ "def", "find_top_level_complex", "(", "gpr", ")", ":", "logger", ".", "debug", "(", "\"%r\"", ",", "gpr", ")", "conform", "=", "logical_and", ".", "sub", "(", "\"and\"", ",", "gpr", ")", "conform", "=", "logical_or", ".", "sub", "(", "\"or\"", ",", "conform", ")", "conform", "=", "escape_chars", ".", "sub", "(", "\"_\"", ",", "conform", ")", "expression", "=", "ast", ".", "parse", "(", "conform", ")", "walker", "=", "GPRVisitor", "(", ")", "walker", ".", "visit", "(", "expression", ")", "return", "len", "(", "walker", ".", "left", "^", "walker", ".", "right", ")" ]
Find unique elements of both branches of the top level logical AND. Parameters ---------- gpr : str The gene-protein-reaction association as a string. Returns ------- int The size of the symmetric difference between the set of elements to the left of the top level logical AND and the right set.
[ "Find", "unique", "elements", "of", "both", "branches", "of", "the", "top", "level", "logical", "AND", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/gpr_helpers.py#L107-L130
2,438
opencobra/memote
memote/support/gpr_helpers.py
GPRVisitor.visit_BoolOp
def visit_BoolOp(self, node): """Set up recording of elements with this hook.""" if self._is_top and isinstance(node.op, ast.And): self._is_top = False self._current = self.left self.visit(node.values[0]) self._current = self.right for successor in node.values[1:]: self.visit(successor) else: self.generic_visit(node)
python
def visit_BoolOp(self, node): if self._is_top and isinstance(node.op, ast.And): self._is_top = False self._current = self.left self.visit(node.values[0]) self._current = self.right for successor in node.values[1:]: self.visit(successor) else: self.generic_visit(node)
[ "def", "visit_BoolOp", "(", "self", ",", "node", ")", ":", "if", "self", ".", "_is_top", "and", "isinstance", "(", "node", ".", "op", ",", "ast", ".", "And", ")", ":", "self", ".", "_is_top", "=", "False", "self", ".", "_current", "=", "self", ".", "left", "self", ".", "visit", "(", "node", ".", "values", "[", "0", "]", ")", "self", ".", "_current", "=", "self", ".", "right", "for", "successor", "in", "node", ".", "values", "[", "1", ":", "]", ":", "self", ".", "visit", "(", "successor", ")", "else", ":", "self", ".", "generic_visit", "(", "node", ")" ]
Set up recording of elements with this hook.
[ "Set", "up", "recording", "of", "elements", "with", "this", "hook", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/gpr_helpers.py#L90-L100
2,439
opencobra/memote
memote/support/basic.py
find_nonzero_constrained_reactions
def find_nonzero_constrained_reactions(model): """Return list of reactions with non-zero, non-maximal bounds.""" lower_bound, upper_bound = helpers.find_bounds(model) return [rxn for rxn in model.reactions if 0 > rxn.lower_bound > lower_bound or 0 < rxn.upper_bound < upper_bound]
python
def find_nonzero_constrained_reactions(model): lower_bound, upper_bound = helpers.find_bounds(model) return [rxn for rxn in model.reactions if 0 > rxn.lower_bound > lower_bound or 0 < rxn.upper_bound < upper_bound]
[ "def", "find_nonzero_constrained_reactions", "(", "model", ")", ":", "lower_bound", ",", "upper_bound", "=", "helpers", ".", "find_bounds", "(", "model", ")", "return", "[", "rxn", "for", "rxn", "in", "model", ".", "reactions", "if", "0", ">", "rxn", ".", "lower_bound", ">", "lower_bound", "or", "0", "<", "rxn", ".", "upper_bound", "<", "upper_bound", "]" ]
Return list of reactions with non-zero, non-maximal bounds.
[ "Return", "list", "of", "reactions", "with", "non", "-", "zero", "non", "-", "maximal", "bounds", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L53-L58
2,440
opencobra/memote
memote/support/basic.py
find_zero_constrained_reactions
def find_zero_constrained_reactions(model): """Return list of reactions that are constrained to zero flux.""" return [rxn for rxn in model.reactions if rxn.lower_bound == 0 and rxn.upper_bound == 0]
python
def find_zero_constrained_reactions(model): return [rxn for rxn in model.reactions if rxn.lower_bound == 0 and rxn.upper_bound == 0]
[ "def", "find_zero_constrained_reactions", "(", "model", ")", ":", "return", "[", "rxn", "for", "rxn", "in", "model", ".", "reactions", "if", "rxn", ".", "lower_bound", "==", "0", "and", "rxn", ".", "upper_bound", "==", "0", "]" ]
Return list of reactions that are constrained to zero flux.
[ "Return", "list", "of", "reactions", "that", "are", "constrained", "to", "zero", "flux", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L61-L65
2,441
opencobra/memote
memote/support/basic.py
find_unconstrained_reactions
def find_unconstrained_reactions(model): """Return list of reactions that are not constrained at all.""" lower_bound, upper_bound = helpers.find_bounds(model) return [rxn for rxn in model.reactions if rxn.lower_bound <= lower_bound and rxn.upper_bound >= upper_bound]
python
def find_unconstrained_reactions(model): lower_bound, upper_bound = helpers.find_bounds(model) return [rxn for rxn in model.reactions if rxn.lower_bound <= lower_bound and rxn.upper_bound >= upper_bound]
[ "def", "find_unconstrained_reactions", "(", "model", ")", ":", "lower_bound", ",", "upper_bound", "=", "helpers", ".", "find_bounds", "(", "model", ")", "return", "[", "rxn", "for", "rxn", "in", "model", ".", "reactions", "if", "rxn", ".", "lower_bound", "<=", "lower_bound", "and", "rxn", ".", "upper_bound", ">=", "upper_bound", "]" ]
Return list of reactions that are not constrained at all.
[ "Return", "list", "of", "reactions", "that", "are", "not", "constrained", "at", "all", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L73-L78
2,442
opencobra/memote
memote/support/basic.py
find_ngam
def find_ngam(model): u""" Return all potential non growth-associated maintenance reactions. From the list of all reactions that convert ATP to ADP select the reactions that match a defined reaction string and whose metabolites are situated within the main model compartment. The main model compartment is the cytosol, and if that cannot be identified, the compartment with the most metabolites. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Reactions that qualify as non-growth associated maintenance reactions. Notes ----- [1]_ define the non-growth associated maintenance (NGAM) as the energy required to maintain all constant processes such as turgor pressure and other housekeeping activities. In metabolic models this is expressed by requiring a simple ATP hydrolysis reaction to always have a fixed minimal amount of flux. This value can be measured as described by [1]_ . References ---------- .. [1] Thiele, I., & Palsson, B. Ø. (2010, January). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature protocols. Nature Publishing Group. http://doi.org/10.1038/nprot.2009.203 """ atp_adp_conv_rxns = helpers.find_converting_reactions( model, ("MNXM3", "MNXM7") ) id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') reactants = { helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0] } products = { helpers.find_met_in_model(model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM9", id_of_main_compartment)[0] } candidates = [rxn for rxn in atp_adp_conv_rxns if rxn.reversibility is False and set(rxn.reactants) == reactants and set(rxn.products) == products] buzzwords = ['maintenance', 'atpm', 'requirement', 'ngam', 'non-growth', 'associated'] refined_candidates = [rxn for rxn in candidates if any( string in filter_none(rxn.name, '').lower() for string in buzzwords )] if refined_candidates: return refined_candidates else: return candidates
python
def find_ngam(model): u""" Return all potential non growth-associated maintenance reactions. From the list of all reactions that convert ATP to ADP select the reactions that match a defined reaction string and whose metabolites are situated within the main model compartment. The main model compartment is the cytosol, and if that cannot be identified, the compartment with the most metabolites. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Reactions that qualify as non-growth associated maintenance reactions. Notes ----- [1]_ define the non-growth associated maintenance (NGAM) as the energy required to maintain all constant processes such as turgor pressure and other housekeeping activities. In metabolic models this is expressed by requiring a simple ATP hydrolysis reaction to always have a fixed minimal amount of flux. This value can be measured as described by [1]_ . References ---------- .. [1] Thiele, I., & Palsson, B. Ø. (2010, January). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature protocols. Nature Publishing Group. http://doi.org/10.1038/nprot.2009.203 """ atp_adp_conv_rxns = helpers.find_converting_reactions( model, ("MNXM3", "MNXM7") ) id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') reactants = { helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0] } products = { helpers.find_met_in_model(model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM9", id_of_main_compartment)[0] } candidates = [rxn for rxn in atp_adp_conv_rxns if rxn.reversibility is False and set(rxn.reactants) == reactants and set(rxn.products) == products] buzzwords = ['maintenance', 'atpm', 'requirement', 'ngam', 'non-growth', 'associated'] refined_candidates = [rxn for rxn in candidates if any( string in filter_none(rxn.name, '').lower() for string in buzzwords )] if refined_candidates: return refined_candidates else: return candidates
[ "def", "find_ngam", "(", "model", ")", ":", "atp_adp_conv_rxns", "=", "helpers", ".", "find_converting_reactions", "(", "model", ",", "(", "\"MNXM3\"", ",", "\"MNXM7\"", ")", ")", "id_of_main_compartment", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "reactants", "=", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM3\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM2\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "}", "products", "=", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM7\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM1\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM9\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "}", "candidates", "=", "[", "rxn", "for", "rxn", "in", "atp_adp_conv_rxns", "if", "rxn", ".", "reversibility", "is", "False", "and", "set", "(", "rxn", ".", "reactants", ")", "==", "reactants", "and", "set", "(", "rxn", ".", "products", ")", "==", "products", "]", "buzzwords", "=", "[", "'maintenance'", ",", "'atpm'", ",", "'requirement'", ",", "'ngam'", ",", "'non-growth'", ",", "'associated'", "]", "refined_candidates", "=", "[", "rxn", "for", "rxn", "in", "candidates", "if", "any", "(", "string", "in", "filter_none", "(", "rxn", ".", "name", ",", "''", ")", ".", "lower", "(", ")", "for", "string", "in", "buzzwords", ")", "]", "if", "refined_candidates", ":", "return", "refined_candidates", "else", ":", "return", "candidates" ]
u""" Return all potential non growth-associated maintenance reactions. From the list of all reactions that convert ATP to ADP select the reactions that match a defined reaction string and whose metabolites are situated within the main model compartment. The main model compartment is the cytosol, and if that cannot be identified, the compartment with the most metabolites. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Reactions that qualify as non-growth associated maintenance reactions. Notes ----- [1]_ define the non-growth associated maintenance (NGAM) as the energy required to maintain all constant processes such as turgor pressure and other housekeeping activities. In metabolic models this is expressed by requiring a simple ATP hydrolysis reaction to always have a fixed minimal amount of flux. This value can be measured as described by [1]_ . References ---------- .. [1] Thiele, I., & Palsson, B. Ø. (2010, January). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature protocols. Nature Publishing Group. http://doi.org/10.1038/nprot.2009.203
[ "u", "Return", "all", "potential", "non", "growth", "-", "associated", "maintenance", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L81-L148
2,443
opencobra/memote
memote/support/basic.py
calculate_metabolic_coverage
def calculate_metabolic_coverage(model): u""" Return the ratio of reactions and genes included in the model. Determine whether the amount of reactions and genes in model not equal to zero, then return the ratio. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- float The ratio of reactions to genes also called metabolic coverage. Raises ------ ValueError If the model does not contain either reactions or genes. Notes ----- According to [1]_ this is a good quality indicator expressing the degree of metabolic coverage i.e. modeling detail of a given reconstruction. The authors explain that models with a 'high level of modeling detail have ratios >1, and [models] with low level of detail have ratios <1'. They explain that 'this difference arises because [models] with basic or intermediate levels of detail often include many reactions in which several gene products and their enzymatic transformations are ‘lumped’'. References ---------- .. [1] Monk, J., Nogales, J., & Palsson, B. O. (2014). Optimizing genome-scale network reconstructions. Nature Biotechnology, 32(5), 447–452. http://doi.org/10.1038/nbt.2870 """ if len(model.reactions) == 0 or len(model.genes) == 0: raise ValueError("The model contains no reactions or genes.") return float(len(model.reactions)) / float(len(model.genes))
python
def calculate_metabolic_coverage(model): u""" Return the ratio of reactions and genes included in the model. Determine whether the amount of reactions and genes in model not equal to zero, then return the ratio. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- float The ratio of reactions to genes also called metabolic coverage. Raises ------ ValueError If the model does not contain either reactions or genes. Notes ----- According to [1]_ this is a good quality indicator expressing the degree of metabolic coverage i.e. modeling detail of a given reconstruction. The authors explain that models with a 'high level of modeling detail have ratios >1, and [models] with low level of detail have ratios <1'. They explain that 'this difference arises because [models] with basic or intermediate levels of detail often include many reactions in which several gene products and their enzymatic transformations are ‘lumped’'. References ---------- .. [1] Monk, J., Nogales, J., & Palsson, B. O. (2014). Optimizing genome-scale network reconstructions. Nature Biotechnology, 32(5), 447–452. http://doi.org/10.1038/nbt.2870 """ if len(model.reactions) == 0 or len(model.genes) == 0: raise ValueError("The model contains no reactions or genes.") return float(len(model.reactions)) / float(len(model.genes))
[ "def", "calculate_metabolic_coverage", "(", "model", ")", ":", "if", "len", "(", "model", ".", "reactions", ")", "==", "0", "or", "len", "(", "model", ".", "genes", ")", "==", "0", ":", "raise", "ValueError", "(", "\"The model contains no reactions or genes.\"", ")", "return", "float", "(", "len", "(", "model", ".", "reactions", ")", ")", "/", "float", "(", "len", "(", "model", ".", "genes", ")", ")" ]
u""" Return the ratio of reactions and genes included in the model. Determine whether the amount of reactions and genes in model not equal to zero, then return the ratio. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- float The ratio of reactions to genes also called metabolic coverage. Raises ------ ValueError If the model does not contain either reactions or genes. Notes ----- According to [1]_ this is a good quality indicator expressing the degree of metabolic coverage i.e. modeling detail of a given reconstruction. The authors explain that models with a 'high level of modeling detail have ratios >1, and [models] with low level of detail have ratios <1'. They explain that 'this difference arises because [models] with basic or intermediate levels of detail often include many reactions in which several gene products and their enzymatic transformations are ‘lumped’'. References ---------- .. [1] Monk, J., Nogales, J., & Palsson, B. O. (2014). Optimizing genome-scale network reconstructions. Nature Biotechnology, 32(5), 447–452. http://doi.org/10.1038/nbt.2870
[ "u", "Return", "the", "ratio", "of", "reactions", "and", "genes", "included", "in", "the", "model", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L151-L192
2,444
opencobra/memote
memote/support/basic.py
find_protein_complexes
def find_protein_complexes(model): """ Find reactions that are catalyzed by at least a heterodimer. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Reactions whose gene-protein-reaction association contains at least one logical AND combining different gene products (heterodimer). """ complexes = [] for rxn in model.reactions: if not rxn.gene_reaction_rule: continue size = find_top_level_complex(rxn.gene_reaction_rule) if size >= 2: complexes.append(rxn) return complexes
python
def find_protein_complexes(model): complexes = [] for rxn in model.reactions: if not rxn.gene_reaction_rule: continue size = find_top_level_complex(rxn.gene_reaction_rule) if size >= 2: complexes.append(rxn) return complexes
[ "def", "find_protein_complexes", "(", "model", ")", ":", "complexes", "=", "[", "]", "for", "rxn", "in", "model", ".", "reactions", ":", "if", "not", "rxn", ".", "gene_reaction_rule", ":", "continue", "size", "=", "find_top_level_complex", "(", "rxn", ".", "gene_reaction_rule", ")", "if", "size", ">=", "2", ":", "complexes", ".", "append", "(", "rxn", ")", "return", "complexes" ]
Find reactions that are catalyzed by at least a heterodimer. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list Reactions whose gene-protein-reaction association contains at least one logical AND combining different gene products (heterodimer).
[ "Find", "reactions", "that", "are", "catalyzed", "by", "at", "least", "a", "heterodimer", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L195-L218
2,445
opencobra/memote
memote/support/basic.py
is_constrained_reaction
def is_constrained_reaction(model, rxn): """Return whether a reaction has fixed constraints.""" lower_bound, upper_bound = helpers.find_bounds(model) if rxn.reversibility: return rxn.lower_bound > lower_bound or rxn.upper_bound < upper_bound else: return rxn.lower_bound > 0 or rxn.upper_bound < upper_bound
python
def is_constrained_reaction(model, rxn): lower_bound, upper_bound = helpers.find_bounds(model) if rxn.reversibility: return rxn.lower_bound > lower_bound or rxn.upper_bound < upper_bound else: return rxn.lower_bound > 0 or rxn.upper_bound < upper_bound
[ "def", "is_constrained_reaction", "(", "model", ",", "rxn", ")", ":", "lower_bound", ",", "upper_bound", "=", "helpers", ".", "find_bounds", "(", "model", ")", "if", "rxn", ".", "reversibility", ":", "return", "rxn", ".", "lower_bound", ">", "lower_bound", "or", "rxn", ".", "upper_bound", "<", "upper_bound", "else", ":", "return", "rxn", ".", "lower_bound", ">", "0", "or", "rxn", ".", "upper_bound", "<", "upper_bound" ]
Return whether a reaction has fixed constraints.
[ "Return", "whether", "a", "reaction", "has", "fixed", "constraints", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L236-L242
2,446
opencobra/memote
memote/support/basic.py
find_unique_metabolites
def find_unique_metabolites(model): """Return set of metabolite IDs without duplicates from compartments.""" unique = set() for met in model.metabolites: is_missing = True for comp in model.compartments: if met.id.endswith("_{}".format(comp)): unique.add(met.id[:-(len(comp) + 1)]) is_missing = False break if is_missing: unique.add(met.id) return unique
python
def find_unique_metabolites(model): unique = set() for met in model.metabolites: is_missing = True for comp in model.compartments: if met.id.endswith("_{}".format(comp)): unique.add(met.id[:-(len(comp) + 1)]) is_missing = False break if is_missing: unique.add(met.id) return unique
[ "def", "find_unique_metabolites", "(", "model", ")", ":", "unique", "=", "set", "(", ")", "for", "met", "in", "model", ".", "metabolites", ":", "is_missing", "=", "True", "for", "comp", "in", "model", ".", "compartments", ":", "if", "met", ".", "id", ".", "endswith", "(", "\"_{}\"", ".", "format", "(", "comp", ")", ")", ":", "unique", ".", "add", "(", "met", ".", "id", "[", ":", "-", "(", "len", "(", "comp", ")", "+", "1", ")", "]", ")", "is_missing", "=", "False", "break", "if", "is_missing", ":", "unique", ".", "add", "(", "met", ".", "id", ")", "return", "unique" ]
Return set of metabolite IDs without duplicates from compartments.
[ "Return", "set", "of", "metabolite", "IDs", "without", "duplicates", "from", "compartments", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L253-L265
2,447
opencobra/memote
memote/support/basic.py
find_duplicate_metabolites_in_compartments
def find_duplicate_metabolites_in_compartments(model): """ Return list of metabolites with duplicates in the same compartment. This function identifies duplicate metabolites in each compartment by determining if any two metabolites have identical InChI-key annotations. For instance, this function would find compounds with IDs ATP1 and ATP2 in the cytosolic compartment, with both having the same InChI annotations. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list A list of tuples of duplicate metabolites. """ unique_identifiers = ["inchikey", "inchi"] duplicates = [] for met_1, met_2 in combinations(model.metabolites, 2): if met_1.compartment == met_2.compartment: for key in unique_identifiers: if key in met_1.annotation and key in met_2.annotation: if met_1.annotation[key] == met_2.annotation[key]: duplicates.append((met_1.id, met_2.id)) break return duplicates
python
def find_duplicate_metabolites_in_compartments(model): unique_identifiers = ["inchikey", "inchi"] duplicates = [] for met_1, met_2 in combinations(model.metabolites, 2): if met_1.compartment == met_2.compartment: for key in unique_identifiers: if key in met_1.annotation and key in met_2.annotation: if met_1.annotation[key] == met_2.annotation[key]: duplicates.append((met_1.id, met_2.id)) break return duplicates
[ "def", "find_duplicate_metabolites_in_compartments", "(", "model", ")", ":", "unique_identifiers", "=", "[", "\"inchikey\"", ",", "\"inchi\"", "]", "duplicates", "=", "[", "]", "for", "met_1", ",", "met_2", "in", "combinations", "(", "model", ".", "metabolites", ",", "2", ")", ":", "if", "met_1", ".", "compartment", "==", "met_2", ".", "compartment", ":", "for", "key", "in", "unique_identifiers", ":", "if", "key", "in", "met_1", ".", "annotation", "and", "key", "in", "met_2", ".", "annotation", ":", "if", "met_1", ".", "annotation", "[", "key", "]", "==", "met_2", ".", "annotation", "[", "key", "]", ":", "duplicates", ".", "append", "(", "(", "met_1", ".", "id", ",", "met_2", ".", "id", ")", ")", "break", "return", "duplicates" ]
Return list of metabolites with duplicates in the same compartment. This function identifies duplicate metabolites in each compartment by determining if any two metabolites have identical InChI-key annotations. For instance, this function would find compounds with IDs ATP1 and ATP2 in the cytosolic compartment, with both having the same InChI annotations. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list A list of tuples of duplicate metabolites.
[ "Return", "list", "of", "metabolites", "with", "duplicates", "in", "the", "same", "compartment", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L269-L298
2,448
opencobra/memote
memote/support/basic.py
find_reactions_with_partially_identical_annotations
def find_reactions_with_partially_identical_annotations(model): """ Return duplicate reactions based on identical annotation. Identify duplicate reactions globally by checking if any two metabolic reactions have the same entries in their annotation attributes. This can be useful to identify one 'type' of reactions that occurs in several compartments, to curate merged models or to clean-up bulk model modifications. The heuristic looks at annotations with the keys "metanetx.reaction", "kegg.reaction", "brenda", "rhea", "biocyc", "bigg.reaction" only. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- dict A mapping from sets of annotations to groups of reactions with those annotations. int The total number of unique reactions that are duplicated. """ duplicates = {} rxn_db_identifiers = ["metanetx.reaction", "kegg.reaction", "brenda", "rhea", "biocyc", "bigg.reaction"] # Build a list that associates a reaction with a set of its annotations. ann_rxns = [] for rxn in model.reactions: ann = [] for key in rxn_db_identifiers: if key in rxn.annotation: if isinstance(rxn.annotation[key], list): ann.extend([(key, elem) for elem in rxn.annotation[key]]) else: ann.append((key, rxn.annotation[key])) ann_rxns.append((rxn, frozenset(ann))) # Compute the intersection between annotations and record the matching # reaction identifiers. for (rxn_a, ann_a), (rxn_b, ann_b) in combinations(ann_rxns, 2): mutual_pair = tuple(ann_a & ann_b) if len(mutual_pair) > 0: duplicates.setdefault(mutual_pair, set()).update( [rxn_a.id, rxn_b.id]) # Transform the object for JSON compatibility num_duplicated = set() duplicated = {} for key in duplicates: # Object keys must be strings in JSON. new_key = ",".join(sorted("{}:{}".format(ns, term) for ns, term in key)) duplicated[new_key] = rxns = list(duplicates[key]) num_duplicated.update(rxns) return duplicated, len(num_duplicated)
python
def find_reactions_with_partially_identical_annotations(model): duplicates = {} rxn_db_identifiers = ["metanetx.reaction", "kegg.reaction", "brenda", "rhea", "biocyc", "bigg.reaction"] # Build a list that associates a reaction with a set of its annotations. ann_rxns = [] for rxn in model.reactions: ann = [] for key in rxn_db_identifiers: if key in rxn.annotation: if isinstance(rxn.annotation[key], list): ann.extend([(key, elem) for elem in rxn.annotation[key]]) else: ann.append((key, rxn.annotation[key])) ann_rxns.append((rxn, frozenset(ann))) # Compute the intersection between annotations and record the matching # reaction identifiers. for (rxn_a, ann_a), (rxn_b, ann_b) in combinations(ann_rxns, 2): mutual_pair = tuple(ann_a & ann_b) if len(mutual_pair) > 0: duplicates.setdefault(mutual_pair, set()).update( [rxn_a.id, rxn_b.id]) # Transform the object for JSON compatibility num_duplicated = set() duplicated = {} for key in duplicates: # Object keys must be strings in JSON. new_key = ",".join(sorted("{}:{}".format(ns, term) for ns, term in key)) duplicated[new_key] = rxns = list(duplicates[key]) num_duplicated.update(rxns) return duplicated, len(num_duplicated)
[ "def", "find_reactions_with_partially_identical_annotations", "(", "model", ")", ":", "duplicates", "=", "{", "}", "rxn_db_identifiers", "=", "[", "\"metanetx.reaction\"", ",", "\"kegg.reaction\"", ",", "\"brenda\"", ",", "\"rhea\"", ",", "\"biocyc\"", ",", "\"bigg.reaction\"", "]", "# Build a list that associates a reaction with a set of its annotations.", "ann_rxns", "=", "[", "]", "for", "rxn", "in", "model", ".", "reactions", ":", "ann", "=", "[", "]", "for", "key", "in", "rxn_db_identifiers", ":", "if", "key", "in", "rxn", ".", "annotation", ":", "if", "isinstance", "(", "rxn", ".", "annotation", "[", "key", "]", ",", "list", ")", ":", "ann", ".", "extend", "(", "[", "(", "key", ",", "elem", ")", "for", "elem", "in", "rxn", ".", "annotation", "[", "key", "]", "]", ")", "else", ":", "ann", ".", "append", "(", "(", "key", ",", "rxn", ".", "annotation", "[", "key", "]", ")", ")", "ann_rxns", ".", "append", "(", "(", "rxn", ",", "frozenset", "(", "ann", ")", ")", ")", "# Compute the intersection between annotations and record the matching", "# reaction identifiers.", "for", "(", "rxn_a", ",", "ann_a", ")", ",", "(", "rxn_b", ",", "ann_b", ")", "in", "combinations", "(", "ann_rxns", ",", "2", ")", ":", "mutual_pair", "=", "tuple", "(", "ann_a", "&", "ann_b", ")", "if", "len", "(", "mutual_pair", ")", ">", "0", ":", "duplicates", ".", "setdefault", "(", "mutual_pair", ",", "set", "(", ")", ")", ".", "update", "(", "[", "rxn_a", ".", "id", ",", "rxn_b", ".", "id", "]", ")", "# Transform the object for JSON compatibility", "num_duplicated", "=", "set", "(", ")", "duplicated", "=", "{", "}", "for", "key", "in", "duplicates", ":", "# Object keys must be strings in JSON.", "new_key", "=", "\",\"", ".", "join", "(", "sorted", "(", "\"{}:{}\"", ".", "format", "(", "ns", ",", "term", ")", "for", "ns", ",", "term", "in", "key", ")", ")", "duplicated", "[", "new_key", "]", "=", "rxns", "=", "list", "(", "duplicates", "[", "key", "]", ")", "num_duplicated", ".", "update", "(", "rxns", ")", "return", "duplicated", ",", "len", "(", "num_duplicated", ")" ]
Return duplicate reactions based on identical annotation. Identify duplicate reactions globally by checking if any two metabolic reactions have the same entries in their annotation attributes. This can be useful to identify one 'type' of reactions that occurs in several compartments, to curate merged models or to clean-up bulk model modifications. The heuristic looks at annotations with the keys "metanetx.reaction", "kegg.reaction", "brenda", "rhea", "biocyc", "bigg.reaction" only. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- dict A mapping from sets of annotations to groups of reactions with those annotations. int The total number of unique reactions that are duplicated.
[ "Return", "duplicate", "reactions", "based", "on", "identical", "annotation", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L301-L356
2,449
opencobra/memote
memote/support/basic.py
map_metabolites_to_structures
def map_metabolites_to_structures(metabolites, compartments): """ Map metabolites from the identifier namespace to structural space. Metabolites who lack structural annotation (InChI or InChIKey) are ignored. Parameters ---------- metabolites : iterable The cobra.Metabolites to map. compartments : iterable The different compartments to consider. Structures are treated separately for each compartment. Returns ------- dict A mapping from a cobra.Metabolite to its compartment specific structure index. """ # TODO (Moritz Beber): Consider SMILES? unique_identifiers = ["inchikey", "inchi"] met2mol = {} molecules = {c: [] for c in compartments} for met in metabolites: ann = [] for key in unique_identifiers: mol = met.annotation.get(key) if mol is not None: ann.append(mol) # Ignore metabolites without the required information. if len(ann) == 0: continue ann = set(ann) # Compare with other structures in the same compartment. mols = molecules[met.compartment] for i, mol_group in enumerate(mols): if len(ann & mol_group) > 0: mol_group.update(ann) # We map to the index of the group because it is hashable and # cheaper to compare later. met2mol[met] = "{}-{}".format(met.compartment, i) break if met not in met2mol: # The length of the list corresponds to the 0-index after appending. met2mol[met] = "{}-{}".format(met.compartment, len(mols)) mols.append(ann) return met2mol
python
def map_metabolites_to_structures(metabolites, compartments): # TODO (Moritz Beber): Consider SMILES? unique_identifiers = ["inchikey", "inchi"] met2mol = {} molecules = {c: [] for c in compartments} for met in metabolites: ann = [] for key in unique_identifiers: mol = met.annotation.get(key) if mol is not None: ann.append(mol) # Ignore metabolites without the required information. if len(ann) == 0: continue ann = set(ann) # Compare with other structures in the same compartment. mols = molecules[met.compartment] for i, mol_group in enumerate(mols): if len(ann & mol_group) > 0: mol_group.update(ann) # We map to the index of the group because it is hashable and # cheaper to compare later. met2mol[met] = "{}-{}".format(met.compartment, i) break if met not in met2mol: # The length of the list corresponds to the 0-index after appending. met2mol[met] = "{}-{}".format(met.compartment, len(mols)) mols.append(ann) return met2mol
[ "def", "map_metabolites_to_structures", "(", "metabolites", ",", "compartments", ")", ":", "# TODO (Moritz Beber): Consider SMILES?", "unique_identifiers", "=", "[", "\"inchikey\"", ",", "\"inchi\"", "]", "met2mol", "=", "{", "}", "molecules", "=", "{", "c", ":", "[", "]", "for", "c", "in", "compartments", "}", "for", "met", "in", "metabolites", ":", "ann", "=", "[", "]", "for", "key", "in", "unique_identifiers", ":", "mol", "=", "met", ".", "annotation", ".", "get", "(", "key", ")", "if", "mol", "is", "not", "None", ":", "ann", ".", "append", "(", "mol", ")", "# Ignore metabolites without the required information.", "if", "len", "(", "ann", ")", "==", "0", ":", "continue", "ann", "=", "set", "(", "ann", ")", "# Compare with other structures in the same compartment.", "mols", "=", "molecules", "[", "met", ".", "compartment", "]", "for", "i", ",", "mol_group", "in", "enumerate", "(", "mols", ")", ":", "if", "len", "(", "ann", "&", "mol_group", ")", ">", "0", ":", "mol_group", ".", "update", "(", "ann", ")", "# We map to the index of the group because it is hashable and", "# cheaper to compare later.", "met2mol", "[", "met", "]", "=", "\"{}-{}\"", ".", "format", "(", "met", ".", "compartment", ",", "i", ")", "break", "if", "met", "not", "in", "met2mol", ":", "# The length of the list corresponds to the 0-index after appending.", "met2mol", "[", "met", "]", "=", "\"{}-{}\"", ".", "format", "(", "met", ".", "compartment", ",", "len", "(", "mols", ")", ")", "mols", ".", "append", "(", "ann", ")", "return", "met2mol" ]
Map metabolites from the identifier namespace to structural space. Metabolites who lack structural annotation (InChI or InChIKey) are ignored. Parameters ---------- metabolites : iterable The cobra.Metabolites to map. compartments : iterable The different compartments to consider. Structures are treated separately for each compartment. Returns ------- dict A mapping from a cobra.Metabolite to its compartment specific structure index.
[ "Map", "metabolites", "from", "the", "identifier", "namespace", "to", "structural", "space", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L359-L407
2,450
opencobra/memote
memote/support/basic.py
find_duplicate_reactions
def find_duplicate_reactions(model): """ Return a list with pairs of reactions that are functionally identical. Identify duplicate reactions globally by checking if any two reactions have the same metabolites, same directionality and are in the same compartment. This can be useful to curate merged models or to clean-up bulk model modifications. The heuristic compares reactions in a pairwise manner. For each reaction, the metabolite annotations are checked for a description of the structure (via InChI and InChIKey).If they exist, substrates and products as well as the stoichiometries of any reaction pair are compared. Only reactions where the substrates, products, stoichiometry and reversibility are identical are considered to be duplicates. This test will not be able to identify duplicate reactions if there are no structure annotations. Further, it will report reactions with differing bounds as equal if they otherwise match the above conditions. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list A list of pairs of duplicate reactions based on metabolites. int The number of unique reactions that have a duplicates """ met2mol = map_metabolites_to_structures(model.metabolites, model.compartments) # Build a list associating reactions with their stoichiometry in molecular # structure space. structural = [] for rxn in model.reactions: # Ignore reactions that have metabolites without structures. if not all(met in met2mol for met in rxn.metabolites): continue # We consider substrates and products separately since, for example, # the InChI for H2O and OH is the same. substrates = { met2mol[met]: rxn.get_coefficient(met) for met in rxn.reactants } products = { met2mol[met]: rxn.get_coefficient(met) for met in rxn.products } structural.append((rxn, substrates, products)) # Compare reactions using their structure-based stoichiometries. num_duplicated = set() duplicates = [] for (rxn_a, sub_a, prod_a), (rxn_b, sub_b, prod_b) in combinations( structural, 2): # Compare the substrates. if sub_a != sub_b: continue # Compare the products. if prod_a != prod_b: continue # Compare whether they are both (ir-)reversible. if rxn_a.reversibility != rxn_b.reversibility: continue # TODO (Moritz Beber): We could compare bounds here but it might be # worth knowing about the reactions even if their bounds differ? duplicates.append((rxn_a.id, rxn_b.id)) num_duplicated.add(rxn_a.id) num_duplicated.add(rxn_b.id) return duplicates, len(num_duplicated)
python
def find_duplicate_reactions(model): met2mol = map_metabolites_to_structures(model.metabolites, model.compartments) # Build a list associating reactions with their stoichiometry in molecular # structure space. structural = [] for rxn in model.reactions: # Ignore reactions that have metabolites without structures. if not all(met in met2mol for met in rxn.metabolites): continue # We consider substrates and products separately since, for example, # the InChI for H2O and OH is the same. substrates = { met2mol[met]: rxn.get_coefficient(met) for met in rxn.reactants } products = { met2mol[met]: rxn.get_coefficient(met) for met in rxn.products } structural.append((rxn, substrates, products)) # Compare reactions using their structure-based stoichiometries. num_duplicated = set() duplicates = [] for (rxn_a, sub_a, prod_a), (rxn_b, sub_b, prod_b) in combinations( structural, 2): # Compare the substrates. if sub_a != sub_b: continue # Compare the products. if prod_a != prod_b: continue # Compare whether they are both (ir-)reversible. if rxn_a.reversibility != rxn_b.reversibility: continue # TODO (Moritz Beber): We could compare bounds here but it might be # worth knowing about the reactions even if their bounds differ? duplicates.append((rxn_a.id, rxn_b.id)) num_duplicated.add(rxn_a.id) num_duplicated.add(rxn_b.id) return duplicates, len(num_duplicated)
[ "def", "find_duplicate_reactions", "(", "model", ")", ":", "met2mol", "=", "map_metabolites_to_structures", "(", "model", ".", "metabolites", ",", "model", ".", "compartments", ")", "# Build a list associating reactions with their stoichiometry in molecular", "# structure space.", "structural", "=", "[", "]", "for", "rxn", "in", "model", ".", "reactions", ":", "# Ignore reactions that have metabolites without structures.", "if", "not", "all", "(", "met", "in", "met2mol", "for", "met", "in", "rxn", ".", "metabolites", ")", ":", "continue", "# We consider substrates and products separately since, for example,", "# the InChI for H2O and OH is the same.", "substrates", "=", "{", "met2mol", "[", "met", "]", ":", "rxn", ".", "get_coefficient", "(", "met", ")", "for", "met", "in", "rxn", ".", "reactants", "}", "products", "=", "{", "met2mol", "[", "met", "]", ":", "rxn", ".", "get_coefficient", "(", "met", ")", "for", "met", "in", "rxn", ".", "products", "}", "structural", ".", "append", "(", "(", "rxn", ",", "substrates", ",", "products", ")", ")", "# Compare reactions using their structure-based stoichiometries.", "num_duplicated", "=", "set", "(", ")", "duplicates", "=", "[", "]", "for", "(", "rxn_a", ",", "sub_a", ",", "prod_a", ")", ",", "(", "rxn_b", ",", "sub_b", ",", "prod_b", ")", "in", "combinations", "(", "structural", ",", "2", ")", ":", "# Compare the substrates.", "if", "sub_a", "!=", "sub_b", ":", "continue", "# Compare the products.", "if", "prod_a", "!=", "prod_b", ":", "continue", "# Compare whether they are both (ir-)reversible.", "if", "rxn_a", ".", "reversibility", "!=", "rxn_b", ".", "reversibility", ":", "continue", "# TODO (Moritz Beber): We could compare bounds here but it might be", "# worth knowing about the reactions even if their bounds differ?", "duplicates", ".", "append", "(", "(", "rxn_a", ".", "id", ",", "rxn_b", ".", "id", ")", ")", "num_duplicated", ".", "add", "(", "rxn_a", ".", "id", ")", "num_duplicated", ".", "add", "(", "rxn_b", ".", "id", ")", "return", "duplicates", ",", "len", "(", "num_duplicated", ")" ]
Return a list with pairs of reactions that are functionally identical. Identify duplicate reactions globally by checking if any two reactions have the same metabolites, same directionality and are in the same compartment. This can be useful to curate merged models or to clean-up bulk model modifications. The heuristic compares reactions in a pairwise manner. For each reaction, the metabolite annotations are checked for a description of the structure (via InChI and InChIKey).If they exist, substrates and products as well as the stoichiometries of any reaction pair are compared. Only reactions where the substrates, products, stoichiometry and reversibility are identical are considered to be duplicates. This test will not be able to identify duplicate reactions if there are no structure annotations. Further, it will report reactions with differing bounds as equal if they otherwise match the above conditions. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- list A list of pairs of duplicate reactions based on metabolites. int The number of unique reactions that have a duplicates
[ "Return", "a", "list", "with", "pairs", "of", "reactions", "that", "are", "functionally", "identical", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L410-L479
2,451
opencobra/memote
memote/support/basic.py
find_reactions_with_identical_genes
def find_reactions_with_identical_genes(model): """ Return reactions that have identical genes. Identify duplicate reactions globally by checking if any two reactions have the same genes. This can be useful to curate merged models or to clean-up bulk model modifications, but also to identify promiscuous enzymes. The heuristic compares reactions in a pairwise manner and reports on reaction pairs whose genes are identical. Reactions with missing genes are skipped. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- dict A mapping from sets of genes to all the reactions containing those genes. int The total number of unique reactions that appear duplicates based on their gene-protein-reaction associations. """ duplicates = dict() for rxn_a, rxn_b in combinations(model.reactions, 2): if not (rxn_a.genes and rxn_b.genes): continue if rxn_a.genes == rxn_b.genes: # This works because the `genes` are frozen sets. identifiers = rxn_a.genes duplicates.setdefault(identifiers, set()).update( [rxn_a.id, rxn_b.id]) # Transform the object for JSON compatibility num_duplicated = set() duplicated = {} for key in duplicates: # Object keys must be strings in JSON. new_key = ",".join(sorted(g.id for g in key)) duplicated[new_key] = rxns = list(duplicates[key]) num_duplicated.update(rxns) return duplicated, len(num_duplicated)
python
def find_reactions_with_identical_genes(model): duplicates = dict() for rxn_a, rxn_b in combinations(model.reactions, 2): if not (rxn_a.genes and rxn_b.genes): continue if rxn_a.genes == rxn_b.genes: # This works because the `genes` are frozen sets. identifiers = rxn_a.genes duplicates.setdefault(identifiers, set()).update( [rxn_a.id, rxn_b.id]) # Transform the object for JSON compatibility num_duplicated = set() duplicated = {} for key in duplicates: # Object keys must be strings in JSON. new_key = ",".join(sorted(g.id for g in key)) duplicated[new_key] = rxns = list(duplicates[key]) num_duplicated.update(rxns) return duplicated, len(num_duplicated)
[ "def", "find_reactions_with_identical_genes", "(", "model", ")", ":", "duplicates", "=", "dict", "(", ")", "for", "rxn_a", ",", "rxn_b", "in", "combinations", "(", "model", ".", "reactions", ",", "2", ")", ":", "if", "not", "(", "rxn_a", ".", "genes", "and", "rxn_b", ".", "genes", ")", ":", "continue", "if", "rxn_a", ".", "genes", "==", "rxn_b", ".", "genes", ":", "# This works because the `genes` are frozen sets.", "identifiers", "=", "rxn_a", ".", "genes", "duplicates", ".", "setdefault", "(", "identifiers", ",", "set", "(", ")", ")", ".", "update", "(", "[", "rxn_a", ".", "id", ",", "rxn_b", ".", "id", "]", ")", "# Transform the object for JSON compatibility", "num_duplicated", "=", "set", "(", ")", "duplicated", "=", "{", "}", "for", "key", "in", "duplicates", ":", "# Object keys must be strings in JSON.", "new_key", "=", "\",\"", ".", "join", "(", "sorted", "(", "g", ".", "id", "for", "g", "in", "key", ")", ")", "duplicated", "[", "new_key", "]", "=", "rxns", "=", "list", "(", "duplicates", "[", "key", "]", ")", "num_duplicated", ".", "update", "(", "rxns", ")", "return", "duplicated", ",", "len", "(", "num_duplicated", ")" ]
Return reactions that have identical genes. Identify duplicate reactions globally by checking if any two reactions have the same genes. This can be useful to curate merged models or to clean-up bulk model modifications, but also to identify promiscuous enzymes. The heuristic compares reactions in a pairwise manner and reports on reaction pairs whose genes are identical. Reactions with missing genes are skipped. Parameters ---------- model : cobra.Model The metabolic model under investigation. Returns ------- dict A mapping from sets of genes to all the reactions containing those genes. int The total number of unique reactions that appear duplicates based on their gene-protein-reaction associations.
[ "Return", "reactions", "that", "have", "identical", "genes", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L482-L526
2,452
opencobra/memote
memote/support/basic.py
find_external_metabolites
def find_external_metabolites(model): """Return all metabolites in the external compartment.""" ex_comp = find_external_compartment(model) return [met for met in model.metabolites if met.compartment == ex_comp]
python
def find_external_metabolites(model): ex_comp = find_external_compartment(model) return [met for met in model.metabolites if met.compartment == ex_comp]
[ "def", "find_external_metabolites", "(", "model", ")", ":", "ex_comp", "=", "find_external_compartment", "(", "model", ")", "return", "[", "met", "for", "met", "in", "model", ".", "metabolites", "if", "met", ".", "compartment", "==", "ex_comp", "]" ]
Return all metabolites in the external compartment.
[ "Return", "all", "metabolites", "in", "the", "external", "compartment", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/basic.py#L541-L544
2,453
opencobra/memote
memote/suite/results/result_manager.py
ResultManager.store
def store(self, result, filename, pretty=True): """ Write a result to the given file. Parameters ---------- result : memote.MemoteResult The dictionary structure of results. filename : str or pathlib.Path Store results directly to the given filename. pretty : bool, optional Whether (default) or not to write JSON in a more legible format. """ LOGGER.info("Storing result in '%s'.", filename) if filename.endswith(".gz"): with gzip.open(filename, "wb") as file_handle: file_handle.write( jsonify(result, pretty=pretty).encode("utf-8") ) else: with open(filename, "w", encoding="utf-8") as file_handle: file_handle.write(jsonify(result, pretty=pretty))
python
def store(self, result, filename, pretty=True): LOGGER.info("Storing result in '%s'.", filename) if filename.endswith(".gz"): with gzip.open(filename, "wb") as file_handle: file_handle.write( jsonify(result, pretty=pretty).encode("utf-8") ) else: with open(filename, "w", encoding="utf-8") as file_handle: file_handle.write(jsonify(result, pretty=pretty))
[ "def", "store", "(", "self", ",", "result", ",", "filename", ",", "pretty", "=", "True", ")", ":", "LOGGER", ".", "info", "(", "\"Storing result in '%s'.\"", ",", "filename", ")", "if", "filename", ".", "endswith", "(", "\".gz\"", ")", ":", "with", "gzip", ".", "open", "(", "filename", ",", "\"wb\"", ")", "as", "file_handle", ":", "file_handle", ".", "write", "(", "jsonify", "(", "result", ",", "pretty", "=", "pretty", ")", ".", "encode", "(", "\"utf-8\"", ")", ")", "else", ":", "with", "open", "(", "filename", ",", "\"w\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "file_handle", ".", "write", "(", "jsonify", "(", "result", ",", "pretty", "=", "pretty", ")", ")" ]
Write a result to the given file. Parameters ---------- result : memote.MemoteResult The dictionary structure of results. filename : str or pathlib.Path Store results directly to the given filename. pretty : bool, optional Whether (default) or not to write JSON in a more legible format.
[ "Write", "a", "result", "to", "the", "given", "file", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/result_manager.py#L42-L64
2,454
opencobra/memote
memote/suite/results/result_manager.py
ResultManager.load
def load(self, filename): """Load a result from the given JSON file.""" LOGGER.info("Loading result from '%s'.", filename) if filename.endswith(".gz"): with gzip.open(filename, "rb") as file_handle: result = MemoteResult( json.loads(file_handle.read().decode("utf-8")) ) else: with open(filename, "r", encoding="utf-8") as file_handle: result = MemoteResult(json.load(file_handle)) # TODO (Moritz Beber): Validate the read-in JSON maybe? Trade-off # between extra time taken and correctness. Maybe we re-visit this # issue when there was a new JSON format version needed. return result
python
def load(self, filename): LOGGER.info("Loading result from '%s'.", filename) if filename.endswith(".gz"): with gzip.open(filename, "rb") as file_handle: result = MemoteResult( json.loads(file_handle.read().decode("utf-8")) ) else: with open(filename, "r", encoding="utf-8") as file_handle: result = MemoteResult(json.load(file_handle)) # TODO (Moritz Beber): Validate the read-in JSON maybe? Trade-off # between extra time taken and correctness. Maybe we re-visit this # issue when there was a new JSON format version needed. return result
[ "def", "load", "(", "self", ",", "filename", ")", ":", "LOGGER", ".", "info", "(", "\"Loading result from '%s'.\"", ",", "filename", ")", "if", "filename", ".", "endswith", "(", "\".gz\"", ")", ":", "with", "gzip", ".", "open", "(", "filename", ",", "\"rb\"", ")", "as", "file_handle", ":", "result", "=", "MemoteResult", "(", "json", ".", "loads", "(", "file_handle", ".", "read", "(", ")", ".", "decode", "(", "\"utf-8\"", ")", ")", ")", "else", ":", "with", "open", "(", "filename", ",", "\"r\"", ",", "encoding", "=", "\"utf-8\"", ")", "as", "file_handle", ":", "result", "=", "MemoteResult", "(", "json", ".", "load", "(", "file_handle", ")", ")", "# TODO (Moritz Beber): Validate the read-in JSON maybe? Trade-off", "# between extra time taken and correctness. Maybe we re-visit this", "# issue when there was a new JSON format version needed.", "return", "result" ]
Load a result from the given JSON file.
[ "Load", "a", "result", "from", "the", "given", "JSON", "file", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/result_manager.py#L66-L80
2,455
opencobra/memote
memote/support/validation.py
load_cobra_model
def load_cobra_model(path, notifications): """Load a COBRA model with meta information from an SBML document.""" doc = libsbml.readSBML(path) fbc = doc.getPlugin("fbc") sbml_ver = doc.getLevel(), doc.getVersion(), fbc if fbc is None else \ fbc.getVersion() with catch_warnings(record=True) as warnings: simplefilter("always") try: model = read_sbml_model(path) except Exception as err: notifications['errors'].append(str(err)) model = None validate = True else: validate = False notifications['warnings'].extend([str(w.message) for w in warnings]) if validate: run_sbml_validation(doc, notifications) return model, sbml_ver
python
def load_cobra_model(path, notifications): doc = libsbml.readSBML(path) fbc = doc.getPlugin("fbc") sbml_ver = doc.getLevel(), doc.getVersion(), fbc if fbc is None else \ fbc.getVersion() with catch_warnings(record=True) as warnings: simplefilter("always") try: model = read_sbml_model(path) except Exception as err: notifications['errors'].append(str(err)) model = None validate = True else: validate = False notifications['warnings'].extend([str(w.message) for w in warnings]) if validate: run_sbml_validation(doc, notifications) return model, sbml_ver
[ "def", "load_cobra_model", "(", "path", ",", "notifications", ")", ":", "doc", "=", "libsbml", ".", "readSBML", "(", "path", ")", "fbc", "=", "doc", ".", "getPlugin", "(", "\"fbc\"", ")", "sbml_ver", "=", "doc", ".", "getLevel", "(", ")", ",", "doc", ".", "getVersion", "(", ")", ",", "fbc", "if", "fbc", "is", "None", "else", "fbc", ".", "getVersion", "(", ")", "with", "catch_warnings", "(", "record", "=", "True", ")", "as", "warnings", ":", "simplefilter", "(", "\"always\"", ")", "try", ":", "model", "=", "read_sbml_model", "(", "path", ")", "except", "Exception", "as", "err", ":", "notifications", "[", "'errors'", "]", ".", "append", "(", "str", "(", "err", ")", ")", "model", "=", "None", "validate", "=", "True", "else", ":", "validate", "=", "False", "notifications", "[", "'warnings'", "]", ".", "extend", "(", "[", "str", "(", "w", ".", "message", ")", "for", "w", "in", "warnings", "]", ")", "if", "validate", ":", "run_sbml_validation", "(", "doc", ",", "notifications", ")", "return", "model", ",", "sbml_ver" ]
Load a COBRA model with meta information from an SBML document.
[ "Load", "a", "COBRA", "model", "with", "meta", "information", "from", "an", "SBML", "document", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/validation.py#L30-L49
2,456
opencobra/memote
memote/support/validation.py
format_failure
def format_failure(failure): """Format how an error or warning should be displayed.""" return "Line {}, Column {} - #{}: {} - Category: {}, Severity: {}".format( failure.getLine(), failure.getColumn(), failure.getErrorId(), failure.getMessage(), failure.getCategoryAsString(), failure.getSeverity() )
python
def format_failure(failure): return "Line {}, Column {} - #{}: {} - Category: {}, Severity: {}".format( failure.getLine(), failure.getColumn(), failure.getErrorId(), failure.getMessage(), failure.getCategoryAsString(), failure.getSeverity() )
[ "def", "format_failure", "(", "failure", ")", ":", "return", "\"Line {}, Column {} - #{}: {} - Category: {}, Severity: {}\"", ".", "format", "(", "failure", ".", "getLine", "(", ")", ",", "failure", ".", "getColumn", "(", ")", ",", "failure", ".", "getErrorId", "(", ")", ",", "failure", ".", "getMessage", "(", ")", ",", "failure", ".", "getCategoryAsString", "(", ")", ",", "failure", ".", "getSeverity", "(", ")", ")" ]
Format how an error or warning should be displayed.
[ "Format", "how", "an", "error", "or", "warning", "should", "be", "displayed", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/validation.py#L52-L61
2,457
opencobra/memote
memote/support/validation.py
run_sbml_validation
def run_sbml_validation(document, notifications): """Report errors and warnings found in an SBML document.""" validator = libsbml.SBMLValidator() validator.validate(document) for i in range(document.getNumErrors()): notifications['errors'].append(format_failure(document.getError(i))) for i in range(validator.getNumFailures()): failure = validator.getFailure(i) if failure.isWarning(): notifications['warnings'].append(format_failure(failure)) else: notifications['errors'].append(format_failure(failure))
python
def run_sbml_validation(document, notifications): validator = libsbml.SBMLValidator() validator.validate(document) for i in range(document.getNumErrors()): notifications['errors'].append(format_failure(document.getError(i))) for i in range(validator.getNumFailures()): failure = validator.getFailure(i) if failure.isWarning(): notifications['warnings'].append(format_failure(failure)) else: notifications['errors'].append(format_failure(failure))
[ "def", "run_sbml_validation", "(", "document", ",", "notifications", ")", ":", "validator", "=", "libsbml", ".", "SBMLValidator", "(", ")", "validator", ".", "validate", "(", "document", ")", "for", "i", "in", "range", "(", "document", ".", "getNumErrors", "(", ")", ")", ":", "notifications", "[", "'errors'", "]", ".", "append", "(", "format_failure", "(", "document", ".", "getError", "(", "i", ")", ")", ")", "for", "i", "in", "range", "(", "validator", ".", "getNumFailures", "(", ")", ")", ":", "failure", "=", "validator", ".", "getFailure", "(", "i", ")", "if", "failure", ".", "isWarning", "(", ")", ":", "notifications", "[", "'warnings'", "]", ".", "append", "(", "format_failure", "(", "failure", ")", ")", "else", ":", "notifications", "[", "'errors'", "]", ".", "append", "(", "format_failure", "(", "failure", ")", ")" ]
Report errors and warnings found in an SBML document.
[ "Report", "errors", "and", "warnings", "found", "in", "an", "SBML", "document", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/validation.py#L64-L75
2,458
opencobra/memote
memote/suite/results/sql_result_manager.py
SQLResultManager.load
def load(self, commit=None): """Load a result from the database.""" git_info = self.record_git_info(commit) LOGGER.info("Loading result from '%s'.", git_info.hexsha) result = MemoteResult( self.session.query(Result.memote_result). filter_by(hexsha=git_info.hexsha). one().memote_result) # Add git info so the object is equivalent to the one returned by the # RepoResultManager. self.add_git(result.meta, git_info) return result
python
def load(self, commit=None): git_info = self.record_git_info(commit) LOGGER.info("Loading result from '%s'.", git_info.hexsha) result = MemoteResult( self.session.query(Result.memote_result). filter_by(hexsha=git_info.hexsha). one().memote_result) # Add git info so the object is equivalent to the one returned by the # RepoResultManager. self.add_git(result.meta, git_info) return result
[ "def", "load", "(", "self", ",", "commit", "=", "None", ")", ":", "git_info", "=", "self", ".", "record_git_info", "(", "commit", ")", "LOGGER", ".", "info", "(", "\"Loading result from '%s'.\"", ",", "git_info", ".", "hexsha", ")", "result", "=", "MemoteResult", "(", "self", ".", "session", ".", "query", "(", "Result", ".", "memote_result", ")", ".", "filter_by", "(", "hexsha", "=", "git_info", ".", "hexsha", ")", ".", "one", "(", ")", ".", "memote_result", ")", "# Add git info so the object is equivalent to the one returned by the", "# RepoResultManager.", "self", ".", "add_git", "(", "result", ".", "meta", ",", "git_info", ")", "return", "result" ]
Load a result from the database.
[ "Load", "a", "result", "from", "the", "database", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/sql_result_manager.py#L89-L100
2,459
opencobra/memote
memote/suite/reporting/history.py
HistoryReport.collect_history
def collect_history(self): """Build the structure of results in terms of a commit history.""" def format_data(data): """Format result data according to the user-defined type.""" # TODO Remove this failsafe once proper error handling is in place. if type == "percent" or data is None: # Return an empty list here to reduce the output file size. # The angular report will ignore the `data` and instead display # the `metric`. return [] if type == "count": return len(data) return data base = dict() tests = base.setdefault("tests", dict()) score = base.setdefault("score", dict()) score_collection = score.setdefault("total_score", dict()) for branch, commits in self._history.iter_branches(): for commit in reversed(commits): result = self.result = self._history.get_result(commit) # Calculate the score for each result and store all the total # scores for each commit in the base dictionary. self.compute_score() total_score = self.result["score"]["total_score"] score_collection.setdefault("history", list()) score_collection["format_type"] = "score" score_collection["history"].append({ "branch": branch, "commit": commit, "metric": total_score}) # Now arrange the results for each test into the appropriate # format. Specifically such that the Accordion and the Vega # Plot components can easily read them. for test in result.cases: tests.setdefault(test, dict()) if "title" not in tests[test]: tests[test]["title"] = result.cases[test]["title"] if "summary" not in tests[test]: tests[test]["summary"] = result.cases[test]["summary"] if "type" not in tests[test]: tests[test]["format_type"] = result.cases[test][ "format_type"] type = tests[test]["format_type"] metric = result.cases[test].get("metric") data = result.cases[test].get("data") res = result.cases[test].get("result") if isinstance(metric, dict): tests[test].setdefault("history", dict()) for param in metric: tests[test]["history"].setdefault(param, list()). \ append({ "branch": branch, "commit": commit, "metric": metric.get(param), "data": format_data(data.get(param)), "result": res.get(param)}) else: tests[test].setdefault("history", list()).append({ "branch": branch, "commit": commit, "metric": metric, "data": format_data(data), "result": res }) return base
python
def collect_history(self): def format_data(data): """Format result data according to the user-defined type.""" # TODO Remove this failsafe once proper error handling is in place. if type == "percent" or data is None: # Return an empty list here to reduce the output file size. # The angular report will ignore the `data` and instead display # the `metric`. return [] if type == "count": return len(data) return data base = dict() tests = base.setdefault("tests", dict()) score = base.setdefault("score", dict()) score_collection = score.setdefault("total_score", dict()) for branch, commits in self._history.iter_branches(): for commit in reversed(commits): result = self.result = self._history.get_result(commit) # Calculate the score for each result and store all the total # scores for each commit in the base dictionary. self.compute_score() total_score = self.result["score"]["total_score"] score_collection.setdefault("history", list()) score_collection["format_type"] = "score" score_collection["history"].append({ "branch": branch, "commit": commit, "metric": total_score}) # Now arrange the results for each test into the appropriate # format. Specifically such that the Accordion and the Vega # Plot components can easily read them. for test in result.cases: tests.setdefault(test, dict()) if "title" not in tests[test]: tests[test]["title"] = result.cases[test]["title"] if "summary" not in tests[test]: tests[test]["summary"] = result.cases[test]["summary"] if "type" not in tests[test]: tests[test]["format_type"] = result.cases[test][ "format_type"] type = tests[test]["format_type"] metric = result.cases[test].get("metric") data = result.cases[test].get("data") res = result.cases[test].get("result") if isinstance(metric, dict): tests[test].setdefault("history", dict()) for param in metric: tests[test]["history"].setdefault(param, list()). \ append({ "branch": branch, "commit": commit, "metric": metric.get(param), "data": format_data(data.get(param)), "result": res.get(param)}) else: tests[test].setdefault("history", list()).append({ "branch": branch, "commit": commit, "metric": metric, "data": format_data(data), "result": res }) return base
[ "def", "collect_history", "(", "self", ")", ":", "def", "format_data", "(", "data", ")", ":", "\"\"\"Format result data according to the user-defined type.\"\"\"", "# TODO Remove this failsafe once proper error handling is in place.", "if", "type", "==", "\"percent\"", "or", "data", "is", "None", ":", "# Return an empty list here to reduce the output file size.", "# The angular report will ignore the `data` and instead display", "# the `metric`.", "return", "[", "]", "if", "type", "==", "\"count\"", ":", "return", "len", "(", "data", ")", "return", "data", "base", "=", "dict", "(", ")", "tests", "=", "base", ".", "setdefault", "(", "\"tests\"", ",", "dict", "(", ")", ")", "score", "=", "base", ".", "setdefault", "(", "\"score\"", ",", "dict", "(", ")", ")", "score_collection", "=", "score", ".", "setdefault", "(", "\"total_score\"", ",", "dict", "(", ")", ")", "for", "branch", ",", "commits", "in", "self", ".", "_history", ".", "iter_branches", "(", ")", ":", "for", "commit", "in", "reversed", "(", "commits", ")", ":", "result", "=", "self", ".", "result", "=", "self", ".", "_history", ".", "get_result", "(", "commit", ")", "# Calculate the score for each result and store all the total", "# scores for each commit in the base dictionary.", "self", ".", "compute_score", "(", ")", "total_score", "=", "self", ".", "result", "[", "\"score\"", "]", "[", "\"total_score\"", "]", "score_collection", ".", "setdefault", "(", "\"history\"", ",", "list", "(", ")", ")", "score_collection", "[", "\"format_type\"", "]", "=", "\"score\"", "score_collection", "[", "\"history\"", "]", ".", "append", "(", "{", "\"branch\"", ":", "branch", ",", "\"commit\"", ":", "commit", ",", "\"metric\"", ":", "total_score", "}", ")", "# Now arrange the results for each test into the appropriate", "# format. Specifically such that the Accordion and the Vega", "# Plot components can easily read them.", "for", "test", "in", "result", ".", "cases", ":", "tests", ".", "setdefault", "(", "test", ",", "dict", "(", ")", ")", "if", "\"title\"", "not", "in", "tests", "[", "test", "]", ":", "tests", "[", "test", "]", "[", "\"title\"", "]", "=", "result", ".", "cases", "[", "test", "]", "[", "\"title\"", "]", "if", "\"summary\"", "not", "in", "tests", "[", "test", "]", ":", "tests", "[", "test", "]", "[", "\"summary\"", "]", "=", "result", ".", "cases", "[", "test", "]", "[", "\"summary\"", "]", "if", "\"type\"", "not", "in", "tests", "[", "test", "]", ":", "tests", "[", "test", "]", "[", "\"format_type\"", "]", "=", "result", ".", "cases", "[", "test", "]", "[", "\"format_type\"", "]", "type", "=", "tests", "[", "test", "]", "[", "\"format_type\"", "]", "metric", "=", "result", ".", "cases", "[", "test", "]", ".", "get", "(", "\"metric\"", ")", "data", "=", "result", ".", "cases", "[", "test", "]", ".", "get", "(", "\"data\"", ")", "res", "=", "result", ".", "cases", "[", "test", "]", ".", "get", "(", "\"result\"", ")", "if", "isinstance", "(", "metric", ",", "dict", ")", ":", "tests", "[", "test", "]", ".", "setdefault", "(", "\"history\"", ",", "dict", "(", ")", ")", "for", "param", "in", "metric", ":", "tests", "[", "test", "]", "[", "\"history\"", "]", ".", "setdefault", "(", "param", ",", "list", "(", ")", ")", ".", "append", "(", "{", "\"branch\"", ":", "branch", ",", "\"commit\"", ":", "commit", ",", "\"metric\"", ":", "metric", ".", "get", "(", "param", ")", ",", "\"data\"", ":", "format_data", "(", "data", ".", "get", "(", "param", ")", ")", ",", "\"result\"", ":", "res", ".", "get", "(", "param", ")", "}", ")", "else", ":", "tests", "[", "test", "]", ".", "setdefault", "(", "\"history\"", ",", "list", "(", ")", ")", ".", "append", "(", "{", "\"branch\"", ":", "branch", ",", "\"commit\"", ":", "commit", ",", "\"metric\"", ":", "metric", ",", "\"data\"", ":", "format_data", "(", "data", ")", ",", "\"result\"", ":", "res", "}", ")", "return", "base" ]
Build the structure of results in terms of a commit history.
[ "Build", "the", "structure", "of", "results", "in", "terms", "of", "a", "commit", "history", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/reporting/history.py#L61-L126
2,460
opencobra/memote
memote/suite/reporting/diff.py
DiffReport.format_and_score_diff_data
def format_and_score_diff_data(self, diff_results): """Reformat the api results to work with the front-end.""" base = dict() meta = base.setdefault('meta', dict()) tests = base.setdefault('tests', dict()) score = base.setdefault('score', dict()) for model_filename, result in iteritems(diff_results): if meta == dict(): meta = result["meta"] for test_id, test_results in iteritems(result["tests"]): tests.setdefault(test_id, dict()) if tests[test_id] == dict(): tests[test_id]["summary"] = test_results["summary"] tests[test_id]["title"] = test_results["title"] tests[test_id]["format_type"] = test_results["format_type"] if isinstance(test_results["metric"], dict): tests[test_id].setdefault("diff", dict()) for param in test_results["metric"]: tests[test_id]["diff"].setdefault(param, list()). \ append({ "model": model_filename, "data": test_results["data"].setdefault(param), "duration": test_results["duration"].setdefault(param), "message": test_results["message"].setdefault(param), "metric": test_results["metric"].setdefault(param), "result": test_results["result"].setdefault(param)}) else: tests[test_id].setdefault("diff", list()) tests[test_id]["diff"].append({ "model": model_filename, "data": test_results.setdefault("data"), "duration": test_results.setdefault("duration"), "message": test_results.setdefault("message"), "metric": test_results.setdefault("metric"), "result": test_results.setdefault("result")}) self.result = result self.compute_score() score.setdefault('total_score', dict()).setdefault('diff', list()) score.setdefault('sections', dict()).setdefault('diff', list()) score['total_score']['diff'].append({ "model": model_filename, "total_score": self.result['score']['total_score']}) for section in self.result['score']['sections']: section.update({"model": model_filename}) score['sections']['diff'].append(section) return base
python
def format_and_score_diff_data(self, diff_results): base = dict() meta = base.setdefault('meta', dict()) tests = base.setdefault('tests', dict()) score = base.setdefault('score', dict()) for model_filename, result in iteritems(diff_results): if meta == dict(): meta = result["meta"] for test_id, test_results in iteritems(result["tests"]): tests.setdefault(test_id, dict()) if tests[test_id] == dict(): tests[test_id]["summary"] = test_results["summary"] tests[test_id]["title"] = test_results["title"] tests[test_id]["format_type"] = test_results["format_type"] if isinstance(test_results["metric"], dict): tests[test_id].setdefault("diff", dict()) for param in test_results["metric"]: tests[test_id]["diff"].setdefault(param, list()). \ append({ "model": model_filename, "data": test_results["data"].setdefault(param), "duration": test_results["duration"].setdefault(param), "message": test_results["message"].setdefault(param), "metric": test_results["metric"].setdefault(param), "result": test_results["result"].setdefault(param)}) else: tests[test_id].setdefault("diff", list()) tests[test_id]["diff"].append({ "model": model_filename, "data": test_results.setdefault("data"), "duration": test_results.setdefault("duration"), "message": test_results.setdefault("message"), "metric": test_results.setdefault("metric"), "result": test_results.setdefault("result")}) self.result = result self.compute_score() score.setdefault('total_score', dict()).setdefault('diff', list()) score.setdefault('sections', dict()).setdefault('diff', list()) score['total_score']['diff'].append({ "model": model_filename, "total_score": self.result['score']['total_score']}) for section in self.result['score']['sections']: section.update({"model": model_filename}) score['sections']['diff'].append(section) return base
[ "def", "format_and_score_diff_data", "(", "self", ",", "diff_results", ")", ":", "base", "=", "dict", "(", ")", "meta", "=", "base", ".", "setdefault", "(", "'meta'", ",", "dict", "(", ")", ")", "tests", "=", "base", ".", "setdefault", "(", "'tests'", ",", "dict", "(", ")", ")", "score", "=", "base", ".", "setdefault", "(", "'score'", ",", "dict", "(", ")", ")", "for", "model_filename", ",", "result", "in", "iteritems", "(", "diff_results", ")", ":", "if", "meta", "==", "dict", "(", ")", ":", "meta", "=", "result", "[", "\"meta\"", "]", "for", "test_id", ",", "test_results", "in", "iteritems", "(", "result", "[", "\"tests\"", "]", ")", ":", "tests", ".", "setdefault", "(", "test_id", ",", "dict", "(", ")", ")", "if", "tests", "[", "test_id", "]", "==", "dict", "(", ")", ":", "tests", "[", "test_id", "]", "[", "\"summary\"", "]", "=", "test_results", "[", "\"summary\"", "]", "tests", "[", "test_id", "]", "[", "\"title\"", "]", "=", "test_results", "[", "\"title\"", "]", "tests", "[", "test_id", "]", "[", "\"format_type\"", "]", "=", "test_results", "[", "\"format_type\"", "]", "if", "isinstance", "(", "test_results", "[", "\"metric\"", "]", ",", "dict", ")", ":", "tests", "[", "test_id", "]", ".", "setdefault", "(", "\"diff\"", ",", "dict", "(", ")", ")", "for", "param", "in", "test_results", "[", "\"metric\"", "]", ":", "tests", "[", "test_id", "]", "[", "\"diff\"", "]", ".", "setdefault", "(", "param", ",", "list", "(", ")", ")", ".", "append", "(", "{", "\"model\"", ":", "model_filename", ",", "\"data\"", ":", "test_results", "[", "\"data\"", "]", ".", "setdefault", "(", "param", ")", ",", "\"duration\"", ":", "test_results", "[", "\"duration\"", "]", ".", "setdefault", "(", "param", ")", ",", "\"message\"", ":", "test_results", "[", "\"message\"", "]", ".", "setdefault", "(", "param", ")", ",", "\"metric\"", ":", "test_results", "[", "\"metric\"", "]", ".", "setdefault", "(", "param", ")", ",", "\"result\"", ":", "test_results", "[", "\"result\"", "]", ".", "setdefault", "(", "param", ")", "}", ")", "else", ":", "tests", "[", "test_id", "]", ".", "setdefault", "(", "\"diff\"", ",", "list", "(", ")", ")", "tests", "[", "test_id", "]", "[", "\"diff\"", "]", ".", "append", "(", "{", "\"model\"", ":", "model_filename", ",", "\"data\"", ":", "test_results", ".", "setdefault", "(", "\"data\"", ")", ",", "\"duration\"", ":", "test_results", ".", "setdefault", "(", "\"duration\"", ")", ",", "\"message\"", ":", "test_results", ".", "setdefault", "(", "\"message\"", ")", ",", "\"metric\"", ":", "test_results", ".", "setdefault", "(", "\"metric\"", ")", ",", "\"result\"", ":", "test_results", ".", "setdefault", "(", "\"result\"", ")", "}", ")", "self", ".", "result", "=", "result", "self", ".", "compute_score", "(", ")", "score", ".", "setdefault", "(", "'total_score'", ",", "dict", "(", ")", ")", ".", "setdefault", "(", "'diff'", ",", "list", "(", ")", ")", "score", ".", "setdefault", "(", "'sections'", ",", "dict", "(", ")", ")", ".", "setdefault", "(", "'diff'", ",", "list", "(", ")", ")", "score", "[", "'total_score'", "]", "[", "'diff'", "]", ".", "append", "(", "{", "\"model\"", ":", "model_filename", ",", "\"total_score\"", ":", "self", ".", "result", "[", "'score'", "]", "[", "'total_score'", "]", "}", ")", "for", "section", "in", "self", ".", "result", "[", "'score'", "]", "[", "'sections'", "]", ":", "section", ".", "update", "(", "{", "\"model\"", ":", "model_filename", "}", ")", "score", "[", "'sections'", "]", "[", "'diff'", "]", ".", "append", "(", "section", ")", "return", "base" ]
Reformat the api results to work with the front-end.
[ "Reformat", "the", "api", "results", "to", "work", "with", "the", "front", "-", "end", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/reporting/diff.py#L48-L97
2,461
opencobra/memote
scripts/annotate_mnx_shortlists.py
generate_shortlist
def generate_shortlist(mnx_db, shortlist): """ Create a condensed cross-references format from data in long form. Both data frames must contain a column 'MNX_ID' and the dump is assumed to also have a column 'XREF'. Parameters ---------- mnx_db : pandas.DataFrame The entire MetaNetX dump as a data frame. shortlist : pandas.DataFrame The shortlist of targets as a data frame. Returns ------- pandas.DataFrame A condensed format with MetaNetX identifiers as the column index and database identifiers as the row index. Elements are lists and often have multiple entries. """ # Reduce the whole database to targets of interest. xref = mnx_db.loc[mnx_db["MNX_ID"].isin(shortlist["MNX_ID"]), :] # Drop deprecated MetaNetX identifiers. Disabled for now. # xref = xref.loc[~xref["XREF"].str.startswith("deprecated", na=False), :] # Drop self-references for now since they don't follow the format. xref = xref.loc[xref["XREF"] != xref["MNX_ID"], :] # Split namespaces from identifiers. xref[["XREF_ID", "XREF"]] = xref["XREF"].str.split(":", n=1, expand=True) # Group the data in the xref dataframe so that one MNX ID maps to all # corresponding cross-references from other databases. Then list all # identifiers that belong to these databases: # MNX_ID XREF_ID # MNXM0 chebi [23367, 59999] # metacyc [UNKNOWN] # Make a separate column for every XREF_ID: # MNX_ID chebi metacyc # MNXM0 [23367, 59999] [UNKNOWN] xref = xref.groupby(["MNX_ID", "XREF_ID"], as_index=False, sort=False)[ "XREF"].apply(list).unstack('XREF_ID') # Re-insert MetaNetX identifiers as lists. # FIXME: Shouldn't we use metanetx.chemical here instead of 'mnx'? xref["mnx"] = [[x] for x in xref.index] # Transpose the data frame such that the index are now xref databases and # the column names are MetaNetX identifiers. return xref.T
python
def generate_shortlist(mnx_db, shortlist): # Reduce the whole database to targets of interest. xref = mnx_db.loc[mnx_db["MNX_ID"].isin(shortlist["MNX_ID"]), :] # Drop deprecated MetaNetX identifiers. Disabled for now. # xref = xref.loc[~xref["XREF"].str.startswith("deprecated", na=False), :] # Drop self-references for now since they don't follow the format. xref = xref.loc[xref["XREF"] != xref["MNX_ID"], :] # Split namespaces from identifiers. xref[["XREF_ID", "XREF"]] = xref["XREF"].str.split(":", n=1, expand=True) # Group the data in the xref dataframe so that one MNX ID maps to all # corresponding cross-references from other databases. Then list all # identifiers that belong to these databases: # MNX_ID XREF_ID # MNXM0 chebi [23367, 59999] # metacyc [UNKNOWN] # Make a separate column for every XREF_ID: # MNX_ID chebi metacyc # MNXM0 [23367, 59999] [UNKNOWN] xref = xref.groupby(["MNX_ID", "XREF_ID"], as_index=False, sort=False)[ "XREF"].apply(list).unstack('XREF_ID') # Re-insert MetaNetX identifiers as lists. # FIXME: Shouldn't we use metanetx.chemical here instead of 'mnx'? xref["mnx"] = [[x] for x in xref.index] # Transpose the data frame such that the index are now xref databases and # the column names are MetaNetX identifiers. return xref.T
[ "def", "generate_shortlist", "(", "mnx_db", ",", "shortlist", ")", ":", "# Reduce the whole database to targets of interest.", "xref", "=", "mnx_db", ".", "loc", "[", "mnx_db", "[", "\"MNX_ID\"", "]", ".", "isin", "(", "shortlist", "[", "\"MNX_ID\"", "]", ")", ",", ":", "]", "# Drop deprecated MetaNetX identifiers. Disabled for now.", "# xref = xref.loc[~xref[\"XREF\"].str.startswith(\"deprecated\", na=False), :]", "# Drop self-references for now since they don't follow the format.", "xref", "=", "xref", ".", "loc", "[", "xref", "[", "\"XREF\"", "]", "!=", "xref", "[", "\"MNX_ID\"", "]", ",", ":", "]", "# Split namespaces from identifiers.", "xref", "[", "[", "\"XREF_ID\"", ",", "\"XREF\"", "]", "]", "=", "xref", "[", "\"XREF\"", "]", ".", "str", ".", "split", "(", "\":\"", ",", "n", "=", "1", ",", "expand", "=", "True", ")", "# Group the data in the xref dataframe so that one MNX ID maps to all", "# corresponding cross-references from other databases. Then list all", "# identifiers that belong to these databases:", "# MNX_ID XREF_ID", "# MNXM0 chebi [23367, 59999]", "# metacyc [UNKNOWN]", "# Make a separate column for every XREF_ID:", "# MNX_ID chebi metacyc", "# MNXM0 [23367, 59999] [UNKNOWN]", "xref", "=", "xref", ".", "groupby", "(", "[", "\"MNX_ID\"", ",", "\"XREF_ID\"", "]", ",", "as_index", "=", "False", ",", "sort", "=", "False", ")", "[", "\"XREF\"", "]", ".", "apply", "(", "list", ")", ".", "unstack", "(", "'XREF_ID'", ")", "# Re-insert MetaNetX identifiers as lists.", "# FIXME: Shouldn't we use metanetx.chemical here instead of 'mnx'?", "xref", "[", "\"mnx\"", "]", "=", "[", "[", "x", "]", "for", "x", "in", "xref", ".", "index", "]", "# Transpose the data frame such that the index are now xref databases and", "# the column names are MetaNetX identifiers.", "return", "xref", ".", "T" ]
Create a condensed cross-references format from data in long form. Both data frames must contain a column 'MNX_ID' and the dump is assumed to also have a column 'XREF'. Parameters ---------- mnx_db : pandas.DataFrame The entire MetaNetX dump as a data frame. shortlist : pandas.DataFrame The shortlist of targets as a data frame. Returns ------- pandas.DataFrame A condensed format with MetaNetX identifiers as the column index and database identifiers as the row index. Elements are lists and often have multiple entries.
[ "Create", "a", "condensed", "cross", "-", "references", "format", "from", "data", "in", "long", "form", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/scripts/annotate_mnx_shortlists.py#L50-L96
2,462
opencobra/memote
scripts/annotate_mnx_shortlists.py
generate
def generate(mnx_dump): """ Annotate a shortlist of metabolites with cross-references using MetaNetX. MNX_DUMP : The chemicals dump from MetaNetX usually called 'chem_xref.tsv'. Will be downloaded if it doesn't exist. """ LOGGER.info("Read shortlist.") targets = pd.read_table(join(dirname(__file__), "shortlist.tsv")) if not exists(mnx_dump): # Download the MetaNetX chemicals dump if it doesn't exists. # Download done as per https://stackoverflow.com/a/16696317. LOGGER.info("MetaNetX dump '%s' does not exist. Downloading...", mnx_dump) with open(mnx_dump, "wb") as file_handle, \ get("https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv", stream=True) as stream: for chunk in stream.iter_content(chunk_size=1024): file_handle.write(chunk) LOGGER.info("Done.") LOGGER.info("Read the MetaNetX dump with cross-references.") db = pd.read_table(mnx_dump, comment='#', names=['XREF', 'MNX_ID', 'Evidence', 'Description']) LOGGER.info("Generate the shortlist cross-references.") res = generate_shortlist(db, targets) LOGGER.info("Save result.") res.to_json(join(dirname(__file__), pardir, "memote", "support", "data", "met_id_shortlist.json"), force_ascii=False)
python
def generate(mnx_dump): LOGGER.info("Read shortlist.") targets = pd.read_table(join(dirname(__file__), "shortlist.tsv")) if not exists(mnx_dump): # Download the MetaNetX chemicals dump if it doesn't exists. # Download done as per https://stackoverflow.com/a/16696317. LOGGER.info("MetaNetX dump '%s' does not exist. Downloading...", mnx_dump) with open(mnx_dump, "wb") as file_handle, \ get("https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv", stream=True) as stream: for chunk in stream.iter_content(chunk_size=1024): file_handle.write(chunk) LOGGER.info("Done.") LOGGER.info("Read the MetaNetX dump with cross-references.") db = pd.read_table(mnx_dump, comment='#', names=['XREF', 'MNX_ID', 'Evidence', 'Description']) LOGGER.info("Generate the shortlist cross-references.") res = generate_shortlist(db, targets) LOGGER.info("Save result.") res.to_json(join(dirname(__file__), pardir, "memote", "support", "data", "met_id_shortlist.json"), force_ascii=False)
[ "def", "generate", "(", "mnx_dump", ")", ":", "LOGGER", ".", "info", "(", "\"Read shortlist.\"", ")", "targets", "=", "pd", ".", "read_table", "(", "join", "(", "dirname", "(", "__file__", ")", ",", "\"shortlist.tsv\"", ")", ")", "if", "not", "exists", "(", "mnx_dump", ")", ":", "# Download the MetaNetX chemicals dump if it doesn't exists.", "# Download done as per https://stackoverflow.com/a/16696317.", "LOGGER", ".", "info", "(", "\"MetaNetX dump '%s' does not exist. Downloading...\"", ",", "mnx_dump", ")", "with", "open", "(", "mnx_dump", ",", "\"wb\"", ")", "as", "file_handle", ",", "get", "(", "\"https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv\"", ",", "stream", "=", "True", ")", "as", "stream", ":", "for", "chunk", "in", "stream", ".", "iter_content", "(", "chunk_size", "=", "1024", ")", ":", "file_handle", ".", "write", "(", "chunk", ")", "LOGGER", ".", "info", "(", "\"Done.\"", ")", "LOGGER", ".", "info", "(", "\"Read the MetaNetX dump with cross-references.\"", ")", "db", "=", "pd", ".", "read_table", "(", "mnx_dump", ",", "comment", "=", "'#'", ",", "names", "=", "[", "'XREF'", ",", "'MNX_ID'", ",", "'Evidence'", ",", "'Description'", "]", ")", "LOGGER", ".", "info", "(", "\"Generate the shortlist cross-references.\"", ")", "res", "=", "generate_shortlist", "(", "db", ",", "targets", ")", "LOGGER", ".", "info", "(", "\"Save result.\"", ")", "res", ".", "to_json", "(", "join", "(", "dirname", "(", "__file__", ")", ",", "pardir", ",", "\"memote\"", ",", "\"support\"", ",", "\"data\"", ",", "\"met_id_shortlist.json\"", ")", ",", "force_ascii", "=", "False", ")" ]
Annotate a shortlist of metabolites with cross-references using MetaNetX. MNX_DUMP : The chemicals dump from MetaNetX usually called 'chem_xref.tsv'. Will be downloaded if it doesn't exist.
[ "Annotate", "a", "shortlist", "of", "metabolites", "with", "cross", "-", "references", "using", "MetaNetX", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/scripts/annotate_mnx_shortlists.py#L105-L133
2,463
opencobra/memote
memote/experimental/essentiality.py
EssentialityExperiment.evaluate
def evaluate(self, model): """Use the defined parameters to predict single gene essentiality.""" with model: if self.medium is not None: self.medium.apply(model) if self.objective is not None: model.objective = self.objective model.add_cons_vars(self.constraints) max_val = model.slim_optimize() essen = single_gene_deletion( model, gene_list=self.data["gene"], processes=1) essen["gene"] = [list(g)[0] for g in essen.index] essen.index = essen["gene"] essen["essential"] = (essen["growth"] < (max_val * 0.1)) \ | essen["growth"].isna() return essen
python
def evaluate(self, model): with model: if self.medium is not None: self.medium.apply(model) if self.objective is not None: model.objective = self.objective model.add_cons_vars(self.constraints) max_val = model.slim_optimize() essen = single_gene_deletion( model, gene_list=self.data["gene"], processes=1) essen["gene"] = [list(g)[0] for g in essen.index] essen.index = essen["gene"] essen["essential"] = (essen["growth"] < (max_val * 0.1)) \ | essen["growth"].isna() return essen
[ "def", "evaluate", "(", "self", ",", "model", ")", ":", "with", "model", ":", "if", "self", ".", "medium", "is", "not", "None", ":", "self", ".", "medium", ".", "apply", "(", "model", ")", "if", "self", ".", "objective", "is", "not", "None", ":", "model", ".", "objective", "=", "self", ".", "objective", "model", ".", "add_cons_vars", "(", "self", ".", "constraints", ")", "max_val", "=", "model", ".", "slim_optimize", "(", ")", "essen", "=", "single_gene_deletion", "(", "model", ",", "gene_list", "=", "self", ".", "data", "[", "\"gene\"", "]", ",", "processes", "=", "1", ")", "essen", "[", "\"gene\"", "]", "=", "[", "list", "(", "g", ")", "[", "0", "]", "for", "g", "in", "essen", ".", "index", "]", "essen", ".", "index", "=", "essen", "[", "\"gene\"", "]", "essen", "[", "\"essential\"", "]", "=", "(", "essen", "[", "\"growth\"", "]", "<", "(", "max_val", "*", "0.1", ")", ")", "|", "essen", "[", "\"growth\"", "]", ".", "isna", "(", ")", "return", "essen" ]
Use the defined parameters to predict single gene essentiality.
[ "Use", "the", "defined", "parameters", "to", "predict", "single", "gene", "essentiality", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/essentiality.py#L78-L93
2,464
opencobra/memote
memote/utils.py
register_with
def register_with(registry): """ Register a passed in object. Intended to be used as a decorator on model building functions with a ``dict`` as a registry. Examples -------- .. code-block:: python REGISTRY = dict() @register_with(REGISTRY) def build_empty(base): return base """ def decorator(func): registry[func.__name__] = func return func return decorator
python
def register_with(registry): def decorator(func): registry[func.__name__] = func return func return decorator
[ "def", "register_with", "(", "registry", ")", ":", "def", "decorator", "(", "func", ")", ":", "registry", "[", "func", ".", "__name__", "]", "=", "func", "return", "func", "return", "decorator" ]
Register a passed in object. Intended to be used as a decorator on model building functions with a ``dict`` as a registry. Examples -------- .. code-block:: python REGISTRY = dict() @register_with(REGISTRY) def build_empty(base): return base
[ "Register", "a", "passed", "in", "object", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L48-L68
2,465
opencobra/memote
memote/utils.py
annotate
def annotate(title, format_type, message=None, data=None, metric=1.0): """ Annotate a test case with info that should be displayed in the reports. Parameters ---------- title : str A human-readable descriptive title of the test case. format_type : str A string that determines how the result data is formatted in the report. It is expected not to be None. * 'number' : 'data' is a single number which can be an integer or float and should be represented as such. * 'count' : 'data' is a list, set or tuple. Choosing 'count' will display the length of that list e.g. number of metabolites without formula. * 'percent' : Instead of 'data' the content of 'metric' ought to be displayed e.g. percentage of metabolites without charge. 'metric' is expected to be a floating point number. * 'raw' : 'data' is ought to be displayed "as is" without formatting. This option is appropriate for single strings or a boolean output. message : str A short written explanation that states and possibly explains the test result. data Raw data which the test case generates and assesses. Can be of the following types: list, set, tuple, string, float, integer, and boolean. metric: float A value x in the range of 0 <= x <= 1 which represents the fraction of 'data' to the total in the model. For example, if 'data' are all metabolites without formula, 'metric' should be the fraction of metabolites without formula from the total of metabolites in the model. Returns ------- function The decorated function, now extended by the attribute 'annotation'. Notes ----- Adds "annotation" attribute to the function object, which stores values for predefined keys as a dictionary. """ if format_type not in TYPES: raise ValueError( "Invalid type. Expected one of: {}.".format(", ".join(TYPES))) def decorator(func): func.annotation = dict( title=title, summary=extended_summary(func), message=message, data=data, format_type=format_type, metric=metric) return func return decorator
python
def annotate(title, format_type, message=None, data=None, metric=1.0): if format_type not in TYPES: raise ValueError( "Invalid type. Expected one of: {}.".format(", ".join(TYPES))) def decorator(func): func.annotation = dict( title=title, summary=extended_summary(func), message=message, data=data, format_type=format_type, metric=metric) return func return decorator
[ "def", "annotate", "(", "title", ",", "format_type", ",", "message", "=", "None", ",", "data", "=", "None", ",", "metric", "=", "1.0", ")", ":", "if", "format_type", "not", "in", "TYPES", ":", "raise", "ValueError", "(", "\"Invalid type. Expected one of: {}.\"", ".", "format", "(", "\", \"", ".", "join", "(", "TYPES", ")", ")", ")", "def", "decorator", "(", "func", ")", ":", "func", ".", "annotation", "=", "dict", "(", "title", "=", "title", ",", "summary", "=", "extended_summary", "(", "func", ")", ",", "message", "=", "message", ",", "data", "=", "data", ",", "format_type", "=", "format_type", ",", "metric", "=", "metric", ")", "return", "func", "return", "decorator" ]
Annotate a test case with info that should be displayed in the reports. Parameters ---------- title : str A human-readable descriptive title of the test case. format_type : str A string that determines how the result data is formatted in the report. It is expected not to be None. * 'number' : 'data' is a single number which can be an integer or float and should be represented as such. * 'count' : 'data' is a list, set or tuple. Choosing 'count' will display the length of that list e.g. number of metabolites without formula. * 'percent' : Instead of 'data' the content of 'metric' ought to be displayed e.g. percentage of metabolites without charge. 'metric' is expected to be a floating point number. * 'raw' : 'data' is ought to be displayed "as is" without formatting. This option is appropriate for single strings or a boolean output. message : str A short written explanation that states and possibly explains the test result. data Raw data which the test case generates and assesses. Can be of the following types: list, set, tuple, string, float, integer, and boolean. metric: float A value x in the range of 0 <= x <= 1 which represents the fraction of 'data' to the total in the model. For example, if 'data' are all metabolites without formula, 'metric' should be the fraction of metabolites without formula from the total of metabolites in the model. Returns ------- function The decorated function, now extended by the attribute 'annotation'. Notes ----- Adds "annotation" attribute to the function object, which stores values for predefined keys as a dictionary.
[ "Annotate", "a", "test", "case", "with", "info", "that", "should", "be", "displayed", "in", "the", "reports", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L71-L130
2,466
opencobra/memote
memote/utils.py
truncate
def truncate(sequence): """ Create a potentially shortened text display of a list. Parameters ---------- sequence : list An indexable sequence of elements. Returns ------- str The list as a formatted string. """ if len(sequence) > LIST_SLICE: return ", ".join(sequence[:LIST_SLICE] + ["..."]) else: return ", ".join(sequence)
python
def truncate(sequence): if len(sequence) > LIST_SLICE: return ", ".join(sequence[:LIST_SLICE] + ["..."]) else: return ", ".join(sequence)
[ "def", "truncate", "(", "sequence", ")", ":", "if", "len", "(", "sequence", ")", ">", "LIST_SLICE", ":", "return", "\", \"", ".", "join", "(", "sequence", "[", ":", "LIST_SLICE", "]", "+", "[", "\"...\"", "]", ")", "else", ":", "return", "\", \"", ".", "join", "(", "sequence", ")" ]
Create a potentially shortened text display of a list. Parameters ---------- sequence : list An indexable sequence of elements. Returns ------- str The list as a formatted string.
[ "Create", "a", "potentially", "shortened", "text", "display", "of", "a", "list", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L152-L170
2,467
opencobra/memote
memote/utils.py
log_json_incompatible_types
def log_json_incompatible_types(obj): """ Log types that are not JSON compatible. Explore a nested dictionary structure and log types that are not JSON compatible. Parameters ---------- obj : dict A potentially nested dictionary. """ keys_to_explore = list(obj) while len(keys_to_explore) > 0: key = keys_to_explore.pop() if not isinstance(key, str): LOGGER.info(type(key)) value = obj[key] if isinstance(value, dict): LOGGER.info("%s:", key) log_json_incompatible_types(value) elif not isinstance(value, JSON_TYPES): LOGGER.info("%s: %s", key, type(value)) elif isinstance(value, (int, float)) and not isfinite(value): LOGGER.info("%s: %f", key, value)
python
def log_json_incompatible_types(obj): keys_to_explore = list(obj) while len(keys_to_explore) > 0: key = keys_to_explore.pop() if not isinstance(key, str): LOGGER.info(type(key)) value = obj[key] if isinstance(value, dict): LOGGER.info("%s:", key) log_json_incompatible_types(value) elif not isinstance(value, JSON_TYPES): LOGGER.info("%s: %s", key, type(value)) elif isinstance(value, (int, float)) and not isfinite(value): LOGGER.info("%s: %f", key, value)
[ "def", "log_json_incompatible_types", "(", "obj", ")", ":", "keys_to_explore", "=", "list", "(", "obj", ")", "while", "len", "(", "keys_to_explore", ")", ">", "0", ":", "key", "=", "keys_to_explore", ".", "pop", "(", ")", "if", "not", "isinstance", "(", "key", ",", "str", ")", ":", "LOGGER", ".", "info", "(", "type", "(", "key", ")", ")", "value", "=", "obj", "[", "key", "]", "if", "isinstance", "(", "value", ",", "dict", ")", ":", "LOGGER", ".", "info", "(", "\"%s:\"", ",", "key", ")", "log_json_incompatible_types", "(", "value", ")", "elif", "not", "isinstance", "(", "value", ",", "JSON_TYPES", ")", ":", "LOGGER", ".", "info", "(", "\"%s: %s\"", ",", "key", ",", "type", "(", "value", ")", ")", "elif", "isinstance", "(", "value", ",", "(", "int", ",", "float", ")", ")", "and", "not", "isfinite", "(", "value", ")", ":", "LOGGER", ".", "info", "(", "\"%s: %f\"", ",", "key", ",", "value", ")" ]
Log types that are not JSON compatible. Explore a nested dictionary structure and log types that are not JSON compatible. Parameters ---------- obj : dict A potentially nested dictionary.
[ "Log", "types", "that", "are", "not", "JSON", "compatible", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L173-L198
2,468
opencobra/memote
memote/utils.py
flatten
def flatten(list_of_lists): """Flatten a list of lists but maintain strings and ints as entries.""" flat_list = [] for sublist in list_of_lists: if isinstance(sublist, string_types) or isinstance(sublist, int): flat_list.append(sublist) elif sublist is None: continue elif not isinstance(sublist, string_types) and len(sublist) == 1: flat_list.append(sublist[0]) else: flat_list.append(tuple(sublist)) return flat_list
python
def flatten(list_of_lists): flat_list = [] for sublist in list_of_lists: if isinstance(sublist, string_types) or isinstance(sublist, int): flat_list.append(sublist) elif sublist is None: continue elif not isinstance(sublist, string_types) and len(sublist) == 1: flat_list.append(sublist[0]) else: flat_list.append(tuple(sublist)) return flat_list
[ "def", "flatten", "(", "list_of_lists", ")", ":", "flat_list", "=", "[", "]", "for", "sublist", "in", "list_of_lists", ":", "if", "isinstance", "(", "sublist", ",", "string_types", ")", "or", "isinstance", "(", "sublist", ",", "int", ")", ":", "flat_list", ".", "append", "(", "sublist", ")", "elif", "sublist", "is", "None", ":", "continue", "elif", "not", "isinstance", "(", "sublist", ",", "string_types", ")", "and", "len", "(", "sublist", ")", "==", "1", ":", "flat_list", ".", "append", "(", "sublist", "[", "0", "]", ")", "else", ":", "flat_list", ".", "append", "(", "tuple", "(", "sublist", ")", ")", "return", "flat_list" ]
Flatten a list of lists but maintain strings and ints as entries.
[ "Flatten", "a", "list", "of", "lists", "but", "maintain", "strings", "and", "ints", "as", "entries", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L254-L266
2,469
opencobra/memote
memote/utils.py
stdout_notifications
def stdout_notifications(notifications): """ Print each entry of errors and warnings to stdout. Parameters ---------- notifications: dict A simple dictionary structure containing a list of errors and warnings. """ for error in notifications["errors"]: LOGGER.error(error) for warn in notifications["warnings"]: LOGGER.warning(warn)
python
def stdout_notifications(notifications): for error in notifications["errors"]: LOGGER.error(error) for warn in notifications["warnings"]: LOGGER.warning(warn)
[ "def", "stdout_notifications", "(", "notifications", ")", ":", "for", "error", "in", "notifications", "[", "\"errors\"", "]", ":", "LOGGER", ".", "error", "(", "error", ")", "for", "warn", "in", "notifications", "[", "\"warnings\"", "]", ":", "LOGGER", ".", "warning", "(", "warn", ")" ]
Print each entry of errors and warnings to stdout. Parameters ---------- notifications: dict A simple dictionary structure containing a list of errors and warnings.
[ "Print", "each", "entry", "of", "errors", "and", "warnings", "to", "stdout", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/utils.py#L289-L302
2,470
opencobra/memote
memote/experimental/experimental_base.py
ExperimentalBase.validate
def validate(self, model, checks=[]): """Use a defined schema to validate the given table.""" records = self.data.to_dict("records") self.evaluate_report( validate(records, headers=list(records[0]), preset='table', schema=self.schema, order_fields=True, custom_checks=checks))
python
def validate(self, model, checks=[]): records = self.data.to_dict("records") self.evaluate_report( validate(records, headers=list(records[0]), preset='table', schema=self.schema, order_fields=True, custom_checks=checks))
[ "def", "validate", "(", "self", ",", "model", ",", "checks", "=", "[", "]", ")", ":", "records", "=", "self", ".", "data", ".", "to_dict", "(", "\"records\"", ")", "self", ".", "evaluate_report", "(", "validate", "(", "records", ",", "headers", "=", "list", "(", "records", "[", "0", "]", ")", ",", "preset", "=", "'table'", ",", "schema", "=", "self", ".", "schema", ",", "order_fields", "=", "True", ",", "custom_checks", "=", "checks", ")", ")" ]
Use a defined schema to validate the given table.
[ "Use", "a", "defined", "schema", "to", "validate", "the", "given", "table", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/experimental_base.py#L90-L96
2,471
opencobra/memote
memote/experimental/experimental_base.py
ExperimentalBase.evaluate_report
def evaluate_report(report): """Iterate over validation errors.""" if report["valid"]: return for warn in report["warnings"]: LOGGER.warning(warn) # We only ever test one table at a time. for err in report["tables"][0]["errors"]: LOGGER.error(err["message"]) raise ValueError("Invalid data file. Please see errors above.")
python
def evaluate_report(report): if report["valid"]: return for warn in report["warnings"]: LOGGER.warning(warn) # We only ever test one table at a time. for err in report["tables"][0]["errors"]: LOGGER.error(err["message"]) raise ValueError("Invalid data file. Please see errors above.")
[ "def", "evaluate_report", "(", "report", ")", ":", "if", "report", "[", "\"valid\"", "]", ":", "return", "for", "warn", "in", "report", "[", "\"warnings\"", "]", ":", "LOGGER", ".", "warning", "(", "warn", ")", "# We only ever test one table at a time.", "for", "err", "in", "report", "[", "\"tables\"", "]", "[", "0", "]", "[", "\"errors\"", "]", ":", "LOGGER", ".", "error", "(", "err", "[", "\"message\"", "]", ")", "raise", "ValueError", "(", "\"Invalid data file. Please see errors above.\"", ")" ]
Iterate over validation errors.
[ "Iterate", "over", "validation", "errors", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/experimental_base.py#L99-L108
2,472
opencobra/memote
memote/support/consistency_helpers.py
add_reaction_constraints
def add_reaction_constraints(model, reactions, Constraint): """ Add the stoichiometric coefficients as constraints. Parameters ---------- model : optlang.Model The transposed stoichiometric matrix representation. reactions : iterable Container of `cobra.Reaction` instances. Constraint : optlang.Constraint The constraint class for the specific interface. """ constraints = [] for rxn in reactions: expression = add( [c * model.variables[m.id] for m, c in rxn.metabolites.items()]) constraints.append(Constraint(expression, lb=0, ub=0, name=rxn.id)) model.add(constraints)
python
def add_reaction_constraints(model, reactions, Constraint): constraints = [] for rxn in reactions: expression = add( [c * model.variables[m.id] for m, c in rxn.metabolites.items()]) constraints.append(Constraint(expression, lb=0, ub=0, name=rxn.id)) model.add(constraints)
[ "def", "add_reaction_constraints", "(", "model", ",", "reactions", ",", "Constraint", ")", ":", "constraints", "=", "[", "]", "for", "rxn", "in", "reactions", ":", "expression", "=", "add", "(", "[", "c", "*", "model", ".", "variables", "[", "m", ".", "id", "]", "for", "m", ",", "c", "in", "rxn", ".", "metabolites", ".", "items", "(", ")", "]", ")", "constraints", ".", "append", "(", "Constraint", "(", "expression", ",", "lb", "=", "0", ",", "ub", "=", "0", ",", "name", "=", "rxn", ".", "id", ")", ")", "model", ".", "add", "(", "constraints", ")" ]
Add the stoichiometric coefficients as constraints. Parameters ---------- model : optlang.Model The transposed stoichiometric matrix representation. reactions : iterable Container of `cobra.Reaction` instances. Constraint : optlang.Constraint The constraint class for the specific interface.
[ "Add", "the", "stoichiometric", "coefficients", "as", "constraints", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L43-L62
2,473
opencobra/memote
memote/support/consistency_helpers.py
stoichiometry_matrix
def stoichiometry_matrix(metabolites, reactions): """ Return the stoichiometry matrix representation of a set of reactions. The reactions and metabolites order is respected. All metabolites are expected to be contained and complete in terms of the reactions. Parameters ---------- reactions : iterable A somehow ordered list of unique reactions. metabolites : iterable A somehow ordered list of unique metabolites. Returns ------- numpy.array The 2D array that represents the stoichiometry matrix. dict A dictionary mapping metabolites to row indexes. dict A dictionary mapping reactions to column indexes. """ matrix = np.zeros((len(metabolites), len(reactions))) met_index = dict((met, i) for i, met in enumerate(metabolites)) rxn_index = dict() for i, rxn in enumerate(reactions): rxn_index[rxn] = i for met, coef in iteritems(rxn.metabolites): j = met_index[met] matrix[j, i] = coef return matrix, met_index, rxn_index
python
def stoichiometry_matrix(metabolites, reactions): matrix = np.zeros((len(metabolites), len(reactions))) met_index = dict((met, i) for i, met in enumerate(metabolites)) rxn_index = dict() for i, rxn in enumerate(reactions): rxn_index[rxn] = i for met, coef in iteritems(rxn.metabolites): j = met_index[met] matrix[j, i] = coef return matrix, met_index, rxn_index
[ "def", "stoichiometry_matrix", "(", "metabolites", ",", "reactions", ")", ":", "matrix", "=", "np", ".", "zeros", "(", "(", "len", "(", "metabolites", ")", ",", "len", "(", "reactions", ")", ")", ")", "met_index", "=", "dict", "(", "(", "met", ",", "i", ")", "for", "i", ",", "met", "in", "enumerate", "(", "metabolites", ")", ")", "rxn_index", "=", "dict", "(", ")", "for", "i", ",", "rxn", "in", "enumerate", "(", "reactions", ")", ":", "rxn_index", "[", "rxn", "]", "=", "i", "for", "met", ",", "coef", "in", "iteritems", "(", "rxn", ".", "metabolites", ")", ":", "j", "=", "met_index", "[", "met", "]", "matrix", "[", "j", ",", "i", "]", "=", "coef", "return", "matrix", ",", "met_index", ",", "rxn_index" ]
Return the stoichiometry matrix representation of a set of reactions. The reactions and metabolites order is respected. All metabolites are expected to be contained and complete in terms of the reactions. Parameters ---------- reactions : iterable A somehow ordered list of unique reactions. metabolites : iterable A somehow ordered list of unique metabolites. Returns ------- numpy.array The 2D array that represents the stoichiometry matrix. dict A dictionary mapping metabolites to row indexes. dict A dictionary mapping reactions to column indexes.
[ "Return", "the", "stoichiometry", "matrix", "representation", "of", "a", "set", "of", "reactions", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L65-L97
2,474
opencobra/memote
memote/support/consistency_helpers.py
rank
def rank(matrix, atol=1e-13, rtol=0): """ Estimate the rank, i.e., the dimension of the column space, of a matrix. The algorithm used by this function is based on the singular value decomposition of `stoichiometry_matrix`. Parameters ---------- matrix : ndarray The matrix should be at most 2-D. A 1-D array with length k will be treated as a 2-D with shape (1, k) atol : float The absolute tolerance for a zero singular value. Singular values smaller than ``atol`` are considered to be zero. rtol : float The relative tolerance for a zero singular value. Singular values less than the relative tolerance times the largest singular value are considered to be zero. Notes ----- If both `atol` and `rtol` are positive, the combined tolerance is the maximum of the two; that is:: tol = max(atol, rtol * smax) Singular values smaller than ``tol`` are considered to be zero. Returns ------- int The estimated rank of the matrix. See Also -------- numpy.linalg.matrix_rank matrix_rank is basically the same as this function, but it does not provide the option of the absolute tolerance. """ matrix = np.atleast_2d(matrix) sigma = svd(matrix, compute_uv=False) tol = max(atol, rtol * sigma[0]) return int((sigma >= tol).sum())
python
def rank(matrix, atol=1e-13, rtol=0): matrix = np.atleast_2d(matrix) sigma = svd(matrix, compute_uv=False) tol = max(atol, rtol * sigma[0]) return int((sigma >= tol).sum())
[ "def", "rank", "(", "matrix", ",", "atol", "=", "1e-13", ",", "rtol", "=", "0", ")", ":", "matrix", "=", "np", ".", "atleast_2d", "(", "matrix", ")", "sigma", "=", "svd", "(", "matrix", ",", "compute_uv", "=", "False", ")", "tol", "=", "max", "(", "atol", ",", "rtol", "*", "sigma", "[", "0", "]", ")", "return", "int", "(", "(", "sigma", ">=", "tol", ")", ".", "sum", "(", ")", ")" ]
Estimate the rank, i.e., the dimension of the column space, of a matrix. The algorithm used by this function is based on the singular value decomposition of `stoichiometry_matrix`. Parameters ---------- matrix : ndarray The matrix should be at most 2-D. A 1-D array with length k will be treated as a 2-D with shape (1, k) atol : float The absolute tolerance for a zero singular value. Singular values smaller than ``atol`` are considered to be zero. rtol : float The relative tolerance for a zero singular value. Singular values less than the relative tolerance times the largest singular value are considered to be zero. Notes ----- If both `atol` and `rtol` are positive, the combined tolerance is the maximum of the two; that is:: tol = max(atol, rtol * smax) Singular values smaller than ``tol`` are considered to be zero. Returns ------- int The estimated rank of the matrix. See Also -------- numpy.linalg.matrix_rank matrix_rank is basically the same as this function, but it does not provide the option of the absolute tolerance.
[ "Estimate", "the", "rank", "i", ".", "e", ".", "the", "dimension", "of", "the", "column", "space", "of", "a", "matrix", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L100-L144
2,475
opencobra/memote
memote/support/consistency_helpers.py
get_interface
def get_interface(model): """ Return the interface specific classes. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ return ( model.solver.interface.Model, model.solver.interface.Constraint, model.solver.interface.Variable, model.solver.interface.Objective )
python
def get_interface(model): return ( model.solver.interface.Model, model.solver.interface.Constraint, model.solver.interface.Variable, model.solver.interface.Objective )
[ "def", "get_interface", "(", "model", ")", ":", "return", "(", "model", ".", "solver", ".", "interface", ".", "Model", ",", "model", ".", "solver", ".", "interface", ".", "Constraint", ",", "model", ".", "solver", ".", "interface", ".", "Variable", ",", "model", ".", "solver", ".", "interface", ".", "Objective", ")" ]
Return the interface specific classes. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "the", "interface", "specific", "classes", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L197-L212
2,476
opencobra/memote
memote/support/consistency_helpers.py
get_internals
def get_internals(model): """ Return non-boundary reactions and their metabolites. Boundary reactions are unbalanced by their nature. They are excluded here and only the metabolites of the others are considered. Parameters ---------- model : cobra.Model The metabolic model under investigation. """ biomass = set(find_biomass_reaction(model)) if len(biomass) == 0: LOGGER.warning("No biomass reaction detected. Consistency test results " "are unreliable if one exists.") return set(model.reactions) - (set(model.boundary) | biomass)
python
def get_internals(model): biomass = set(find_biomass_reaction(model)) if len(biomass) == 0: LOGGER.warning("No biomass reaction detected. Consistency test results " "are unreliable if one exists.") return set(model.reactions) - (set(model.boundary) | biomass)
[ "def", "get_internals", "(", "model", ")", ":", "biomass", "=", "set", "(", "find_biomass_reaction", "(", "model", ")", ")", "if", "len", "(", "biomass", ")", "==", "0", ":", "LOGGER", ".", "warning", "(", "\"No biomass reaction detected. Consistency test results \"", "\"are unreliable if one exists.\"", ")", "return", "set", "(", "model", ".", "reactions", ")", "-", "(", "set", "(", "model", ".", "boundary", ")", "|", "biomass", ")" ]
Return non-boundary reactions and their metabolites. Boundary reactions are unbalanced by their nature. They are excluded here and only the metabolites of the others are considered. Parameters ---------- model : cobra.Model The metabolic model under investigation.
[ "Return", "non", "-", "boundary", "reactions", "and", "their", "metabolites", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L216-L233
2,477
opencobra/memote
memote/support/consistency_helpers.py
add_cut
def add_cut(problem, indicators, bound, Constraint): """ Add an integer cut to the problem. Ensure that the same solution involving these indicator variables cannot be found by enforcing their sum to be less than before. Parameters ---------- problem : optlang.Model Specific optlang interface Model instance. indicators : iterable Binary indicator `optlang.Variable`s. bound : int Should be one less than the sum of indicators. Corresponds to P - 1 in equation (14) in [1]_. Constraint : optlang.Constraint Constraint class for a specific optlang interface. References ---------- .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245. """ cut = Constraint(sympy.Add(*indicators), ub=bound) problem.add(cut) return cut
python
def add_cut(problem, indicators, bound, Constraint): cut = Constraint(sympy.Add(*indicators), ub=bound) problem.add(cut) return cut
[ "def", "add_cut", "(", "problem", ",", "indicators", ",", "bound", ",", "Constraint", ")", ":", "cut", "=", "Constraint", "(", "sympy", ".", "Add", "(", "*", "indicators", ")", ",", "ub", "=", "bound", ")", "problem", ".", "add", "(", "cut", ")", "return", "cut" ]
Add an integer cut to the problem. Ensure that the same solution involving these indicator variables cannot be found by enforcing their sum to be less than before. Parameters ---------- problem : optlang.Model Specific optlang interface Model instance. indicators : iterable Binary indicator `optlang.Variable`s. bound : int Should be one less than the sum of indicators. Corresponds to P - 1 in equation (14) in [1]_. Constraint : optlang.Constraint Constraint class for a specific optlang interface. References ---------- .. [1] Gevorgyan, A., M. G Poolman, and D. A Fell. "Detection of Stoichiometric Inconsistencies in Biomolecular Models." Bioinformatics 24, no. 19 (2008): 2245.
[ "Add", "an", "integer", "cut", "to", "the", "problem", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L298-L327
2,478
opencobra/memote
memote/support/consistency_helpers.py
is_mass_balanced
def is_mass_balanced(reaction): """Confirm that a reaction is mass balanced.""" balance = defaultdict(int) for metabolite, coefficient in iteritems(reaction.metabolites): if metabolite.elements is None or len(metabolite.elements) == 0: return False for element, amount in iteritems(metabolite.elements): balance[element] += coefficient * amount return all(amount == 0 for amount in itervalues(balance))
python
def is_mass_balanced(reaction): balance = defaultdict(int) for metabolite, coefficient in iteritems(reaction.metabolites): if metabolite.elements is None or len(metabolite.elements) == 0: return False for element, amount in iteritems(metabolite.elements): balance[element] += coefficient * amount return all(amount == 0 for amount in itervalues(balance))
[ "def", "is_mass_balanced", "(", "reaction", ")", ":", "balance", "=", "defaultdict", "(", "int", ")", "for", "metabolite", ",", "coefficient", "in", "iteritems", "(", "reaction", ".", "metabolites", ")", ":", "if", "metabolite", ".", "elements", "is", "None", "or", "len", "(", "metabolite", ".", "elements", ")", "==", "0", ":", "return", "False", "for", "element", ",", "amount", "in", "iteritems", "(", "metabolite", ".", "elements", ")", ":", "balance", "[", "element", "]", "+=", "coefficient", "*", "amount", "return", "all", "(", "amount", "==", "0", "for", "amount", "in", "itervalues", "(", "balance", ")", ")" ]
Confirm that a reaction is mass balanced.
[ "Confirm", "that", "a", "reaction", "is", "mass", "balanced", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L330-L338
2,479
opencobra/memote
memote/support/consistency_helpers.py
is_charge_balanced
def is_charge_balanced(reaction): """Confirm that a reaction is charge balanced.""" charge = 0 for metabolite, coefficient in iteritems(reaction.metabolites): if metabolite.charge is None: return False charge += coefficient * metabolite.charge return charge == 0
python
def is_charge_balanced(reaction): charge = 0 for metabolite, coefficient in iteritems(reaction.metabolites): if metabolite.charge is None: return False charge += coefficient * metabolite.charge return charge == 0
[ "def", "is_charge_balanced", "(", "reaction", ")", ":", "charge", "=", "0", "for", "metabolite", ",", "coefficient", "in", "iteritems", "(", "reaction", ".", "metabolites", ")", ":", "if", "metabolite", ".", "charge", "is", "None", ":", "return", "False", "charge", "+=", "coefficient", "*", "metabolite", ".", "charge", "return", "charge", "==", "0" ]
Confirm that a reaction is charge balanced.
[ "Confirm", "that", "a", "reaction", "is", "charge", "balanced", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/consistency_helpers.py#L341-L348
2,480
opencobra/memote
memote/experimental/checks.py
check_partial
def check_partial(func, *args, **kwargs): """Create a partial to be used by goodtables.""" new_func = partial(func, *args, **kwargs) new_func.check = func.check return new_func
python
def check_partial(func, *args, **kwargs): new_func = partial(func, *args, **kwargs) new_func.check = func.check return new_func
[ "def", "check_partial", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "new_func", "=", "partial", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "new_func", ".", "check", "=", "func", ".", "check", "return", "new_func" ]
Create a partial to be used by goodtables.
[ "Create", "a", "partial", "to", "be", "used", "by", "goodtables", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/checks.py#L27-L31
2,481
opencobra/memote
memote/experimental/checks.py
gene_id_check
def gene_id_check(genes, errors, columns, row_number): """ Validate gene identifiers against a known set. Parameters ---------- genes : set The known set of gene identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables. """ message = ("Gene '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "gene" in column['header'] and column['value'] not in genes: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
python
def gene_id_check(genes, errors, columns, row_number): message = ("Gene '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "gene" in column['header'] and column['value'] not in genes: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
[ "def", "gene_id_check", "(", "genes", ",", "errors", ",", "columns", ",", "row_number", ")", ":", "message", "=", "(", "\"Gene '{value}' in column {col} and row {row} does not \"", "\"appear in the metabolic model.\"", ")", "for", "column", "in", "columns", ":", "if", "\"gene\"", "in", "column", "[", "'header'", "]", "and", "column", "[", "'value'", "]", "not", "in", "genes", ":", "message", "=", "message", ".", "format", "(", "value", "=", "column", "[", "'value'", "]", ",", "row", "=", "row_number", ",", "col", "=", "column", "[", "'number'", "]", ")", "errors", ".", "append", "(", "{", "'code'", ":", "'bad-value'", ",", "'message'", ":", "message", ",", "'row-number'", ":", "row_number", ",", "'column-number'", ":", "column", "[", "'number'", "]", ",", "}", ")" ]
Validate gene identifiers against a known set. Parameters ---------- genes : set The known set of gene identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables.
[ "Validate", "gene", "identifiers", "against", "a", "known", "set", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/checks.py#L35-L64
2,482
opencobra/memote
memote/experimental/checks.py
reaction_id_check
def reaction_id_check(reactions, errors, columns, row_number): """ Validate reactions identifiers against a known set. Parameters ---------- reactions : set The known set of reaction identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables. """ message = ("Reaction '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "reaction" in column['header'] and column['value'] not in reactions: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
python
def reaction_id_check(reactions, errors, columns, row_number): message = ("Reaction '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "reaction" in column['header'] and column['value'] not in reactions: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
[ "def", "reaction_id_check", "(", "reactions", ",", "errors", ",", "columns", ",", "row_number", ")", ":", "message", "=", "(", "\"Reaction '{value}' in column {col} and row {row} does not \"", "\"appear in the metabolic model.\"", ")", "for", "column", "in", "columns", ":", "if", "\"reaction\"", "in", "column", "[", "'header'", "]", "and", "column", "[", "'value'", "]", "not", "in", "reactions", ":", "message", "=", "message", ".", "format", "(", "value", "=", "column", "[", "'value'", "]", ",", "row", "=", "row_number", ",", "col", "=", "column", "[", "'number'", "]", ")", "errors", ".", "append", "(", "{", "'code'", ":", "'bad-value'", ",", "'message'", ":", "message", ",", "'row-number'", ":", "row_number", ",", "'column-number'", ":", "column", "[", "'number'", "]", ",", "}", ")" ]
Validate reactions identifiers against a known set. Parameters ---------- reactions : set The known set of reaction identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables.
[ "Validate", "reactions", "identifiers", "against", "a", "known", "set", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/checks.py#L68-L97
2,483
opencobra/memote
memote/experimental/checks.py
metabolite_id_check
def metabolite_id_check(metabolites, errors, columns, row_number): """ Validate metabolite identifiers against a known set. Parameters ---------- metabolites : set The known set of metabolite identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables. """ message = ("Metabolite '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "metabolite" in column['header'] and \ column['value'] not in metabolites: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
python
def metabolite_id_check(metabolites, errors, columns, row_number): message = ("Metabolite '{value}' in column {col} and row {row} does not " "appear in the metabolic model.") for column in columns: if "metabolite" in column['header'] and \ column['value'] not in metabolites: message = message.format( value=column['value'], row=row_number, col=column['number']) errors.append({ 'code': 'bad-value', 'message': message, 'row-number': row_number, 'column-number': column['number'], })
[ "def", "metabolite_id_check", "(", "metabolites", ",", "errors", ",", "columns", ",", "row_number", ")", ":", "message", "=", "(", "\"Metabolite '{value}' in column {col} and row {row} does not \"", "\"appear in the metabolic model.\"", ")", "for", "column", "in", "columns", ":", "if", "\"metabolite\"", "in", "column", "[", "'header'", "]", "and", "column", "[", "'value'", "]", "not", "in", "metabolites", ":", "message", "=", "message", ".", "format", "(", "value", "=", "column", "[", "'value'", "]", ",", "row", "=", "row_number", ",", "col", "=", "column", "[", "'number'", "]", ")", "errors", ".", "append", "(", "{", "'code'", ":", "'bad-value'", ",", "'message'", ":", "message", ",", "'row-number'", ":", "row_number", ",", "'column-number'", ":", "column", "[", "'number'", "]", ",", "}", ")" ]
Validate metabolite identifiers against a known set. Parameters ---------- metabolites : set The known set of metabolite identifiers. errors : Passed by goodtables. columns : Passed by goodtables. row_number : Passed by goodtables.
[ "Validate", "metabolite", "identifiers", "against", "a", "known", "set", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/experimental/checks.py#L101-L131
2,484
opencobra/memote
memote/suite/cli/runner.py
run
def run(model, collect, filename, location, ignore_git, pytest_args, exclusive, skip, solver, experimental, custom_tests, deployment, skip_unchanged): """ Run the test suite on a single model and collect results. MODEL: Path to model file. Can also be supplied via the environment variable MEMOTE_MODEL or configured in 'setup.cfg' or 'memote.ini'. """ def is_verbose(arg): return (arg.startswith("--verbosity") or arg.startswith("-v") or arg.startswith("--verbose") or arg.startswith("-q") or arg.startswith("--quiet")) if ignore_git: repo = None else: callbacks.git_installed() repo = callbacks.probe_git() if collect: if repo is not None: if location is None: LOGGER.critical( "Working with a repository requires a storage location.") sys.exit(1) if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "short"] + pytest_args if not any(is_verbose(a) for a in pytest_args): pytest_args.append("-vv") # Check if the model was changed in this commit. Exit `memote run` if this # was not the case. if skip_unchanged and repo is not None: commit = repo.head.commit if not is_modified(model, commit): LOGGER.info("The model was not modified in commit '%s'. Skipping.", commit.hexsha) sys.exit(0) # Add further directories to search for tests. pytest_args.extend(custom_tests) # Check if the model can be loaded at all. model, sbml_ver, notifications = api.validate_model(model) if model is None: LOGGER.critical( "The model could not be loaded due to the following SBML errors.") stdout_notifications(notifications) sys.exit(1) model.solver = solver # Load the experimental configuration using model information. if experimental is not None: experimental.load(model) code, result = api.test_model( model=model, sbml_version=sbml_ver, results=True, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) if collect: if repo is None: manager = ResultManager() manager.store(result, filename=filename) else: LOGGER.info("Checking out deployment branch.") # If the repo HEAD is pointing to the most recent branch then # GitPython's `repo.active_branch` works. Yet, if the repo is in # detached HEAD state, i.e., when a user has checked out a specific # commit as opposed to a branch, this won't work and throw a # `TypeError`, which we are circumventing below. try: previous = repo.active_branch previous_cmt = previous.commit is_branch = True except TypeError: previous_cmt = repo.head.commit is_branch = False repo.git.checkout(deployment) try: manager = SQLResultManager(repository=repo, location=location) except (AttributeError, ArgumentError): manager = RepoResultManager(repository=repo, location=location) LOGGER.info( "Committing result and changing back to working branch.") manager.store(result, commit=previous_cmt.hexsha) repo.git.add(".") check_call( ['git', 'commit', '-m', "chore: add result for {}".format(previous_cmt.hexsha)] ) if is_branch: previous.checkout() else: repo.commit(previous_cmt)
python
def run(model, collect, filename, location, ignore_git, pytest_args, exclusive, skip, solver, experimental, custom_tests, deployment, skip_unchanged): def is_verbose(arg): return (arg.startswith("--verbosity") or arg.startswith("-v") or arg.startswith("--verbose") or arg.startswith("-q") or arg.startswith("--quiet")) if ignore_git: repo = None else: callbacks.git_installed() repo = callbacks.probe_git() if collect: if repo is not None: if location is None: LOGGER.critical( "Working with a repository requires a storage location.") sys.exit(1) if not any(a.startswith("--tb") for a in pytest_args): pytest_args = ["--tb", "short"] + pytest_args if not any(is_verbose(a) for a in pytest_args): pytest_args.append("-vv") # Check if the model was changed in this commit. Exit `memote run` if this # was not the case. if skip_unchanged and repo is not None: commit = repo.head.commit if not is_modified(model, commit): LOGGER.info("The model was not modified in commit '%s'. Skipping.", commit.hexsha) sys.exit(0) # Add further directories to search for tests. pytest_args.extend(custom_tests) # Check if the model can be loaded at all. model, sbml_ver, notifications = api.validate_model(model) if model is None: LOGGER.critical( "The model could not be loaded due to the following SBML errors.") stdout_notifications(notifications) sys.exit(1) model.solver = solver # Load the experimental configuration using model information. if experimental is not None: experimental.load(model) code, result = api.test_model( model=model, sbml_version=sbml_ver, results=True, pytest_args=pytest_args, skip=skip, exclusive=exclusive, experimental=experimental) if collect: if repo is None: manager = ResultManager() manager.store(result, filename=filename) else: LOGGER.info("Checking out deployment branch.") # If the repo HEAD is pointing to the most recent branch then # GitPython's `repo.active_branch` works. Yet, if the repo is in # detached HEAD state, i.e., when a user has checked out a specific # commit as opposed to a branch, this won't work and throw a # `TypeError`, which we are circumventing below. try: previous = repo.active_branch previous_cmt = previous.commit is_branch = True except TypeError: previous_cmt = repo.head.commit is_branch = False repo.git.checkout(deployment) try: manager = SQLResultManager(repository=repo, location=location) except (AttributeError, ArgumentError): manager = RepoResultManager(repository=repo, location=location) LOGGER.info( "Committing result and changing back to working branch.") manager.store(result, commit=previous_cmt.hexsha) repo.git.add(".") check_call( ['git', 'commit', '-m', "chore: add result for {}".format(previous_cmt.hexsha)] ) if is_branch: previous.checkout() else: repo.commit(previous_cmt)
[ "def", "run", "(", "model", ",", "collect", ",", "filename", ",", "location", ",", "ignore_git", ",", "pytest_args", ",", "exclusive", ",", "skip", ",", "solver", ",", "experimental", ",", "custom_tests", ",", "deployment", ",", "skip_unchanged", ")", ":", "def", "is_verbose", "(", "arg", ")", ":", "return", "(", "arg", ".", "startswith", "(", "\"--verbosity\"", ")", "or", "arg", ".", "startswith", "(", "\"-v\"", ")", "or", "arg", ".", "startswith", "(", "\"--verbose\"", ")", "or", "arg", ".", "startswith", "(", "\"-q\"", ")", "or", "arg", ".", "startswith", "(", "\"--quiet\"", ")", ")", "if", "ignore_git", ":", "repo", "=", "None", "else", ":", "callbacks", ".", "git_installed", "(", ")", "repo", "=", "callbacks", ".", "probe_git", "(", ")", "if", "collect", ":", "if", "repo", "is", "not", "None", ":", "if", "location", "is", "None", ":", "LOGGER", ".", "critical", "(", "\"Working with a repository requires a storage location.\"", ")", "sys", ".", "exit", "(", "1", ")", "if", "not", "any", "(", "a", ".", "startswith", "(", "\"--tb\"", ")", "for", "a", "in", "pytest_args", ")", ":", "pytest_args", "=", "[", "\"--tb\"", ",", "\"short\"", "]", "+", "pytest_args", "if", "not", "any", "(", "is_verbose", "(", "a", ")", "for", "a", "in", "pytest_args", ")", ":", "pytest_args", ".", "append", "(", "\"-vv\"", ")", "# Check if the model was changed in this commit. Exit `memote run` if this", "# was not the case.", "if", "skip_unchanged", "and", "repo", "is", "not", "None", ":", "commit", "=", "repo", ".", "head", ".", "commit", "if", "not", "is_modified", "(", "model", ",", "commit", ")", ":", "LOGGER", ".", "info", "(", "\"The model was not modified in commit '%s'. Skipping.\"", ",", "commit", ".", "hexsha", ")", "sys", ".", "exit", "(", "0", ")", "# Add further directories to search for tests.", "pytest_args", ".", "extend", "(", "custom_tests", ")", "# Check if the model can be loaded at all.", "model", ",", "sbml_ver", ",", "notifications", "=", "api", ".", "validate_model", "(", "model", ")", "if", "model", "is", "None", ":", "LOGGER", ".", "critical", "(", "\"The model could not be loaded due to the following SBML errors.\"", ")", "stdout_notifications", "(", "notifications", ")", "sys", ".", "exit", "(", "1", ")", "model", ".", "solver", "=", "solver", "# Load the experimental configuration using model information.", "if", "experimental", "is", "not", "None", ":", "experimental", ".", "load", "(", "model", ")", "code", ",", "result", "=", "api", ".", "test_model", "(", "model", "=", "model", ",", "sbml_version", "=", "sbml_ver", ",", "results", "=", "True", ",", "pytest_args", "=", "pytest_args", ",", "skip", "=", "skip", ",", "exclusive", "=", "exclusive", ",", "experimental", "=", "experimental", ")", "if", "collect", ":", "if", "repo", "is", "None", ":", "manager", "=", "ResultManager", "(", ")", "manager", ".", "store", "(", "result", ",", "filename", "=", "filename", ")", "else", ":", "LOGGER", ".", "info", "(", "\"Checking out deployment branch.\"", ")", "# If the repo HEAD is pointing to the most recent branch then", "# GitPython's `repo.active_branch` works. Yet, if the repo is in", "# detached HEAD state, i.e., when a user has checked out a specific", "# commit as opposed to a branch, this won't work and throw a", "# `TypeError`, which we are circumventing below.", "try", ":", "previous", "=", "repo", ".", "active_branch", "previous_cmt", "=", "previous", ".", "commit", "is_branch", "=", "True", "except", "TypeError", ":", "previous_cmt", "=", "repo", ".", "head", ".", "commit", "is_branch", "=", "False", "repo", ".", "git", ".", "checkout", "(", "deployment", ")", "try", ":", "manager", "=", "SQLResultManager", "(", "repository", "=", "repo", ",", "location", "=", "location", ")", "except", "(", "AttributeError", ",", "ArgumentError", ")", ":", "manager", "=", "RepoResultManager", "(", "repository", "=", "repo", ",", "location", "=", "location", ")", "LOGGER", ".", "info", "(", "\"Committing result and changing back to working branch.\"", ")", "manager", ".", "store", "(", "result", ",", "commit", "=", "previous_cmt", ".", "hexsha", ")", "repo", ".", "git", ".", "add", "(", "\".\"", ")", "check_call", "(", "[", "'git'", ",", "'commit'", ",", "'-m'", ",", "\"chore: add result for {}\"", ".", "format", "(", "previous_cmt", ".", "hexsha", ")", "]", ")", "if", "is_branch", ":", "previous", ".", "checkout", "(", ")", "else", ":", "repo", ".", "commit", "(", "previous_cmt", ")" ]
Run the test suite on a single model and collect results. MODEL: Path to model file. Can also be supplied via the environment variable MEMOTE_MODEL or configured in 'setup.cfg' or 'memote.ini'.
[ "Run", "the", "test", "suite", "on", "a", "single", "model", "and", "collect", "results", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/runner.py#L133-L222
2,485
opencobra/memote
memote/suite/cli/runner.py
new
def new(directory, replay): """ Create a suitable model repository structure from a template. By using a cookiecutter template, memote will ask you a couple of questions and set up a new directory structure that will make your life easier. The new directory will be placed in the current directory or respect the given --directory option. """ callbacks.git_installed() if directory is None: directory = os.getcwd() cookiecutter("gh:opencobra/cookiecutter-memote", output_dir=directory, replay=replay)
python
def new(directory, replay): callbacks.git_installed() if directory is None: directory = os.getcwd() cookiecutter("gh:opencobra/cookiecutter-memote", output_dir=directory, replay=replay)
[ "def", "new", "(", "directory", ",", "replay", ")", ":", "callbacks", ".", "git_installed", "(", ")", "if", "directory", "is", "None", ":", "directory", "=", "os", ".", "getcwd", "(", ")", "cookiecutter", "(", "\"gh:opencobra/cookiecutter-memote\"", ",", "output_dir", "=", "directory", ",", "replay", "=", "replay", ")" ]
Create a suitable model repository structure from a template. By using a cookiecutter template, memote will ask you a couple of questions and set up a new directory structure that will make your life easier. The new directory will be placed in the current directory or respect the given --directory option.
[ "Create", "a", "suitable", "model", "repository", "structure", "from", "a", "template", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/runner.py#L236-L250
2,486
opencobra/memote
memote/suite/cli/runner.py
online
def online(note, github_repository, github_username): """Upload the repository to GitHub and enable testing on Travis CI.""" callbacks.git_installed() try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.critical( "'memote online' requires a git repository in order to follow " "the current branch's commit history.") sys.exit(1) if note == "memote-ci access": note = "{} to {}".format(note, github_repository) # Github API calls # Set up the git repository on GitHub via API v3. gh_repo_name, auth_token, repo_access_token = _setup_gh_repo( github_repository, github_username, note ) # Travis API calls # Configure Travis CI to use Github auth token then return encrypted token. secret = _setup_travis_ci(gh_repo_name, auth_token, repo_access_token) # Save the encrypted token in the travis config then commit and push LOGGER.info("Storing GitHub token in '.travis.yml'.") config = te.load_travis_configuration(".travis.yml") global_env = config.setdefault("env", {}).get("global") if global_env is None: config["env"]["global"] = global_env = {} try: global_env["secure"] = secret except TypeError: global_env.append({"secure": secret}) te.dump_travis_configuration(config, ".travis.yml") LOGGER.info("Add, commit and push changes to '.travis.yml' to GitHub.") repo.index.add([".travis.yml"]) check_call( ['git', 'commit', '-m', "chore: add encrypted GitHub access token"] ) check_call( ['git', 'push', '--set-upstream', 'origin', repo.active_branch.name] )
python
def online(note, github_repository, github_username): callbacks.git_installed() try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.critical( "'memote online' requires a git repository in order to follow " "the current branch's commit history.") sys.exit(1) if note == "memote-ci access": note = "{} to {}".format(note, github_repository) # Github API calls # Set up the git repository on GitHub via API v3. gh_repo_name, auth_token, repo_access_token = _setup_gh_repo( github_repository, github_username, note ) # Travis API calls # Configure Travis CI to use Github auth token then return encrypted token. secret = _setup_travis_ci(gh_repo_name, auth_token, repo_access_token) # Save the encrypted token in the travis config then commit and push LOGGER.info("Storing GitHub token in '.travis.yml'.") config = te.load_travis_configuration(".travis.yml") global_env = config.setdefault("env", {}).get("global") if global_env is None: config["env"]["global"] = global_env = {} try: global_env["secure"] = secret except TypeError: global_env.append({"secure": secret}) te.dump_travis_configuration(config, ".travis.yml") LOGGER.info("Add, commit and push changes to '.travis.yml' to GitHub.") repo.index.add([".travis.yml"]) check_call( ['git', 'commit', '-m', "chore: add encrypted GitHub access token"] ) check_call( ['git', 'push', '--set-upstream', 'origin', repo.active_branch.name] )
[ "def", "online", "(", "note", ",", "github_repository", ",", "github_username", ")", ":", "callbacks", ".", "git_installed", "(", ")", "try", ":", "repo", "=", "git", ".", "Repo", "(", ")", "except", "git", ".", "InvalidGitRepositoryError", ":", "LOGGER", ".", "critical", "(", "\"'memote online' requires a git repository in order to follow \"", "\"the current branch's commit history.\"", ")", "sys", ".", "exit", "(", "1", ")", "if", "note", "==", "\"memote-ci access\"", ":", "note", "=", "\"{} to {}\"", ".", "format", "(", "note", ",", "github_repository", ")", "# Github API calls", "# Set up the git repository on GitHub via API v3.", "gh_repo_name", ",", "auth_token", ",", "repo_access_token", "=", "_setup_gh_repo", "(", "github_repository", ",", "github_username", ",", "note", ")", "# Travis API calls", "# Configure Travis CI to use Github auth token then return encrypted token.", "secret", "=", "_setup_travis_ci", "(", "gh_repo_name", ",", "auth_token", ",", "repo_access_token", ")", "# Save the encrypted token in the travis config then commit and push", "LOGGER", ".", "info", "(", "\"Storing GitHub token in '.travis.yml'.\"", ")", "config", "=", "te", ".", "load_travis_configuration", "(", "\".travis.yml\"", ")", "global_env", "=", "config", ".", "setdefault", "(", "\"env\"", ",", "{", "}", ")", ".", "get", "(", "\"global\"", ")", "if", "global_env", "is", "None", ":", "config", "[", "\"env\"", "]", "[", "\"global\"", "]", "=", "global_env", "=", "{", "}", "try", ":", "global_env", "[", "\"secure\"", "]", "=", "secret", "except", "TypeError", ":", "global_env", ".", "append", "(", "{", "\"secure\"", ":", "secret", "}", ")", "te", ".", "dump_travis_configuration", "(", "config", ",", "\".travis.yml\"", ")", "LOGGER", ".", "info", "(", "\"Add, commit and push changes to '.travis.yml' to GitHub.\"", ")", "repo", ".", "index", ".", "add", "(", "[", "\".travis.yml\"", "]", ")", "check_call", "(", "[", "'git'", ",", "'commit'", ",", "'-m'", ",", "\"chore: add encrypted GitHub access token\"", "]", ")", "check_call", "(", "[", "'git'", ",", "'push'", ",", "'--set-upstream'", ",", "'origin'", ",", "repo", ".", "active_branch", ".", "name", "]", ")" ]
Upload the repository to GitHub and enable testing on Travis CI.
[ "Upload", "the", "repository", "to", "GitHub", "and", "enable", "testing", "on", "Travis", "CI", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/runner.py#L737-L780
2,487
opencobra/memote
scripts/update_mock_repo.py
update_mock_repo
def update_mock_repo(): """ Clone and gzip the memote-mock-repo used for CLI and integration tests. The repo is hosted at 'https://github.com/ChristianLieven/memote-mock-repo.git' and maintained separately from """ target_file = os.path.abspath( join("tests", "data", "memote-mock-repo.tar.gz") ) temp_dir = mkdtemp(prefix='tmp_mock') previous_wd = os.getcwd() try: LOGGER.info("Cloning repository.") os.chdir(temp_dir) check_output( ['git', 'clone', 'https://github.com/ChristianLieven/memote-mock-repo.git'] ) os.chdir('memote-mock-repo/') LOGGER.info("Setting git to ignore filemode changes.") call( ['git', 'config', 'core.fileMode', 'false'] ) call( ['git', 'config', 'user.email', '[email protected]'] ) call( ['git', 'config', 'user.name', 'memote-bot'] ) finally: LOGGER.info("Compressing to tarball.") tar = tarfile.open(target_file, "w:gz") tar.add( join(temp_dir, 'memote-mock-repo/'), arcname="memote-mock-repo" ) tar.close() LOGGER.info("Success!") LOGGER.info("Removing temporary directory.") rmtree(temp_dir) LOGGER.info("Success! The mock repo has been updated.") os.chdir(previous_wd)
python
def update_mock_repo(): target_file = os.path.abspath( join("tests", "data", "memote-mock-repo.tar.gz") ) temp_dir = mkdtemp(prefix='tmp_mock') previous_wd = os.getcwd() try: LOGGER.info("Cloning repository.") os.chdir(temp_dir) check_output( ['git', 'clone', 'https://github.com/ChristianLieven/memote-mock-repo.git'] ) os.chdir('memote-mock-repo/') LOGGER.info("Setting git to ignore filemode changes.") call( ['git', 'config', 'core.fileMode', 'false'] ) call( ['git', 'config', 'user.email', '[email protected]'] ) call( ['git', 'config', 'user.name', 'memote-bot'] ) finally: LOGGER.info("Compressing to tarball.") tar = tarfile.open(target_file, "w:gz") tar.add( join(temp_dir, 'memote-mock-repo/'), arcname="memote-mock-repo" ) tar.close() LOGGER.info("Success!") LOGGER.info("Removing temporary directory.") rmtree(temp_dir) LOGGER.info("Success! The mock repo has been updated.") os.chdir(previous_wd)
[ "def", "update_mock_repo", "(", ")", ":", "target_file", "=", "os", ".", "path", ".", "abspath", "(", "join", "(", "\"tests\"", ",", "\"data\"", ",", "\"memote-mock-repo.tar.gz\"", ")", ")", "temp_dir", "=", "mkdtemp", "(", "prefix", "=", "'tmp_mock'", ")", "previous_wd", "=", "os", ".", "getcwd", "(", ")", "try", ":", "LOGGER", ".", "info", "(", "\"Cloning repository.\"", ")", "os", ".", "chdir", "(", "temp_dir", ")", "check_output", "(", "[", "'git'", ",", "'clone'", ",", "'https://github.com/ChristianLieven/memote-mock-repo.git'", "]", ")", "os", ".", "chdir", "(", "'memote-mock-repo/'", ")", "LOGGER", ".", "info", "(", "\"Setting git to ignore filemode changes.\"", ")", "call", "(", "[", "'git'", ",", "'config'", ",", "'core.fileMode'", ",", "'false'", "]", ")", "call", "(", "[", "'git'", ",", "'config'", ",", "'user.email'", ",", "'[email protected]'", "]", ")", "call", "(", "[", "'git'", ",", "'config'", ",", "'user.name'", ",", "'memote-bot'", "]", ")", "finally", ":", "LOGGER", ".", "info", "(", "\"Compressing to tarball.\"", ")", "tar", "=", "tarfile", ".", "open", "(", "target_file", ",", "\"w:gz\"", ")", "tar", ".", "add", "(", "join", "(", "temp_dir", ",", "'memote-mock-repo/'", ")", ",", "arcname", "=", "\"memote-mock-repo\"", ")", "tar", ".", "close", "(", ")", "LOGGER", ".", "info", "(", "\"Success!\"", ")", "LOGGER", ".", "info", "(", "\"Removing temporary directory.\"", ")", "rmtree", "(", "temp_dir", ")", "LOGGER", ".", "info", "(", "\"Success! The mock repo has been updated.\"", ")", "os", ".", "chdir", "(", "previous_wd", ")" ]
Clone and gzip the memote-mock-repo used for CLI and integration tests. The repo is hosted at 'https://github.com/ChristianLieven/memote-mock-repo.git' and maintained separately from
[ "Clone", "and", "gzip", "the", "memote", "-", "mock", "-", "repo", "used", "for", "CLI", "and", "integration", "tests", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/scripts/update_mock_repo.py#L39-L86
2,488
opencobra/memote
memote/support/biomass.py
sum_biomass_weight
def sum_biomass_weight(reaction): """ Compute the sum of all reaction compounds. This function expects all metabolites of the biomass reaction to have formula information assigned. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- float The molecular weight of the biomass reaction in units of g/mmol. """ return sum(-coef * met.formula_weight for (met, coef) in iteritems(reaction.metabolites)) / 1000.0
python
def sum_biomass_weight(reaction): return sum(-coef * met.formula_weight for (met, coef) in iteritems(reaction.metabolites)) / 1000.0
[ "def", "sum_biomass_weight", "(", "reaction", ")", ":", "return", "sum", "(", "-", "coef", "*", "met", ".", "formula_weight", "for", "(", "met", ",", "coef", ")", "in", "iteritems", "(", "reaction", ".", "metabolites", ")", ")", "/", "1000.0" ]
Compute the sum of all reaction compounds. This function expects all metabolites of the biomass reaction to have formula information assigned. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- float The molecular weight of the biomass reaction in units of g/mmol.
[ "Compute", "the", "sum", "of", "all", "reaction", "compounds", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L69-L88
2,489
opencobra/memote
memote/support/biomass.py
find_biomass_precursors
def find_biomass_precursors(model, reaction): """ Return a list of all biomass precursors excluding ATP and H2O. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') gam_reactants = set() try: gam_reactants.update([ helpers.find_met_in_model( model, "MNXM3", id_of_main_compartment)[0]]) except RuntimeError: pass try: gam_reactants.update([ helpers.find_met_in_model( model, "MNXM2", id_of_main_compartment)[0]]) except RuntimeError: pass biomass_precursors = set(reaction.reactants) - gam_reactants return list(biomass_precursors)
python
def find_biomass_precursors(model, reaction): id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') gam_reactants = set() try: gam_reactants.update([ helpers.find_met_in_model( model, "MNXM3", id_of_main_compartment)[0]]) except RuntimeError: pass try: gam_reactants.update([ helpers.find_met_in_model( model, "MNXM2", id_of_main_compartment)[0]]) except RuntimeError: pass biomass_precursors = set(reaction.reactants) - gam_reactants return list(biomass_precursors)
[ "def", "find_biomass_precursors", "(", "model", ",", "reaction", ")", ":", "id_of_main_compartment", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "gam_reactants", "=", "set", "(", ")", "try", ":", "gam_reactants", ".", "update", "(", "[", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM3\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "]", ")", "except", "RuntimeError", ":", "pass", "try", ":", "gam_reactants", ".", "update", "(", "[", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM2\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "]", ")", "except", "RuntimeError", ":", "pass", "biomass_precursors", "=", "set", "(", "reaction", ".", "reactants", ")", "-", "gam_reactants", "return", "list", "(", "biomass_precursors", ")" ]
Return a list of all biomass precursors excluding ATP and H2O. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O.
[ "Return", "a", "list", "of", "all", "biomass", "precursors", "excluding", "ATP", "and", "H2O", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L91-L126
2,490
opencobra/memote
memote/support/biomass.py
find_blocked_biomass_precursors
def find_blocked_biomass_precursors(reaction, model): """ Return a list of all biomass precursors that cannot be produced. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O that cannot be produced by flux balance analysis. """ LOGGER.debug("Finding blocked biomass precursors") precursors = find_biomass_precursors(model, reaction) blocked_precursors = list() _, ub = helpers.find_bounds(model) for precursor in precursors: with model: dm_rxn = model.add_boundary( precursor, type="safe-demand", reaction_id="safe_demand", lb=0, ub=ub ) flux = helpers.run_fba(model, dm_rxn.id, direction='max') if np.isnan(flux) or abs(flux) < 1E-08: blocked_precursors.append(precursor) return blocked_precursors
python
def find_blocked_biomass_precursors(reaction, model): LOGGER.debug("Finding blocked biomass precursors") precursors = find_biomass_precursors(model, reaction) blocked_precursors = list() _, ub = helpers.find_bounds(model) for precursor in precursors: with model: dm_rxn = model.add_boundary( precursor, type="safe-demand", reaction_id="safe_demand", lb=0, ub=ub ) flux = helpers.run_fba(model, dm_rxn.id, direction='max') if np.isnan(flux) or abs(flux) < 1E-08: blocked_precursors.append(precursor) return blocked_precursors
[ "def", "find_blocked_biomass_precursors", "(", "reaction", ",", "model", ")", ":", "LOGGER", ".", "debug", "(", "\"Finding blocked biomass precursors\"", ")", "precursors", "=", "find_biomass_precursors", "(", "model", ",", "reaction", ")", "blocked_precursors", "=", "list", "(", ")", "_", ",", "ub", "=", "helpers", ".", "find_bounds", "(", "model", ")", "for", "precursor", "in", "precursors", ":", "with", "model", ":", "dm_rxn", "=", "model", ".", "add_boundary", "(", "precursor", ",", "type", "=", "\"safe-demand\"", ",", "reaction_id", "=", "\"safe_demand\"", ",", "lb", "=", "0", ",", "ub", "=", "ub", ")", "flux", "=", "helpers", ".", "run_fba", "(", "model", ",", "dm_rxn", ".", "id", ",", "direction", "=", "'max'", ")", "if", "np", ".", "isnan", "(", "flux", ")", "or", "abs", "(", "flux", ")", "<", "1E-08", ":", "blocked_precursors", ".", "append", "(", "precursor", ")", "return", "blocked_precursors" ]
Return a list of all biomass precursors that cannot be produced. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O that cannot be produced by flux balance analysis.
[ "Return", "a", "list", "of", "all", "biomass", "precursors", "that", "cannot", "be", "produced", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L129-L163
2,491
opencobra/memote
memote/support/biomass.py
gam_in_biomass
def gam_in_biomass(model, reaction): """ Return boolean if biomass reaction includes growth-associated maintenance. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- boolean True if the biomass reaction includes ATP and H2O as reactants and ADP, Pi and H as products, False otherwise. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') try: left = { helpers.find_met_in_model( model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM2", id_of_main_compartment)[0] } right = { helpers.find_met_in_model( model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM9", id_of_main_compartment)[0] } except RuntimeError: return False return ( left.issubset(set(reaction.reactants)) and right.issubset(set(reaction.products)))
python
def gam_in_biomass(model, reaction): id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') try: left = { helpers.find_met_in_model( model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM2", id_of_main_compartment)[0] } right = { helpers.find_met_in_model( model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model( model, "MNXM9", id_of_main_compartment)[0] } except RuntimeError: return False return ( left.issubset(set(reaction.reactants)) and right.issubset(set(reaction.products)))
[ "def", "gam_in_biomass", "(", "model", ",", "reaction", ")", ":", "id_of_main_compartment", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "try", ":", "left", "=", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM3\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM2\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "}", "right", "=", "{", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM7\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM1\"", ",", "id_of_main_compartment", ")", "[", "0", "]", ",", "helpers", ".", "find_met_in_model", "(", "model", ",", "\"MNXM9\"", ",", "id_of_main_compartment", ")", "[", "0", "]", "}", "except", "RuntimeError", ":", "return", "False", "return", "(", "left", ".", "issubset", "(", "set", "(", "reaction", ".", "reactants", ")", ")", "and", "right", ".", "issubset", "(", "set", "(", "reaction", ".", "products", ")", ")", ")" ]
Return boolean if biomass reaction includes growth-associated maintenance. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- boolean True if the biomass reaction includes ATP and H2O as reactants and ADP, Pi and H as products, False otherwise.
[ "Return", "boolean", "if", "biomass", "reaction", "includes", "growth", "-", "associated", "maintenance", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L166-L206
2,492
opencobra/memote
memote/support/biomass.py
find_direct_metabolites
def find_direct_metabolites(model, reaction, tolerance=1E-06): """ Return list of possible direct biomass precursor metabolites. The term direct metabolites describes metabolites that are involved only in either transport and/or boundary reactions, AND the biomass reaction(s), but not in any purely metabolic reactions. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.Reaction The biomass reaction of the model under investigation. tolerance : float, optional Tolerance below which values will be regarded as zero. Returns ------- list Metabolites that qualify as direct metabolites i.e. biomass precursors that are taken up to be consumed by the biomass reaction only. """ biomass_rxns = set(helpers.find_biomass_reaction(model)) tra_bou_bio_rxns = helpers.find_interchange_biomass_reactions( model, biomass_rxns) try: precursors = find_biomass_precursors(model, reaction) main_comp = helpers.find_compartment_id_in_model(model, 'c') ext_space = helpers.find_compartment_id_in_model(model, 'e') except KeyError: LOGGER.error("Failed to properly identify cytosolic and extracellular " "compartments.") raise_with_traceback(KeyError("The cytosolic and/or extracellular " "compartments could not be identified.")) except RuntimeError: LOGGER.error("Failed to properly identify cytosolic and extracellular " "compartments.") raise_with_traceback(RuntimeError("The cytosolic and/or extracellular " "compartments could not be " "identified.")) else: tra_bou_bio_mets = [met for met in precursors if met.reactions.issubset(tra_bou_bio_rxns)] rxns_of_interest = set([rxn for met in tra_bou_bio_mets for rxn in met.reactions if rxn not in biomass_rxns]) solution = model.optimize(raise_error=True) if np.isclose(solution.objective_value, 0, atol=tolerance): LOGGER.error("Failed to generate a non-zero objective value with " "flux balance analysis.") raise OptimizationError( "The flux balance analysis on this model returned an " "objective value of zero. Make sure the model can " "grow! Check if the constraints are not too strict!") tra_bou_bio_fluxes = {r: solution[r.id] for r in rxns_of_interest} met_flux_sum = {m: 0 for m in tra_bou_bio_mets} return detect_false_positive_direct_metabolites( tra_bou_bio_mets, biomass_rxns, main_comp, ext_space, tra_bou_bio_fluxes, met_flux_sum)
python
def find_direct_metabolites(model, reaction, tolerance=1E-06): biomass_rxns = set(helpers.find_biomass_reaction(model)) tra_bou_bio_rxns = helpers.find_interchange_biomass_reactions( model, biomass_rxns) try: precursors = find_biomass_precursors(model, reaction) main_comp = helpers.find_compartment_id_in_model(model, 'c') ext_space = helpers.find_compartment_id_in_model(model, 'e') except KeyError: LOGGER.error("Failed to properly identify cytosolic and extracellular " "compartments.") raise_with_traceback(KeyError("The cytosolic and/or extracellular " "compartments could not be identified.")) except RuntimeError: LOGGER.error("Failed to properly identify cytosolic and extracellular " "compartments.") raise_with_traceback(RuntimeError("The cytosolic and/or extracellular " "compartments could not be " "identified.")) else: tra_bou_bio_mets = [met for met in precursors if met.reactions.issubset(tra_bou_bio_rxns)] rxns_of_interest = set([rxn for met in tra_bou_bio_mets for rxn in met.reactions if rxn not in biomass_rxns]) solution = model.optimize(raise_error=True) if np.isclose(solution.objective_value, 0, atol=tolerance): LOGGER.error("Failed to generate a non-zero objective value with " "flux balance analysis.") raise OptimizationError( "The flux balance analysis on this model returned an " "objective value of zero. Make sure the model can " "grow! Check if the constraints are not too strict!") tra_bou_bio_fluxes = {r: solution[r.id] for r in rxns_of_interest} met_flux_sum = {m: 0 for m in tra_bou_bio_mets} return detect_false_positive_direct_metabolites( tra_bou_bio_mets, biomass_rxns, main_comp, ext_space, tra_bou_bio_fluxes, met_flux_sum)
[ "def", "find_direct_metabolites", "(", "model", ",", "reaction", ",", "tolerance", "=", "1E-06", ")", ":", "biomass_rxns", "=", "set", "(", "helpers", ".", "find_biomass_reaction", "(", "model", ")", ")", "tra_bou_bio_rxns", "=", "helpers", ".", "find_interchange_biomass_reactions", "(", "model", ",", "biomass_rxns", ")", "try", ":", "precursors", "=", "find_biomass_precursors", "(", "model", ",", "reaction", ")", "main_comp", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "ext_space", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'e'", ")", "except", "KeyError", ":", "LOGGER", ".", "error", "(", "\"Failed to properly identify cytosolic and extracellular \"", "\"compartments.\"", ")", "raise_with_traceback", "(", "KeyError", "(", "\"The cytosolic and/or extracellular \"", "\"compartments could not be identified.\"", ")", ")", "except", "RuntimeError", ":", "LOGGER", ".", "error", "(", "\"Failed to properly identify cytosolic and extracellular \"", "\"compartments.\"", ")", "raise_with_traceback", "(", "RuntimeError", "(", "\"The cytosolic and/or extracellular \"", "\"compartments could not be \"", "\"identified.\"", ")", ")", "else", ":", "tra_bou_bio_mets", "=", "[", "met", "for", "met", "in", "precursors", "if", "met", ".", "reactions", ".", "issubset", "(", "tra_bou_bio_rxns", ")", "]", "rxns_of_interest", "=", "set", "(", "[", "rxn", "for", "met", "in", "tra_bou_bio_mets", "for", "rxn", "in", "met", ".", "reactions", "if", "rxn", "not", "in", "biomass_rxns", "]", ")", "solution", "=", "model", ".", "optimize", "(", "raise_error", "=", "True", ")", "if", "np", ".", "isclose", "(", "solution", ".", "objective_value", ",", "0", ",", "atol", "=", "tolerance", ")", ":", "LOGGER", ".", "error", "(", "\"Failed to generate a non-zero objective value with \"", "\"flux balance analysis.\"", ")", "raise", "OptimizationError", "(", "\"The flux balance analysis on this model returned an \"", "\"objective value of zero. Make sure the model can \"", "\"grow! Check if the constraints are not too strict!\"", ")", "tra_bou_bio_fluxes", "=", "{", "r", ":", "solution", "[", "r", ".", "id", "]", "for", "r", "in", "rxns_of_interest", "}", "met_flux_sum", "=", "{", "m", ":", "0", "for", "m", "in", "tra_bou_bio_mets", "}", "return", "detect_false_positive_direct_metabolites", "(", "tra_bou_bio_mets", ",", "biomass_rxns", ",", "main_comp", ",", "ext_space", ",", "tra_bou_bio_fluxes", ",", "met_flux_sum", ")" ]
Return list of possible direct biomass precursor metabolites. The term direct metabolites describes metabolites that are involved only in either transport and/or boundary reactions, AND the biomass reaction(s), but not in any purely metabolic reactions. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.Reaction The biomass reaction of the model under investigation. tolerance : float, optional Tolerance below which values will be regarded as zero. Returns ------- list Metabolites that qualify as direct metabolites i.e. biomass precursors that are taken up to be consumed by the biomass reaction only.
[ "Return", "list", "of", "possible", "direct", "biomass", "precursor", "metabolites", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L209-L272
2,493
opencobra/memote
memote/support/biomass.py
detect_false_positive_direct_metabolites
def detect_false_positive_direct_metabolites( candidates, biomass_reactions, cytosol, extra, reaction_fluxes, metabolite_fluxes): """ Weed out false positive direct metabolites. False positives exists in the extracellular compartment with flux from the cytosolic compartment and are part of the biomass reaction(s). It sums fluxes positively or negatively depending on if direct metabolites in the extracellular compartment are defined as reactants or products in various reactions. Parameters ---------- candidates : list of cobra.Metabolite Candidate direct metabolites. biomass_reactions : set of cobra.Reaction The biomass reactions. Usually one or two. cytosol : str The identifier of the cytosolic compartment. extra : str The identifier of the extracellular compartment. Returns ------- list Definitive list of direct metabolites, i.e., biomass precursors that are taken up to be consumed by the biomass reaction only. """ for met in candidates: is_internal = met.compartment != extra for rxn in met.reactions: if rxn in biomass_reactions: continue # Internal metabolites can not be false positives. if is_internal: metabolite_fluxes[met] += abs(reaction_fluxes[rxn]) continue # if the metabolite is in the "e" compartment and a reactant, # sum the fluxes accordingly (outward=negative, inward=positive) if met in rxn.reactants: product_comps = set([p.compartment for p in rxn.products]) # if the reaction has no product (outward flux) if len(product_comps) == 0: metabolite_fluxes[met] += -reaction_fluxes[rxn] # if the reaction has a product in "c" (inward flux) elif cytosol in product_comps: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the metabolite is in the "e" compartment and a product, # sum the fluxes accordingly (outward=negative, inward=positive) elif met in rxn.products: reactant_comps = set([p.compartment for p in rxn.reactants]) # if the reaction has no reactant (inward flux) if len(reactant_comps) == 0: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the reaction has a reactant in "c" (outward flux) elif cytosol in reactant_comps: metabolite_fluxes[met] += -reaction_fluxes[rxn] return [m for m, f in iteritems(metabolite_fluxes) if f > 0]
python
def detect_false_positive_direct_metabolites( candidates, biomass_reactions, cytosol, extra, reaction_fluxes, metabolite_fluxes): for met in candidates: is_internal = met.compartment != extra for rxn in met.reactions: if rxn in biomass_reactions: continue # Internal metabolites can not be false positives. if is_internal: metabolite_fluxes[met] += abs(reaction_fluxes[rxn]) continue # if the metabolite is in the "e" compartment and a reactant, # sum the fluxes accordingly (outward=negative, inward=positive) if met in rxn.reactants: product_comps = set([p.compartment for p in rxn.products]) # if the reaction has no product (outward flux) if len(product_comps) == 0: metabolite_fluxes[met] += -reaction_fluxes[rxn] # if the reaction has a product in "c" (inward flux) elif cytosol in product_comps: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the metabolite is in the "e" compartment and a product, # sum the fluxes accordingly (outward=negative, inward=positive) elif met in rxn.products: reactant_comps = set([p.compartment for p in rxn.reactants]) # if the reaction has no reactant (inward flux) if len(reactant_comps) == 0: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the reaction has a reactant in "c" (outward flux) elif cytosol in reactant_comps: metabolite_fluxes[met] += -reaction_fluxes[rxn] return [m for m, f in iteritems(metabolite_fluxes) if f > 0]
[ "def", "detect_false_positive_direct_metabolites", "(", "candidates", ",", "biomass_reactions", ",", "cytosol", ",", "extra", ",", "reaction_fluxes", ",", "metabolite_fluxes", ")", ":", "for", "met", "in", "candidates", ":", "is_internal", "=", "met", ".", "compartment", "!=", "extra", "for", "rxn", "in", "met", ".", "reactions", ":", "if", "rxn", "in", "biomass_reactions", ":", "continue", "# Internal metabolites can not be false positives.", "if", "is_internal", ":", "metabolite_fluxes", "[", "met", "]", "+=", "abs", "(", "reaction_fluxes", "[", "rxn", "]", ")", "continue", "# if the metabolite is in the \"e\" compartment and a reactant,", "# sum the fluxes accordingly (outward=negative, inward=positive)", "if", "met", "in", "rxn", ".", "reactants", ":", "product_comps", "=", "set", "(", "[", "p", ".", "compartment", "for", "p", "in", "rxn", ".", "products", "]", ")", "# if the reaction has no product (outward flux)", "if", "len", "(", "product_comps", ")", "==", "0", ":", "metabolite_fluxes", "[", "met", "]", "+=", "-", "reaction_fluxes", "[", "rxn", "]", "# if the reaction has a product in \"c\" (inward flux)", "elif", "cytosol", "in", "product_comps", ":", "metabolite_fluxes", "[", "met", "]", "+=", "reaction_fluxes", "[", "rxn", "]", "# if the metabolite is in the \"e\" compartment and a product,", "# sum the fluxes accordingly (outward=negative, inward=positive)", "elif", "met", "in", "rxn", ".", "products", ":", "reactant_comps", "=", "set", "(", "[", "p", ".", "compartment", "for", "p", "in", "rxn", ".", "reactants", "]", ")", "# if the reaction has no reactant (inward flux)", "if", "len", "(", "reactant_comps", ")", "==", "0", ":", "metabolite_fluxes", "[", "met", "]", "+=", "reaction_fluxes", "[", "rxn", "]", "# if the reaction has a reactant in \"c\" (outward flux)", "elif", "cytosol", "in", "reactant_comps", ":", "metabolite_fluxes", "[", "met", "]", "+=", "-", "reaction_fluxes", "[", "rxn", "]", "return", "[", "m", "for", "m", ",", "f", "in", "iteritems", "(", "metabolite_fluxes", ")", "if", "f", ">", "0", "]" ]
Weed out false positive direct metabolites. False positives exists in the extracellular compartment with flux from the cytosolic compartment and are part of the biomass reaction(s). It sums fluxes positively or negatively depending on if direct metabolites in the extracellular compartment are defined as reactants or products in various reactions. Parameters ---------- candidates : list of cobra.Metabolite Candidate direct metabolites. biomass_reactions : set of cobra.Reaction The biomass reactions. Usually one or two. cytosol : str The identifier of the cytosolic compartment. extra : str The identifier of the extracellular compartment. Returns ------- list Definitive list of direct metabolites, i.e., biomass precursors that are taken up to be consumed by the biomass reaction only.
[ "Weed", "out", "false", "positive", "direct", "metabolites", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L275-L334
2,494
opencobra/memote
memote/support/biomass.py
bundle_biomass_components
def bundle_biomass_components(model, reaction): """ Return bundle biomass component reactions if it is not one lumped reaction. There are two basic ways of specifying the biomass composition. The most common is a single lumped reaction containing all biomass precursors. Alternatively, the biomass equation can be split into several reactions each focusing on a different macromolecular component for instance a (1 gDW ash) + b (1 gDW phospholipids) + c (free fatty acids)+ d (1 gDW carbs) + e (1 gDW protein) + f (1 gDW RNA) + g (1 gDW DNA) + h (vitamins/cofactors) + xATP + xH2O-> 1 gDCW biomass + xADP + xH + xPi. This function aims to identify if the given biomass reaction 'reaction', is a lumped all-in-one reaction, or whether it is just the final composing reaction of all macromolecular components. It is important to identify which other reaction belong to a given biomass reaction to be able to identify universal biomass components or calculate detailed precursor stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list One or more reactions that qualify as THE biomass equation together. Notes ----- Counting H2O, ADP, Pi, H, and ATP, the amount of metabolites in a split reaction is comparatively low: Any reaction with less or equal to 15 metabolites can probably be counted as a split reaction containing Ash, Phospholipids, Fatty Acids, Carbohydrates (i.e. cell wall components), Protein, RNA, DNA, Cofactors and Vitamins, and Small Molecules. Any reaction with more than or equal to 28 metabolites, however, (21 AA + 3 Nucleotides (4-ATP) + 4 Deoxy-Nucleotides) can be considered a lumped reaction. Anything in between will be treated conservatively as a lumped reaction. For split reactions, after removing any of the metabolites associated with growth-associated energy expenditure (H2O, ADP, Pi, H, and ATP), the only remaining metabolites should be generalized macromolecule precursors e.g. Protein, Phospholipids etc. Each of these have their own composing reactions. Hence we include the reactions of these metabolites in the set that ultimately makes up the returned list of reactions that together make up the biomass equation. """ if len(reaction.metabolites) >= 16: return [reaction] id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') gam_mets = ["MNXM3", "MNXM2", "MNXM7", "MNXM1", 'MNXM9'] try: gam = set([helpers.find_met_in_model( model, met, id_of_main_compartment)[0] for met in gam_mets]) except RuntimeError: gam = set() regex = re.compile('^{}(_[a-zA-Z]+?)*?$'.format('biomass'), re.IGNORECASE) biomass_metabolite = set(model.metabolites.query(regex)) macromolecules = set(reaction.metabolites) - gam - biomass_metabolite bundled_reactions = set() for met in macromolecules: bundled_reactions = bundled_reactions | set(met.reactions) return list(bundled_reactions)
python
def bundle_biomass_components(model, reaction): if len(reaction.metabolites) >= 16: return [reaction] id_of_main_compartment = helpers.find_compartment_id_in_model(model, 'c') gam_mets = ["MNXM3", "MNXM2", "MNXM7", "MNXM1", 'MNXM9'] try: gam = set([helpers.find_met_in_model( model, met, id_of_main_compartment)[0] for met in gam_mets]) except RuntimeError: gam = set() regex = re.compile('^{}(_[a-zA-Z]+?)*?$'.format('biomass'), re.IGNORECASE) biomass_metabolite = set(model.metabolites.query(regex)) macromolecules = set(reaction.metabolites) - gam - biomass_metabolite bundled_reactions = set() for met in macromolecules: bundled_reactions = bundled_reactions | set(met.reactions) return list(bundled_reactions)
[ "def", "bundle_biomass_components", "(", "model", ",", "reaction", ")", ":", "if", "len", "(", "reaction", ".", "metabolites", ")", ">=", "16", ":", "return", "[", "reaction", "]", "id_of_main_compartment", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "gam_mets", "=", "[", "\"MNXM3\"", ",", "\"MNXM2\"", ",", "\"MNXM7\"", ",", "\"MNXM1\"", ",", "'MNXM9'", "]", "try", ":", "gam", "=", "set", "(", "[", "helpers", ".", "find_met_in_model", "(", "model", ",", "met", ",", "id_of_main_compartment", ")", "[", "0", "]", "for", "met", "in", "gam_mets", "]", ")", "except", "RuntimeError", ":", "gam", "=", "set", "(", ")", "regex", "=", "re", ".", "compile", "(", "'^{}(_[a-zA-Z]+?)*?$'", ".", "format", "(", "'biomass'", ")", ",", "re", ".", "IGNORECASE", ")", "biomass_metabolite", "=", "set", "(", "model", ".", "metabolites", ".", "query", "(", "regex", ")", ")", "macromolecules", "=", "set", "(", "reaction", ".", "metabolites", ")", "-", "gam", "-", "biomass_metabolite", "bundled_reactions", "=", "set", "(", ")", "for", "met", "in", "macromolecules", ":", "bundled_reactions", "=", "bundled_reactions", "|", "set", "(", "met", ".", "reactions", ")", "return", "list", "(", "bundled_reactions", ")" ]
Return bundle biomass component reactions if it is not one lumped reaction. There are two basic ways of specifying the biomass composition. The most common is a single lumped reaction containing all biomass precursors. Alternatively, the biomass equation can be split into several reactions each focusing on a different macromolecular component for instance a (1 gDW ash) + b (1 gDW phospholipids) + c (free fatty acids)+ d (1 gDW carbs) + e (1 gDW protein) + f (1 gDW RNA) + g (1 gDW DNA) + h (vitamins/cofactors) + xATP + xH2O-> 1 gDCW biomass + xADP + xH + xPi. This function aims to identify if the given biomass reaction 'reaction', is a lumped all-in-one reaction, or whether it is just the final composing reaction of all macromolecular components. It is important to identify which other reaction belong to a given biomass reaction to be able to identify universal biomass components or calculate detailed precursor stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list One or more reactions that qualify as THE biomass equation together. Notes ----- Counting H2O, ADP, Pi, H, and ATP, the amount of metabolites in a split reaction is comparatively low: Any reaction with less or equal to 15 metabolites can probably be counted as a split reaction containing Ash, Phospholipids, Fatty Acids, Carbohydrates (i.e. cell wall components), Protein, RNA, DNA, Cofactors and Vitamins, and Small Molecules. Any reaction with more than or equal to 28 metabolites, however, (21 AA + 3 Nucleotides (4-ATP) + 4 Deoxy-Nucleotides) can be considered a lumped reaction. Anything in between will be treated conservatively as a lumped reaction. For split reactions, after removing any of the metabolites associated with growth-associated energy expenditure (H2O, ADP, Pi, H, and ATP), the only remaining metabolites should be generalized macromolecule precursors e.g. Protein, Phospholipids etc. Each of these have their own composing reactions. Hence we include the reactions of these metabolites in the set that ultimately makes up the returned list of reactions that together make up the biomass equation.
[ "Return", "bundle", "biomass", "component", "reactions", "if", "it", "is", "not", "one", "lumped", "reaction", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L337-L408
2,495
opencobra/memote
memote/support/biomass.py
essential_precursors_not_in_biomass
def essential_precursors_not_in_biomass(model, reaction): u""" Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] Xavier, J. C., Patil, K. R., & Rocha, I. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002 """ main_comp = helpers.find_compartment_id_in_model(model, 'c') biomass_eq = bundle_biomass_components(model, reaction) pooled_precursors = set( [met for rxn in biomass_eq for met in rxn.metabolites]) missing_essential_precursors = [] for mnx_id in ESSENTIAL_PRECURSOR_IDS: try: met = helpers.find_met_in_model(model, mnx_id, main_comp)[0] if met not in pooled_precursors: missing_essential_precursors.append(met.id) except RuntimeError: missing_essential_precursors.append(mnx_id) return missing_essential_precursors
python
def essential_precursors_not_in_biomass(model, reaction): u""" Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] Xavier, J. C., Patil, K. R., & Rocha, I. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002 """ main_comp = helpers.find_compartment_id_in_model(model, 'c') biomass_eq = bundle_biomass_components(model, reaction) pooled_precursors = set( [met for rxn in biomass_eq for met in rxn.metabolites]) missing_essential_precursors = [] for mnx_id in ESSENTIAL_PRECURSOR_IDS: try: met = helpers.find_met_in_model(model, mnx_id, main_comp)[0] if met not in pooled_precursors: missing_essential_precursors.append(met.id) except RuntimeError: missing_essential_precursors.append(mnx_id) return missing_essential_precursors
[ "def", "essential_precursors_not_in_biomass", "(", "model", ",", "reaction", ")", ":", "main_comp", "=", "helpers", ".", "find_compartment_id_in_model", "(", "model", ",", "'c'", ")", "biomass_eq", "=", "bundle_biomass_components", "(", "model", ",", "reaction", ")", "pooled_precursors", "=", "set", "(", "[", "met", "for", "rxn", "in", "biomass_eq", "for", "met", "in", "rxn", ".", "metabolites", "]", ")", "missing_essential_precursors", "=", "[", "]", "for", "mnx_id", "in", "ESSENTIAL_PRECURSOR_IDS", ":", "try", ":", "met", "=", "helpers", ".", "find_met_in_model", "(", "model", ",", "mnx_id", ",", "main_comp", ")", "[", "0", "]", "if", "met", "not", "in", "pooled_precursors", ":", "missing_essential_precursors", ".", "append", "(", "met", ".", "id", ")", "except", "RuntimeError", ":", "missing_essential_precursors", ".", "append", "(", "mnx_id", ")", "return", "missing_essential_precursors" ]
u""" Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] Xavier, J. C., Patil, K. R., & Rocha, I. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002
[ "u", "Return", "a", "list", "of", "essential", "precursors", "missing", "from", "the", "biomass", "reaction", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/support/biomass.py#L411-L477
2,496
opencobra/memote
memote/suite/cli/callbacks.py
validate_experimental
def validate_experimental(context, param, value): """Load and validate an experimental data configuration.""" if value is None: return config = ExperimentConfiguration(value) config.validate() return config
python
def validate_experimental(context, param, value): if value is None: return config = ExperimentConfiguration(value) config.validate() return config
[ "def", "validate_experimental", "(", "context", ",", "param", ",", "value", ")", ":", "if", "value", "is", "None", ":", "return", "config", "=", "ExperimentConfiguration", "(", "value", ")", "config", ".", "validate", "(", ")", "return", "config" ]
Load and validate an experimental data configuration.
[ "Load", "and", "validate", "an", "experimental", "data", "configuration", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/callbacks.py#L44-L50
2,497
opencobra/memote
memote/suite/cli/callbacks.py
probe_git
def probe_git(): """Return a git repository instance if it exists.""" try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.warning( "We highly recommend keeping your model in a git repository." " It allows you to track changes and to easily collaborate with" " others via online platforms such as https://github.com.\n") return if repo.is_dirty(): LOGGER.critical( "Please git commit or git stash all changes before running" " the memote suite.") sys.exit(1) return repo
python
def probe_git(): try: repo = git.Repo() except git.InvalidGitRepositoryError: LOGGER.warning( "We highly recommend keeping your model in a git repository." " It allows you to track changes and to easily collaborate with" " others via online platforms such as https://github.com.\n") return if repo.is_dirty(): LOGGER.critical( "Please git commit or git stash all changes before running" " the memote suite.") sys.exit(1) return repo
[ "def", "probe_git", "(", ")", ":", "try", ":", "repo", "=", "git", ".", "Repo", "(", ")", "except", "git", ".", "InvalidGitRepositoryError", ":", "LOGGER", ".", "warning", "(", "\"We highly recommend keeping your model in a git repository.\"", "\" It allows you to track changes and to easily collaborate with\"", "\" others via online platforms such as https://github.com.\\n\"", ")", "return", "if", "repo", ".", "is_dirty", "(", ")", ":", "LOGGER", ".", "critical", "(", "\"Please git commit or git stash all changes before running\"", "\" the memote suite.\"", ")", "sys", ".", "exit", "(", "1", ")", "return", "repo" ]
Return a git repository instance if it exists.
[ "Return", "a", "git", "repository", "instance", "if", "it", "exists", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/callbacks.py#L79-L94
2,498
opencobra/memote
memote/suite/cli/callbacks.py
git_installed
def git_installed(): """Interrupt execution of memote if `git` has not been installed.""" LOGGER.info("Checking `git` installation.") try: check_output(['git', '--version']) except CalledProcessError as e: LOGGER.critical( "The execution of memote was interrupted since no installation of " "`git` could be detected. Please install git to use " "this functionality: " "https://git-scm.com/book/en/v2/Getting-Started-Installing-Git") LOGGER.debug("Underlying error:", exc_info=e) sys.exit(1)
python
def git_installed(): LOGGER.info("Checking `git` installation.") try: check_output(['git', '--version']) except CalledProcessError as e: LOGGER.critical( "The execution of memote was interrupted since no installation of " "`git` could be detected. Please install git to use " "this functionality: " "https://git-scm.com/book/en/v2/Getting-Started-Installing-Git") LOGGER.debug("Underlying error:", exc_info=e) sys.exit(1)
[ "def", "git_installed", "(", ")", ":", "LOGGER", ".", "info", "(", "\"Checking `git` installation.\"", ")", "try", ":", "check_output", "(", "[", "'git'", ",", "'--version'", "]", ")", "except", "CalledProcessError", "as", "e", ":", "LOGGER", ".", "critical", "(", "\"The execution of memote was interrupted since no installation of \"", "\"`git` could be detected. Please install git to use \"", "\"this functionality: \"", "\"https://git-scm.com/book/en/v2/Getting-Started-Installing-Git\"", ")", "LOGGER", ".", "debug", "(", "\"Underlying error:\"", ",", "exc_info", "=", "e", ")", "sys", ".", "exit", "(", "1", ")" ]
Interrupt execution of memote if `git` has not been installed.
[ "Interrupt", "execution", "of", "memote", "if", "git", "has", "not", "been", "installed", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/cli/callbacks.py#L103-L115
2,499
opencobra/memote
memote/suite/results/repo_result_manager.py
RepoResultManager.record_git_info
def record_git_info(self, commit=None): """ Record git meta information. Parameters ---------- commit : str, optional Unique hexsha of the desired commit. Returns ------- GitInfo Git commit meta information. """ if commit is None: commit = self._repo.head.commit else: commit = self._repo.commit(commit) return GitInfo( hexsha=commit.hexsha, author=commit.author.name, email=commit.author.email, authored_on=commit.authored_datetime )
python
def record_git_info(self, commit=None): if commit is None: commit = self._repo.head.commit else: commit = self._repo.commit(commit) return GitInfo( hexsha=commit.hexsha, author=commit.author.name, email=commit.author.email, authored_on=commit.authored_datetime )
[ "def", "record_git_info", "(", "self", ",", "commit", "=", "None", ")", ":", "if", "commit", "is", "None", ":", "commit", "=", "self", ".", "_repo", ".", "head", ".", "commit", "else", ":", "commit", "=", "self", ".", "_repo", ".", "commit", "(", "commit", ")", "return", "GitInfo", "(", "hexsha", "=", "commit", ".", "hexsha", ",", "author", "=", "commit", ".", "author", ".", "name", ",", "email", "=", "commit", ".", "author", ".", "email", ",", "authored_on", "=", "commit", ".", "authored_datetime", ")" ]
Record git meta information. Parameters ---------- commit : str, optional Unique hexsha of the desired commit. Returns ------- GitInfo Git commit meta information.
[ "Record", "git", "meta", "information", "." ]
276630fcd4449fb7b914186edfd38c239e7052df
https://github.com/opencobra/memote/blob/276630fcd4449fb7b914186edfd38c239e7052df/memote/suite/results/repo_result_manager.py#L61-L85