id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 51
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
251,300 | MillionIntegrals/vel | vel/rl/api/evaluator.py | Evaluator.is_provided | def is_provided(self, name):
""" Capability check if evaluator provides given value """
if name in self._storage:
return True
elif name in self._providers:
return True
elif name.startswith('rollout:'):
rollout_name = name[8:]
else:
return False | python | def is_provided(self, name):
if name in self._storage:
return True
elif name in self._providers:
return True
elif name.startswith('rollout:'):
rollout_name = name[8:]
else:
return False | [
"def",
"is_provided",
"(",
"self",
",",
"name",
")",
":",
"if",
"name",
"in",
"self",
".",
"_storage",
":",
"return",
"True",
"elif",
"name",
"in",
"self",
".",
"_providers",
":",
"return",
"True",
"elif",
"name",
".",
"startswith",
"(",
"'rollout:'",
")",
":",
"rollout_name",
"=",
"name",
"[",
"8",
":",
"]",
"else",
":",
"return",
"False"
] | Capability check if evaluator provides given value | [
"Capability",
"check",
"if",
"evaluator",
"provides",
"given",
"value"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/evaluator.py#L103-L112 |
251,301 | MillionIntegrals/vel | vel/rl/api/evaluator.py | Evaluator.get | def get(self, name):
"""
Return a value from this evaluator.
Because tensor calculated is cached, it may lead to suble bugs if the same value is used multiple times
with and without no_grad() context.
It is advised in such cases to not use no_grad and stick to .detach()
"""
if name in self._storage:
return self._storage[name]
elif name in self._providers:
value = self._storage[name] = self._providers[name](self)
return value
elif name.startswith('rollout:'):
rollout_name = name[8:]
value = self._storage[name] = self.rollout.batch_tensor(rollout_name)
return value
else:
raise RuntimeError(f"Key {name} is not provided by this evaluator") | python | def get(self, name):
if name in self._storage:
return self._storage[name]
elif name in self._providers:
value = self._storage[name] = self._providers[name](self)
return value
elif name.startswith('rollout:'):
rollout_name = name[8:]
value = self._storage[name] = self.rollout.batch_tensor(rollout_name)
return value
else:
raise RuntimeError(f"Key {name} is not provided by this evaluator") | [
"def",
"get",
"(",
"self",
",",
"name",
")",
":",
"if",
"name",
"in",
"self",
".",
"_storage",
":",
"return",
"self",
".",
"_storage",
"[",
"name",
"]",
"elif",
"name",
"in",
"self",
".",
"_providers",
":",
"value",
"=",
"self",
".",
"_storage",
"[",
"name",
"]",
"=",
"self",
".",
"_providers",
"[",
"name",
"]",
"(",
"self",
")",
"return",
"value",
"elif",
"name",
".",
"startswith",
"(",
"'rollout:'",
")",
":",
"rollout_name",
"=",
"name",
"[",
"8",
":",
"]",
"value",
"=",
"self",
".",
"_storage",
"[",
"name",
"]",
"=",
"self",
".",
"rollout",
".",
"batch_tensor",
"(",
"rollout_name",
")",
"return",
"value",
"else",
":",
"raise",
"RuntimeError",
"(",
"f\"Key {name} is not provided by this evaluator\"",
")"
] | Return a value from this evaluator.
Because tensor calculated is cached, it may lead to suble bugs if the same value is used multiple times
with and without no_grad() context.
It is advised in such cases to not use no_grad and stick to .detach() | [
"Return",
"a",
"value",
"from",
"this",
"evaluator",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/evaluator.py#L114-L133 |
251,302 | MillionIntegrals/vel | vel/sources/vision/mnist.py | create | def create(model_config, batch_size, normalize=True, num_workers=0, augmentations=None):
""" Create a MNIST dataset, normalized """
path = model_config.data_dir('mnist')
train_dataset = datasets.MNIST(path, train=True, download=True)
test_dataset = datasets.MNIST(path, train=False, download=True)
augmentations = [ToArray()] + (augmentations if augmentations is not None else [])
if normalize:
train_data = train_dataset.train_data
mean_value = (train_data.double() / 255).mean().item()
std_value = (train_data.double() / 255).std().item()
augmentations.append(Normalize(mean=mean_value, std=std_value, tags=['train', 'val']))
augmentations.append(ToTensor())
return TrainingData(
train_dataset,
test_dataset,
num_workers=num_workers,
batch_size=batch_size,
augmentations=augmentations
) | python | def create(model_config, batch_size, normalize=True, num_workers=0, augmentations=None):
path = model_config.data_dir('mnist')
train_dataset = datasets.MNIST(path, train=True, download=True)
test_dataset = datasets.MNIST(path, train=False, download=True)
augmentations = [ToArray()] + (augmentations if augmentations is not None else [])
if normalize:
train_data = train_dataset.train_data
mean_value = (train_data.double() / 255).mean().item()
std_value = (train_data.double() / 255).std().item()
augmentations.append(Normalize(mean=mean_value, std=std_value, tags=['train', 'val']))
augmentations.append(ToTensor())
return TrainingData(
train_dataset,
test_dataset,
num_workers=num_workers,
batch_size=batch_size,
augmentations=augmentations
) | [
"def",
"create",
"(",
"model_config",
",",
"batch_size",
",",
"normalize",
"=",
"True",
",",
"num_workers",
"=",
"0",
",",
"augmentations",
"=",
"None",
")",
":",
"path",
"=",
"model_config",
".",
"data_dir",
"(",
"'mnist'",
")",
"train_dataset",
"=",
"datasets",
".",
"MNIST",
"(",
"path",
",",
"train",
"=",
"True",
",",
"download",
"=",
"True",
")",
"test_dataset",
"=",
"datasets",
".",
"MNIST",
"(",
"path",
",",
"train",
"=",
"False",
",",
"download",
"=",
"True",
")",
"augmentations",
"=",
"[",
"ToArray",
"(",
")",
"]",
"+",
"(",
"augmentations",
"if",
"augmentations",
"is",
"not",
"None",
"else",
"[",
"]",
")",
"if",
"normalize",
":",
"train_data",
"=",
"train_dataset",
".",
"train_data",
"mean_value",
"=",
"(",
"train_data",
".",
"double",
"(",
")",
"/",
"255",
")",
".",
"mean",
"(",
")",
".",
"item",
"(",
")",
"std_value",
"=",
"(",
"train_data",
".",
"double",
"(",
")",
"/",
"255",
")",
".",
"std",
"(",
")",
".",
"item",
"(",
")",
"augmentations",
".",
"append",
"(",
"Normalize",
"(",
"mean",
"=",
"mean_value",
",",
"std",
"=",
"std_value",
",",
"tags",
"=",
"[",
"'train'",
",",
"'val'",
"]",
")",
")",
"augmentations",
".",
"append",
"(",
"ToTensor",
"(",
")",
")",
"return",
"TrainingData",
"(",
"train_dataset",
",",
"test_dataset",
",",
"num_workers",
"=",
"num_workers",
",",
"batch_size",
"=",
"batch_size",
",",
"augmentations",
"=",
"augmentations",
")"
] | Create a MNIST dataset, normalized | [
"Create",
"a",
"MNIST",
"dataset",
"normalized"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/sources/vision/mnist.py#L11-L35 |
251,303 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage.reset | def reset(self, configuration: dict) -> None:
"""
Whenever there was anything stored in the database or not, purge previous state and start
new training process from scratch.
"""
self.clean(0)
self.backend.store_config(configuration) | python | def reset(self, configuration: dict) -> None:
self.clean(0)
self.backend.store_config(configuration) | [
"def",
"reset",
"(",
"self",
",",
"configuration",
":",
"dict",
")",
"->",
"None",
":",
"self",
".",
"clean",
"(",
"0",
")",
"self",
".",
"backend",
".",
"store_config",
"(",
"configuration",
")"
] | Whenever there was anything stored in the database or not, purge previous state and start
new training process from scratch. | [
"Whenever",
"there",
"was",
"anything",
"stored",
"in",
"the",
"database",
"or",
"not",
"purge",
"previous",
"state",
"and",
"start",
"new",
"training",
"process",
"from",
"scratch",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L26-L32 |
251,304 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage.load | def load(self, train_info: TrainingInfo) -> (dict, dict):
"""
Resume learning process and return loaded hidden state dictionary
"""
last_epoch = train_info.start_epoch_idx
model_state = torch.load(self.checkpoint_filename(last_epoch))
hidden_state = torch.load(self.checkpoint_hidden_filename(last_epoch))
self.checkpoint_strategy.restore(hidden_state)
train_info.restore(hidden_state)
return model_state, hidden_state | python | def load(self, train_info: TrainingInfo) -> (dict, dict):
last_epoch = train_info.start_epoch_idx
model_state = torch.load(self.checkpoint_filename(last_epoch))
hidden_state = torch.load(self.checkpoint_hidden_filename(last_epoch))
self.checkpoint_strategy.restore(hidden_state)
train_info.restore(hidden_state)
return model_state, hidden_state | [
"def",
"load",
"(",
"self",
",",
"train_info",
":",
"TrainingInfo",
")",
"->",
"(",
"dict",
",",
"dict",
")",
":",
"last_epoch",
"=",
"train_info",
".",
"start_epoch_idx",
"model_state",
"=",
"torch",
".",
"load",
"(",
"self",
".",
"checkpoint_filename",
"(",
"last_epoch",
")",
")",
"hidden_state",
"=",
"torch",
".",
"load",
"(",
"self",
".",
"checkpoint_hidden_filename",
"(",
"last_epoch",
")",
")",
"self",
".",
"checkpoint_strategy",
".",
"restore",
"(",
"hidden_state",
")",
"train_info",
".",
"restore",
"(",
"hidden_state",
")",
"return",
"model_state",
",",
"hidden_state"
] | Resume learning process and return loaded hidden state dictionary | [
"Resume",
"learning",
"process",
"and",
"return",
"loaded",
"hidden",
"state",
"dictionary"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L34-L46 |
251,305 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage.clean | def clean(self, global_epoch_idx):
""" Clean old checkpoints """
if self.cleaned:
return
self.cleaned = True
self.backend.clean(global_epoch_idx)
self._make_sure_dir_exists()
for x in os.listdir(self.model_config.checkpoint_dir()):
match = re.match('checkpoint_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x))
match = re.match('checkpoint_hidden_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x))
match = re.match('checkpoint_best_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x)) | python | def clean(self, global_epoch_idx):
if self.cleaned:
return
self.cleaned = True
self.backend.clean(global_epoch_idx)
self._make_sure_dir_exists()
for x in os.listdir(self.model_config.checkpoint_dir()):
match = re.match('checkpoint_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x))
match = re.match('checkpoint_hidden_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x))
match = re.match('checkpoint_best_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > global_epoch_idx:
os.remove(os.path.join(self.model_config.checkpoint_dir(), x)) | [
"def",
"clean",
"(",
"self",
",",
"global_epoch_idx",
")",
":",
"if",
"self",
".",
"cleaned",
":",
"return",
"self",
".",
"cleaned",
"=",
"True",
"self",
".",
"backend",
".",
"clean",
"(",
"global_epoch_idx",
")",
"self",
".",
"_make_sure_dir_exists",
"(",
")",
"for",
"x",
"in",
"os",
".",
"listdir",
"(",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
")",
":",
"match",
"=",
"re",
".",
"match",
"(",
"'checkpoint_(\\\\d+)\\\\.data'",
",",
"x",
")",
"if",
"match",
":",
"idx",
"=",
"int",
"(",
"match",
"[",
"1",
"]",
")",
"if",
"idx",
">",
"global_epoch_idx",
":",
"os",
".",
"remove",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
",",
"x",
")",
")",
"match",
"=",
"re",
".",
"match",
"(",
"'checkpoint_hidden_(\\\\d+)\\\\.data'",
",",
"x",
")",
"if",
"match",
":",
"idx",
"=",
"int",
"(",
"match",
"[",
"1",
"]",
")",
"if",
"idx",
">",
"global_epoch_idx",
":",
"os",
".",
"remove",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
",",
"x",
")",
")",
"match",
"=",
"re",
".",
"match",
"(",
"'checkpoint_best_(\\\\d+)\\\\.data'",
",",
"x",
")",
"if",
"match",
":",
"idx",
"=",
"int",
"(",
"match",
"[",
"1",
"]",
")",
"if",
"idx",
">",
"global_epoch_idx",
":",
"os",
".",
"remove",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
",",
"x",
")",
")"
] | Clean old checkpoints | [
"Clean",
"old",
"checkpoints"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L52-L85 |
251,306 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage.checkpoint | def checkpoint(self, epoch_info: EpochInfo, model: Model):
""" When epoch is done, we persist the training state """
self.clean(epoch_info.global_epoch_idx - 1)
self._make_sure_dir_exists()
# Checkpoint latest
torch.save(model.state_dict(), self.checkpoint_filename(epoch_info.global_epoch_idx))
hidden_state = epoch_info.state_dict()
self.checkpoint_strategy.write_state_dict(hidden_state)
torch.save(hidden_state, self.checkpoint_hidden_filename(epoch_info.global_epoch_idx))
if epoch_info.global_epoch_idx > 1 and self.checkpoint_strategy.should_delete_previous_checkpoint(
epoch_info.global_epoch_idx):
prev_epoch_idx = epoch_info.global_epoch_idx - 1
os.remove(self.checkpoint_filename(prev_epoch_idx))
os.remove(self.checkpoint_hidden_filename(prev_epoch_idx))
if self.checkpoint_strategy.should_store_best_checkpoint(epoch_info.global_epoch_idx, epoch_info.result):
best_checkpoint_idx = self.checkpoint_strategy.current_best_checkpoint_idx
if best_checkpoint_idx is not None:
os.remove(self.checkpoint_best_filename(best_checkpoint_idx))
torch.save(model.state_dict(), self.checkpoint_best_filename(epoch_info.global_epoch_idx))
self.checkpoint_strategy.store_best_checkpoint_idx(epoch_info.global_epoch_idx)
self.backend.store(epoch_info.result) | python | def checkpoint(self, epoch_info: EpochInfo, model: Model):
self.clean(epoch_info.global_epoch_idx - 1)
self._make_sure_dir_exists()
# Checkpoint latest
torch.save(model.state_dict(), self.checkpoint_filename(epoch_info.global_epoch_idx))
hidden_state = epoch_info.state_dict()
self.checkpoint_strategy.write_state_dict(hidden_state)
torch.save(hidden_state, self.checkpoint_hidden_filename(epoch_info.global_epoch_idx))
if epoch_info.global_epoch_idx > 1 and self.checkpoint_strategy.should_delete_previous_checkpoint(
epoch_info.global_epoch_idx):
prev_epoch_idx = epoch_info.global_epoch_idx - 1
os.remove(self.checkpoint_filename(prev_epoch_idx))
os.remove(self.checkpoint_hidden_filename(prev_epoch_idx))
if self.checkpoint_strategy.should_store_best_checkpoint(epoch_info.global_epoch_idx, epoch_info.result):
best_checkpoint_idx = self.checkpoint_strategy.current_best_checkpoint_idx
if best_checkpoint_idx is not None:
os.remove(self.checkpoint_best_filename(best_checkpoint_idx))
torch.save(model.state_dict(), self.checkpoint_best_filename(epoch_info.global_epoch_idx))
self.checkpoint_strategy.store_best_checkpoint_idx(epoch_info.global_epoch_idx)
self.backend.store(epoch_info.result) | [
"def",
"checkpoint",
"(",
"self",
",",
"epoch_info",
":",
"EpochInfo",
",",
"model",
":",
"Model",
")",
":",
"self",
".",
"clean",
"(",
"epoch_info",
".",
"global_epoch_idx",
"-",
"1",
")",
"self",
".",
"_make_sure_dir_exists",
"(",
")",
"# Checkpoint latest",
"torch",
".",
"save",
"(",
"model",
".",
"state_dict",
"(",
")",
",",
"self",
".",
"checkpoint_filename",
"(",
"epoch_info",
".",
"global_epoch_idx",
")",
")",
"hidden_state",
"=",
"epoch_info",
".",
"state_dict",
"(",
")",
"self",
".",
"checkpoint_strategy",
".",
"write_state_dict",
"(",
"hidden_state",
")",
"torch",
".",
"save",
"(",
"hidden_state",
",",
"self",
".",
"checkpoint_hidden_filename",
"(",
"epoch_info",
".",
"global_epoch_idx",
")",
")",
"if",
"epoch_info",
".",
"global_epoch_idx",
">",
"1",
"and",
"self",
".",
"checkpoint_strategy",
".",
"should_delete_previous_checkpoint",
"(",
"epoch_info",
".",
"global_epoch_idx",
")",
":",
"prev_epoch_idx",
"=",
"epoch_info",
".",
"global_epoch_idx",
"-",
"1",
"os",
".",
"remove",
"(",
"self",
".",
"checkpoint_filename",
"(",
"prev_epoch_idx",
")",
")",
"os",
".",
"remove",
"(",
"self",
".",
"checkpoint_hidden_filename",
"(",
"prev_epoch_idx",
")",
")",
"if",
"self",
".",
"checkpoint_strategy",
".",
"should_store_best_checkpoint",
"(",
"epoch_info",
".",
"global_epoch_idx",
",",
"epoch_info",
".",
"result",
")",
":",
"best_checkpoint_idx",
"=",
"self",
".",
"checkpoint_strategy",
".",
"current_best_checkpoint_idx",
"if",
"best_checkpoint_idx",
"is",
"not",
"None",
":",
"os",
".",
"remove",
"(",
"self",
".",
"checkpoint_best_filename",
"(",
"best_checkpoint_idx",
")",
")",
"torch",
".",
"save",
"(",
"model",
".",
"state_dict",
"(",
")",
",",
"self",
".",
"checkpoint_best_filename",
"(",
"epoch_info",
".",
"global_epoch_idx",
")",
")",
"self",
".",
"checkpoint_strategy",
".",
"store_best_checkpoint_idx",
"(",
"epoch_info",
".",
"global_epoch_idx",
")",
"self",
".",
"backend",
".",
"store",
"(",
"epoch_info",
".",
"result",
")"
] | When epoch is done, we persist the training state | [
"When",
"epoch",
"is",
"done",
"we",
"persist",
"the",
"training",
"state"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L87-L118 |
251,307 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage._persisted_last_epoch | def _persisted_last_epoch(self) -> int:
""" Return number of last epoch already calculated """
epoch_number = 0
self._make_sure_dir_exists()
for x in os.listdir(self.model_config.checkpoint_dir()):
match = re.match('checkpoint_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > epoch_number:
epoch_number = idx
return epoch_number | python | def _persisted_last_epoch(self) -> int:
epoch_number = 0
self._make_sure_dir_exists()
for x in os.listdir(self.model_config.checkpoint_dir()):
match = re.match('checkpoint_(\\d+)\\.data', x)
if match:
idx = int(match[1])
if idx > epoch_number:
epoch_number = idx
return epoch_number | [
"def",
"_persisted_last_epoch",
"(",
"self",
")",
"->",
"int",
":",
"epoch_number",
"=",
"0",
"self",
".",
"_make_sure_dir_exists",
"(",
")",
"for",
"x",
"in",
"os",
".",
"listdir",
"(",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
")",
":",
"match",
"=",
"re",
".",
"match",
"(",
"'checkpoint_(\\\\d+)\\\\.data'",
",",
"x",
")",
"if",
"match",
":",
"idx",
"=",
"int",
"(",
"match",
"[",
"1",
"]",
")",
"if",
"idx",
">",
"epoch_number",
":",
"epoch_number",
"=",
"idx",
"return",
"epoch_number"
] | Return number of last epoch already calculated | [
"Return",
"number",
"of",
"last",
"epoch",
"already",
"calculated"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L140-L153 |
251,308 | MillionIntegrals/vel | vel/storage/classic.py | ClassicStorage._make_sure_dir_exists | def _make_sure_dir_exists(self):
""" Make sure directory exists """
filename = self.model_config.checkpoint_dir()
pathlib.Path(filename).mkdir(parents=True, exist_ok=True) | python | def _make_sure_dir_exists(self):
filename = self.model_config.checkpoint_dir()
pathlib.Path(filename).mkdir(parents=True, exist_ok=True) | [
"def",
"_make_sure_dir_exists",
"(",
"self",
")",
":",
"filename",
"=",
"self",
".",
"model_config",
".",
"checkpoint_dir",
"(",
")",
"pathlib",
".",
"Path",
"(",
"filename",
")",
".",
"mkdir",
"(",
"parents",
"=",
"True",
",",
"exist_ok",
"=",
"True",
")"
] | Make sure directory exists | [
"Make",
"sure",
"directory",
"exists"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/classic.py#L155-L158 |
251,309 | MillionIntegrals/vel | vel/rl/api/algo_base.py | clip_gradients | def clip_gradients(batch_result, model, max_grad_norm):
""" Clip gradients to a given maximum length """
if max_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, model.parameters()),
max_norm=max_grad_norm
)
else:
grad_norm = 0.0
batch_result['grad_norm'] = grad_norm | python | def clip_gradients(batch_result, model, max_grad_norm):
if max_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, model.parameters()),
max_norm=max_grad_norm
)
else:
grad_norm = 0.0
batch_result['grad_norm'] = grad_norm | [
"def",
"clip_gradients",
"(",
"batch_result",
",",
"model",
",",
"max_grad_norm",
")",
":",
"if",
"max_grad_norm",
"is",
"not",
"None",
":",
"grad_norm",
"=",
"torch",
".",
"nn",
".",
"utils",
".",
"clip_grad_norm_",
"(",
"filter",
"(",
"lambda",
"p",
":",
"p",
".",
"requires_grad",
",",
"model",
".",
"parameters",
"(",
")",
")",
",",
"max_norm",
"=",
"max_grad_norm",
")",
"else",
":",
"grad_norm",
"=",
"0.0",
"batch_result",
"[",
"'grad_norm'",
"]",
"=",
"grad_norm"
] | Clip gradients to a given maximum length | [
"Clip",
"gradients",
"to",
"a",
"given",
"maximum",
"length"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/algo_base.py#L4-L14 |
251,310 | MillionIntegrals/vel | vel/rl/buffers/circular_replay_buffer.py | CircularReplayBuffer.sample_trajectories | def sample_trajectories(self, rollout_length, batch_info) -> Trajectories:
""" Sample batch of trajectories and return them """
indexes = self.backend.sample_batch_trajectories(rollout_length)
transition_tensors = self.backend.get_trajectories(indexes, rollout_length)
return Trajectories(
num_steps=rollout_length,
num_envs=self.backend.num_envs,
environment_information=None,
transition_tensors={k: torch.from_numpy(v) for k, v in transition_tensors.items()},
rollout_tensors={}
) | python | def sample_trajectories(self, rollout_length, batch_info) -> Trajectories:
indexes = self.backend.sample_batch_trajectories(rollout_length)
transition_tensors = self.backend.get_trajectories(indexes, rollout_length)
return Trajectories(
num_steps=rollout_length,
num_envs=self.backend.num_envs,
environment_information=None,
transition_tensors={k: torch.from_numpy(v) for k, v in transition_tensors.items()},
rollout_tensors={}
) | [
"def",
"sample_trajectories",
"(",
"self",
",",
"rollout_length",
",",
"batch_info",
")",
"->",
"Trajectories",
":",
"indexes",
"=",
"self",
".",
"backend",
".",
"sample_batch_trajectories",
"(",
"rollout_length",
")",
"transition_tensors",
"=",
"self",
".",
"backend",
".",
"get_trajectories",
"(",
"indexes",
",",
"rollout_length",
")",
"return",
"Trajectories",
"(",
"num_steps",
"=",
"rollout_length",
",",
"num_envs",
"=",
"self",
".",
"backend",
".",
"num_envs",
",",
"environment_information",
"=",
"None",
",",
"transition_tensors",
"=",
"{",
"k",
":",
"torch",
".",
"from_numpy",
"(",
"v",
")",
"for",
"k",
",",
"v",
"in",
"transition_tensors",
".",
"items",
"(",
")",
"}",
",",
"rollout_tensors",
"=",
"{",
"}",
")"
] | Sample batch of trajectories and return them | [
"Sample",
"batch",
"of",
"trajectories",
"and",
"return",
"them"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/circular_replay_buffer.py#L52-L63 |
251,311 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/trpo.py | conjugate_gradient_method | def conjugate_gradient_method(matrix_vector_operator, loss_gradient, nsteps, rdotr_tol=1e-10):
""" Conjugate gradient algorithm """
x = torch.zeros_like(loss_gradient)
r = loss_gradient.clone()
p = loss_gradient.clone()
rdotr = torch.dot(r, r)
for i in range(nsteps):
Avp = matrix_vector_operator(p)
alpha = rdotr / torch.dot(p, Avp)
x += alpha * p
r -= alpha * Avp
new_rdotr = torch.dot(r, r)
betta = new_rdotr / rdotr
p = r + betta * p
rdotr = new_rdotr
if rdotr < rdotr_tol:
break
return x | python | def conjugate_gradient_method(matrix_vector_operator, loss_gradient, nsteps, rdotr_tol=1e-10):
x = torch.zeros_like(loss_gradient)
r = loss_gradient.clone()
p = loss_gradient.clone()
rdotr = torch.dot(r, r)
for i in range(nsteps):
Avp = matrix_vector_operator(p)
alpha = rdotr / torch.dot(p, Avp)
x += alpha * p
r -= alpha * Avp
new_rdotr = torch.dot(r, r)
betta = new_rdotr / rdotr
p = r + betta * p
rdotr = new_rdotr
if rdotr < rdotr_tol:
break
return x | [
"def",
"conjugate_gradient_method",
"(",
"matrix_vector_operator",
",",
"loss_gradient",
",",
"nsteps",
",",
"rdotr_tol",
"=",
"1e-10",
")",
":",
"x",
"=",
"torch",
".",
"zeros_like",
"(",
"loss_gradient",
")",
"r",
"=",
"loss_gradient",
".",
"clone",
"(",
")",
"p",
"=",
"loss_gradient",
".",
"clone",
"(",
")",
"rdotr",
"=",
"torch",
".",
"dot",
"(",
"r",
",",
"r",
")",
"for",
"i",
"in",
"range",
"(",
"nsteps",
")",
":",
"Avp",
"=",
"matrix_vector_operator",
"(",
"p",
")",
"alpha",
"=",
"rdotr",
"/",
"torch",
".",
"dot",
"(",
"p",
",",
"Avp",
")",
"x",
"+=",
"alpha",
"*",
"p",
"r",
"-=",
"alpha",
"*",
"Avp",
"new_rdotr",
"=",
"torch",
".",
"dot",
"(",
"r",
",",
"r",
")",
"betta",
"=",
"new_rdotr",
"/",
"rdotr",
"p",
"=",
"r",
"+",
"betta",
"*",
"p",
"rdotr",
"=",
"new_rdotr",
"if",
"rdotr",
"<",
"rdotr_tol",
":",
"break",
"return",
"x"
] | Conjugate gradient algorithm | [
"Conjugate",
"gradient",
"algorithm"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/trpo.py#L23-L47 |
251,312 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/trpo.py | TrpoPolicyGradient.line_search | def line_search(self, model, rollout, original_policy_loss, original_policy_params, original_parameter_vec,
full_step, expected_improvement_full):
""" Find the right stepsize to make sure policy improves """
current_parameter_vec = original_parameter_vec.clone()
for idx in range(self.line_search_iters):
stepsize = 0.5 ** idx
new_parameter_vec = current_parameter_vec + stepsize * full_step
# Update model parameters
v2p(new_parameter_vec, model.policy_parameters())
# Calculate new loss
with torch.no_grad():
policy_params = model.policy(rollout.batch_tensor('observations'))
policy_entropy = torch.mean(model.entropy(policy_params))
kl_divergence = torch.mean(model.kl_divergence(original_policy_params, policy_params))
new_loss = self.calc_policy_loss(model, policy_params, policy_entropy, rollout)
actual_improvement = original_policy_loss - new_loss
expected_improvement = expected_improvement_full * stepsize
ratio = actual_improvement / expected_improvement
if kl_divergence.item() > self.mak_kl * 1.5:
# KL divergence bound exceeded
continue
elif ratio < expected_improvement:
# Not enough loss improvement
continue
else:
# Optimization successful
return True, ratio, actual_improvement, new_loss, kl_divergence
# Optimization failed, revert to initial parameters
v2p(original_parameter_vec, model.policy_parameters())
return False, torch.tensor(0.0), torch.tensor(0.0), torch.tensor(0.0), torch.tensor(0.0) | python | def line_search(self, model, rollout, original_policy_loss, original_policy_params, original_parameter_vec,
full_step, expected_improvement_full):
current_parameter_vec = original_parameter_vec.clone()
for idx in range(self.line_search_iters):
stepsize = 0.5 ** idx
new_parameter_vec = current_parameter_vec + stepsize * full_step
# Update model parameters
v2p(new_parameter_vec, model.policy_parameters())
# Calculate new loss
with torch.no_grad():
policy_params = model.policy(rollout.batch_tensor('observations'))
policy_entropy = torch.mean(model.entropy(policy_params))
kl_divergence = torch.mean(model.kl_divergence(original_policy_params, policy_params))
new_loss = self.calc_policy_loss(model, policy_params, policy_entropy, rollout)
actual_improvement = original_policy_loss - new_loss
expected_improvement = expected_improvement_full * stepsize
ratio = actual_improvement / expected_improvement
if kl_divergence.item() > self.mak_kl * 1.5:
# KL divergence bound exceeded
continue
elif ratio < expected_improvement:
# Not enough loss improvement
continue
else:
# Optimization successful
return True, ratio, actual_improvement, new_loss, kl_divergence
# Optimization failed, revert to initial parameters
v2p(original_parameter_vec, model.policy_parameters())
return False, torch.tensor(0.0), torch.tensor(0.0), torch.tensor(0.0), torch.tensor(0.0) | [
"def",
"line_search",
"(",
"self",
",",
"model",
",",
"rollout",
",",
"original_policy_loss",
",",
"original_policy_params",
",",
"original_parameter_vec",
",",
"full_step",
",",
"expected_improvement_full",
")",
":",
"current_parameter_vec",
"=",
"original_parameter_vec",
".",
"clone",
"(",
")",
"for",
"idx",
"in",
"range",
"(",
"self",
".",
"line_search_iters",
")",
":",
"stepsize",
"=",
"0.5",
"**",
"idx",
"new_parameter_vec",
"=",
"current_parameter_vec",
"+",
"stepsize",
"*",
"full_step",
"# Update model parameters",
"v2p",
"(",
"new_parameter_vec",
",",
"model",
".",
"policy_parameters",
"(",
")",
")",
"# Calculate new loss",
"with",
"torch",
".",
"no_grad",
"(",
")",
":",
"policy_params",
"=",
"model",
".",
"policy",
"(",
"rollout",
".",
"batch_tensor",
"(",
"'observations'",
")",
")",
"policy_entropy",
"=",
"torch",
".",
"mean",
"(",
"model",
".",
"entropy",
"(",
"policy_params",
")",
")",
"kl_divergence",
"=",
"torch",
".",
"mean",
"(",
"model",
".",
"kl_divergence",
"(",
"original_policy_params",
",",
"policy_params",
")",
")",
"new_loss",
"=",
"self",
".",
"calc_policy_loss",
"(",
"model",
",",
"policy_params",
",",
"policy_entropy",
",",
"rollout",
")",
"actual_improvement",
"=",
"original_policy_loss",
"-",
"new_loss",
"expected_improvement",
"=",
"expected_improvement_full",
"*",
"stepsize",
"ratio",
"=",
"actual_improvement",
"/",
"expected_improvement",
"if",
"kl_divergence",
".",
"item",
"(",
")",
">",
"self",
".",
"mak_kl",
"*",
"1.5",
":",
"# KL divergence bound exceeded",
"continue",
"elif",
"ratio",
"<",
"expected_improvement",
":",
"# Not enough loss improvement",
"continue",
"else",
":",
"# Optimization successful",
"return",
"True",
",",
"ratio",
",",
"actual_improvement",
",",
"new_loss",
",",
"kl_divergence",
"# Optimization failed, revert to initial parameters",
"v2p",
"(",
"original_parameter_vec",
",",
"model",
".",
"policy_parameters",
"(",
")",
")",
"return",
"False",
",",
"torch",
".",
"tensor",
"(",
"0.0",
")",
",",
"torch",
".",
"tensor",
"(",
"0.0",
")",
",",
"torch",
".",
"tensor",
"(",
"0.0",
")",
",",
"torch",
".",
"tensor",
"(",
"0.0",
")"
] | Find the right stepsize to make sure policy improves | [
"Find",
"the",
"right",
"stepsize",
"to",
"make",
"sure",
"policy",
"improves"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/trpo.py#L167-L205 |
251,313 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/trpo.py | TrpoPolicyGradient.fisher_vector_product | def fisher_vector_product(self, vector, kl_divergence_gradient, model):
""" Calculate product Hessian @ vector """
assert not vector.requires_grad, "Vector must not propagate gradient"
dot_product = vector @ kl_divergence_gradient
# at least one dimension spans across two contiguous subspaces
double_gradient = torch.autograd.grad(dot_product, model.policy_parameters(), retain_graph=True)
fvp = p2v(x.contiguous() for x in double_gradient)
return fvp + vector * self.cg_damping | python | def fisher_vector_product(self, vector, kl_divergence_gradient, model):
assert not vector.requires_grad, "Vector must not propagate gradient"
dot_product = vector @ kl_divergence_gradient
# at least one dimension spans across two contiguous subspaces
double_gradient = torch.autograd.grad(dot_product, model.policy_parameters(), retain_graph=True)
fvp = p2v(x.contiguous() for x in double_gradient)
return fvp + vector * self.cg_damping | [
"def",
"fisher_vector_product",
"(",
"self",
",",
"vector",
",",
"kl_divergence_gradient",
",",
"model",
")",
":",
"assert",
"not",
"vector",
".",
"requires_grad",
",",
"\"Vector must not propagate gradient\"",
"dot_product",
"=",
"vector",
"@",
"kl_divergence_gradient",
"# at least one dimension spans across two contiguous subspaces",
"double_gradient",
"=",
"torch",
".",
"autograd",
".",
"grad",
"(",
"dot_product",
",",
"model",
".",
"policy_parameters",
"(",
")",
",",
"retain_graph",
"=",
"True",
")",
"fvp",
"=",
"p2v",
"(",
"x",
".",
"contiguous",
"(",
")",
"for",
"x",
"in",
"double_gradient",
")",
"return",
"fvp",
"+",
"vector",
"*",
"self",
".",
"cg_damping"
] | Calculate product Hessian @ vector | [
"Calculate",
"product",
"Hessian"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/trpo.py#L207-L216 |
251,314 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/trpo.py | TrpoPolicyGradient.value_loss | def value_loss(self, model, observations, discounted_rewards):
""" Loss of value estimator """
value_outputs = model.value(observations)
value_loss = 0.5 * F.mse_loss(value_outputs, discounted_rewards)
return value_loss | python | def value_loss(self, model, observations, discounted_rewards):
value_outputs = model.value(observations)
value_loss = 0.5 * F.mse_loss(value_outputs, discounted_rewards)
return value_loss | [
"def",
"value_loss",
"(",
"self",
",",
"model",
",",
"observations",
",",
"discounted_rewards",
")",
":",
"value_outputs",
"=",
"model",
".",
"value",
"(",
"observations",
")",
"value_loss",
"=",
"0.5",
"*",
"F",
".",
"mse_loss",
"(",
"value_outputs",
",",
"discounted_rewards",
")",
"return",
"value_loss"
] | Loss of value estimator | [
"Loss",
"of",
"value",
"estimator"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/trpo.py#L218-L222 |
251,315 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/trpo.py | TrpoPolicyGradient.calc_policy_loss | def calc_policy_loss(self, model, policy_params, policy_entropy, rollout):
"""
Policy gradient loss - calculate from probability distribution
Calculate surrogate loss - advantage * policy_probability / fixed_initial_policy_probability
Because we operate with logarithm of -probability (neglogp) we do
- advantage * exp(fixed_neglogps - model_neglogps)
"""
actions = rollout.batch_tensor('actions')
advantages = rollout.batch_tensor('advantages')
fixed_logprobs = rollout.batch_tensor('action:logprobs')
model_logprobs = model.logprob(actions, policy_params)
# Normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# We put - in front because we want to maximize the surrogate objective
policy_loss = -advantages * torch.exp(model_logprobs - fixed_logprobs)
return policy_loss.mean() - policy_entropy * self.entropy_coef | python | def calc_policy_loss(self, model, policy_params, policy_entropy, rollout):
actions = rollout.batch_tensor('actions')
advantages = rollout.batch_tensor('advantages')
fixed_logprobs = rollout.batch_tensor('action:logprobs')
model_logprobs = model.logprob(actions, policy_params)
# Normalize advantages
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
# We put - in front because we want to maximize the surrogate objective
policy_loss = -advantages * torch.exp(model_logprobs - fixed_logprobs)
return policy_loss.mean() - policy_entropy * self.entropy_coef | [
"def",
"calc_policy_loss",
"(",
"self",
",",
"model",
",",
"policy_params",
",",
"policy_entropy",
",",
"rollout",
")",
":",
"actions",
"=",
"rollout",
".",
"batch_tensor",
"(",
"'actions'",
")",
"advantages",
"=",
"rollout",
".",
"batch_tensor",
"(",
"'advantages'",
")",
"fixed_logprobs",
"=",
"rollout",
".",
"batch_tensor",
"(",
"'action:logprobs'",
")",
"model_logprobs",
"=",
"model",
".",
"logprob",
"(",
"actions",
",",
"policy_params",
")",
"# Normalize advantages",
"advantages",
"=",
"(",
"advantages",
"-",
"advantages",
".",
"mean",
"(",
")",
")",
"/",
"(",
"advantages",
".",
"std",
"(",
")",
"+",
"1e-8",
")",
"# We put - in front because we want to maximize the surrogate objective",
"policy_loss",
"=",
"-",
"advantages",
"*",
"torch",
".",
"exp",
"(",
"model_logprobs",
"-",
"fixed_logprobs",
")",
"return",
"policy_loss",
".",
"mean",
"(",
")",
"-",
"policy_entropy",
"*",
"self",
".",
"entropy_coef"
] | Policy gradient loss - calculate from probability distribution
Calculate surrogate loss - advantage * policy_probability / fixed_initial_policy_probability
Because we operate with logarithm of -probability (neglogp) we do
- advantage * exp(fixed_neglogps - model_neglogps) | [
"Policy",
"gradient",
"loss",
"-",
"calculate",
"from",
"probability",
"distribution"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/trpo.py#L224-L245 |
251,316 | MillionIntegrals/vel | vel/rl/api/rollout.py | Transitions.shuffled_batches | def shuffled_batches(self, batch_size):
""" Generate randomized batches of data """
if batch_size >= self.size:
yield self
else:
batch_splits = math_util.divide_ceiling(self.size, batch_size)
indices = list(range(self.size))
np.random.shuffle(indices)
for sub_indices in np.array_split(indices, batch_splits):
yield Transitions(
size=len(sub_indices),
environment_information=None,
# Dont use it in batches for a moment, can be uncommented later if needed
# environment_information=[info[sub_indices.tolist()] for info in self.environment_information]
transition_tensors={k: v[sub_indices] for k, v in self.transition_tensors.items()}
# extra_data does not go into batches
) | python | def shuffled_batches(self, batch_size):
if batch_size >= self.size:
yield self
else:
batch_splits = math_util.divide_ceiling(self.size, batch_size)
indices = list(range(self.size))
np.random.shuffle(indices)
for sub_indices in np.array_split(indices, batch_splits):
yield Transitions(
size=len(sub_indices),
environment_information=None,
# Dont use it in batches for a moment, can be uncommented later if needed
# environment_information=[info[sub_indices.tolist()] for info in self.environment_information]
transition_tensors={k: v[sub_indices] for k, v in self.transition_tensors.items()}
# extra_data does not go into batches
) | [
"def",
"shuffled_batches",
"(",
"self",
",",
"batch_size",
")",
":",
"if",
"batch_size",
">=",
"self",
".",
"size",
":",
"yield",
"self",
"else",
":",
"batch_splits",
"=",
"math_util",
".",
"divide_ceiling",
"(",
"self",
".",
"size",
",",
"batch_size",
")",
"indices",
"=",
"list",
"(",
"range",
"(",
"self",
".",
"size",
")",
")",
"np",
".",
"random",
".",
"shuffle",
"(",
"indices",
")",
"for",
"sub_indices",
"in",
"np",
".",
"array_split",
"(",
"indices",
",",
"batch_splits",
")",
":",
"yield",
"Transitions",
"(",
"size",
"=",
"len",
"(",
"sub_indices",
")",
",",
"environment_information",
"=",
"None",
",",
"# Dont use it in batches for a moment, can be uncommented later if needed",
"# environment_information=[info[sub_indices.tolist()] for info in self.environment_information]",
"transition_tensors",
"=",
"{",
"k",
":",
"v",
"[",
"sub_indices",
"]",
"for",
"k",
",",
"v",
"in",
"self",
".",
"transition_tensors",
".",
"items",
"(",
")",
"}",
"# extra_data does not go into batches",
")"
] | Generate randomized batches of data | [
"Generate",
"randomized",
"batches",
"of",
"data"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/rollout.py#L59-L76 |
251,317 | MillionIntegrals/vel | vel/rl/api/rollout.py | Trajectories.to_transitions | def to_transitions(self) -> 'Transitions':
""" Convert given rollout to Transitions """
# No need to propagate 'rollout_tensors' as they won't mean anything
return Transitions(
size=self.num_steps * self.num_envs,
environment_information=
[ei for l in self.environment_information for ei in l]
if self.environment_information is not None else None,
transition_tensors={
name: tensor_util.merge_first_two_dims(t) for name, t in self.transition_tensors.items()
},
extra_data=self.extra_data
) | python | def to_transitions(self) -> 'Transitions':
# No need to propagate 'rollout_tensors' as they won't mean anything
return Transitions(
size=self.num_steps * self.num_envs,
environment_information=
[ei for l in self.environment_information for ei in l]
if self.environment_information is not None else None,
transition_tensors={
name: tensor_util.merge_first_two_dims(t) for name, t in self.transition_tensors.items()
},
extra_data=self.extra_data
) | [
"def",
"to_transitions",
"(",
"self",
")",
"->",
"'Transitions'",
":",
"# No need to propagate 'rollout_tensors' as they won't mean anything",
"return",
"Transitions",
"(",
"size",
"=",
"self",
".",
"num_steps",
"*",
"self",
".",
"num_envs",
",",
"environment_information",
"=",
"[",
"ei",
"for",
"l",
"in",
"self",
".",
"environment_information",
"for",
"ei",
"in",
"l",
"]",
"if",
"self",
".",
"environment_information",
"is",
"not",
"None",
"else",
"None",
",",
"transition_tensors",
"=",
"{",
"name",
":",
"tensor_util",
".",
"merge_first_two_dims",
"(",
"t",
")",
"for",
"name",
",",
"t",
"in",
"self",
".",
"transition_tensors",
".",
"items",
"(",
")",
"}",
",",
"extra_data",
"=",
"self",
".",
"extra_data",
")"
] | Convert given rollout to Transitions | [
"Convert",
"given",
"rollout",
"to",
"Transitions"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/rollout.py#L111-L123 |
251,318 | MillionIntegrals/vel | vel/rl/api/rollout.py | Trajectories.shuffled_batches | def shuffled_batches(self, batch_size):
""" Generate randomized batches of data - only sample whole trajectories """
if batch_size >= self.num_envs * self.num_steps:
yield self
else:
rollouts_in_batch = batch_size // self.num_steps
batch_splits = math_util.divide_ceiling(self.num_envs, rollouts_in_batch)
indices = list(range(self.num_envs))
np.random.shuffle(indices)
for sub_indices in np.array_split(indices, batch_splits):
yield Trajectories(
num_steps=self.num_steps,
num_envs=len(sub_indices),
# Dont use it in batches for a moment, can be uncommented later if needed
# environment_information=[x[sub_indices.tolist()] for x in self.environment_information],
environment_information=None,
transition_tensors={k: x[:, sub_indices] for k, x in self.transition_tensors.items()},
rollout_tensors={k: x[sub_indices] for k, x in self.rollout_tensors.items()},
# extra_data does not go into batches
) | python | def shuffled_batches(self, batch_size):
if batch_size >= self.num_envs * self.num_steps:
yield self
else:
rollouts_in_batch = batch_size // self.num_steps
batch_splits = math_util.divide_ceiling(self.num_envs, rollouts_in_batch)
indices = list(range(self.num_envs))
np.random.shuffle(indices)
for sub_indices in np.array_split(indices, batch_splits):
yield Trajectories(
num_steps=self.num_steps,
num_envs=len(sub_indices),
# Dont use it in batches for a moment, can be uncommented later if needed
# environment_information=[x[sub_indices.tolist()] for x in self.environment_information],
environment_information=None,
transition_tensors={k: x[:, sub_indices] for k, x in self.transition_tensors.items()},
rollout_tensors={k: x[sub_indices] for k, x in self.rollout_tensors.items()},
# extra_data does not go into batches
) | [
"def",
"shuffled_batches",
"(",
"self",
",",
"batch_size",
")",
":",
"if",
"batch_size",
">=",
"self",
".",
"num_envs",
"*",
"self",
".",
"num_steps",
":",
"yield",
"self",
"else",
":",
"rollouts_in_batch",
"=",
"batch_size",
"//",
"self",
".",
"num_steps",
"batch_splits",
"=",
"math_util",
".",
"divide_ceiling",
"(",
"self",
".",
"num_envs",
",",
"rollouts_in_batch",
")",
"indices",
"=",
"list",
"(",
"range",
"(",
"self",
".",
"num_envs",
")",
")",
"np",
".",
"random",
".",
"shuffle",
"(",
"indices",
")",
"for",
"sub_indices",
"in",
"np",
".",
"array_split",
"(",
"indices",
",",
"batch_splits",
")",
":",
"yield",
"Trajectories",
"(",
"num_steps",
"=",
"self",
".",
"num_steps",
",",
"num_envs",
"=",
"len",
"(",
"sub_indices",
")",
",",
"# Dont use it in batches for a moment, can be uncommented later if needed",
"# environment_information=[x[sub_indices.tolist()] for x in self.environment_information],",
"environment_information",
"=",
"None",
",",
"transition_tensors",
"=",
"{",
"k",
":",
"x",
"[",
":",
",",
"sub_indices",
"]",
"for",
"k",
",",
"x",
"in",
"self",
".",
"transition_tensors",
".",
"items",
"(",
")",
"}",
",",
"rollout_tensors",
"=",
"{",
"k",
":",
"x",
"[",
"sub_indices",
"]",
"for",
"k",
",",
"x",
"in",
"self",
".",
"rollout_tensors",
".",
"items",
"(",
")",
"}",
",",
"# extra_data does not go into batches",
")"
] | Generate randomized batches of data - only sample whole trajectories | [
"Generate",
"randomized",
"batches",
"of",
"data",
"-",
"only",
"sample",
"whole",
"trajectories"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/rollout.py#L125-L147 |
251,319 | MillionIntegrals/vel | vel/rl/api/rollout.py | Trajectories.episode_information | def episode_information(self):
""" List of information about finished episodes """
return [
info.get('episode') for infolist in self.environment_information for info in infolist if 'episode' in info
] | python | def episode_information(self):
return [
info.get('episode') for infolist in self.environment_information for info in infolist if 'episode' in info
] | [
"def",
"episode_information",
"(",
"self",
")",
":",
"return",
"[",
"info",
".",
"get",
"(",
"'episode'",
")",
"for",
"infolist",
"in",
"self",
".",
"environment_information",
"for",
"info",
"in",
"infolist",
"if",
"'episode'",
"in",
"info",
"]"
] | List of information about finished episodes | [
"List",
"of",
"information",
"about",
"finished",
"episodes"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/rollout.py#L164-L168 |
251,320 | MillionIntegrals/vel | vel/models/rnn/multilayer_rnn_sequence_model.py | MultilayerRnnSequenceModel.forward_state | def forward_state(self, sequence, state=None):
""" Forward propagate a sequence through the network accounting for the state """
if state is None:
state = self.zero_state(sequence.size(0))
data = self.input_block(sequence)
state_outputs = []
# for layer_length, layer in zip(self.hidden_layers, self.recurrent_layers):
for idx in range(len(self.recurrent_layers)):
layer_length = self.recurrent_layers[idx].state_dim
# Partition hidden state, for each layer we have layer_length of h state and layer_length of c state
current_state = state[:, :, :layer_length]
state = state[:, :, layer_length:]
# Propagate through the GRU state
data, new_h = self.recurrent_layers[idx](data, current_state)
if self.dropout_layers:
data = self.dropout_layers[idx](data)
state_outputs.append(new_h)
output_data = self.output_activation(self.output_layer(data))
concatenated_hidden_output = torch.cat(state_outputs, dim=2)
return output_data, concatenated_hidden_output | python | def forward_state(self, sequence, state=None):
if state is None:
state = self.zero_state(sequence.size(0))
data = self.input_block(sequence)
state_outputs = []
# for layer_length, layer in zip(self.hidden_layers, self.recurrent_layers):
for idx in range(len(self.recurrent_layers)):
layer_length = self.recurrent_layers[idx].state_dim
# Partition hidden state, for each layer we have layer_length of h state and layer_length of c state
current_state = state[:, :, :layer_length]
state = state[:, :, layer_length:]
# Propagate through the GRU state
data, new_h = self.recurrent_layers[idx](data, current_state)
if self.dropout_layers:
data = self.dropout_layers[idx](data)
state_outputs.append(new_h)
output_data = self.output_activation(self.output_layer(data))
concatenated_hidden_output = torch.cat(state_outputs, dim=2)
return output_data, concatenated_hidden_output | [
"def",
"forward_state",
"(",
"self",
",",
"sequence",
",",
"state",
"=",
"None",
")",
":",
"if",
"state",
"is",
"None",
":",
"state",
"=",
"self",
".",
"zero_state",
"(",
"sequence",
".",
"size",
"(",
"0",
")",
")",
"data",
"=",
"self",
".",
"input_block",
"(",
"sequence",
")",
"state_outputs",
"=",
"[",
"]",
"# for layer_length, layer in zip(self.hidden_layers, self.recurrent_layers):",
"for",
"idx",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"recurrent_layers",
")",
")",
":",
"layer_length",
"=",
"self",
".",
"recurrent_layers",
"[",
"idx",
"]",
".",
"state_dim",
"# Partition hidden state, for each layer we have layer_length of h state and layer_length of c state",
"current_state",
"=",
"state",
"[",
":",
",",
":",
",",
":",
"layer_length",
"]",
"state",
"=",
"state",
"[",
":",
",",
":",
",",
"layer_length",
":",
"]",
"# Propagate through the GRU state",
"data",
",",
"new_h",
"=",
"self",
".",
"recurrent_layers",
"[",
"idx",
"]",
"(",
"data",
",",
"current_state",
")",
"if",
"self",
".",
"dropout_layers",
":",
"data",
"=",
"self",
".",
"dropout_layers",
"[",
"idx",
"]",
"(",
"data",
")",
"state_outputs",
".",
"append",
"(",
"new_h",
")",
"output_data",
"=",
"self",
".",
"output_activation",
"(",
"self",
".",
"output_layer",
"(",
"data",
")",
")",
"concatenated_hidden_output",
"=",
"torch",
".",
"cat",
"(",
"state_outputs",
",",
"dim",
"=",
"2",
")",
"return",
"output_data",
",",
"concatenated_hidden_output"
] | Forward propagate a sequence through the network accounting for the state | [
"Forward",
"propagate",
"a",
"sequence",
"through",
"the",
"network",
"accounting",
"for",
"the",
"state"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/models/rnn/multilayer_rnn_sequence_model.py#L66-L95 |
251,321 | MillionIntegrals/vel | vel/models/rnn/multilayer_rnn_sequence_model.py | MultilayerRnnSequenceModel.loss_value | def loss_value(self, x_data, y_true, y_pred):
""" Calculate a value of loss function """
y_pred = y_pred.view(-1, y_pred.size(2))
y_true = y_true.view(-1).to(torch.long)
return F.nll_loss(y_pred, y_true) | python | def loss_value(self, x_data, y_true, y_pred):
y_pred = y_pred.view(-1, y_pred.size(2))
y_true = y_true.view(-1).to(torch.long)
return F.nll_loss(y_pred, y_true) | [
"def",
"loss_value",
"(",
"self",
",",
"x_data",
",",
"y_true",
",",
"y_pred",
")",
":",
"y_pred",
"=",
"y_pred",
".",
"view",
"(",
"-",
"1",
",",
"y_pred",
".",
"size",
"(",
"2",
")",
")",
"y_true",
"=",
"y_true",
".",
"view",
"(",
"-",
"1",
")",
".",
"to",
"(",
"torch",
".",
"long",
")",
"return",
"F",
".",
"nll_loss",
"(",
"y_pred",
",",
"y_true",
")"
] | Calculate a value of loss function | [
"Calculate",
"a",
"value",
"of",
"loss",
"function"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/models/rnn/multilayer_rnn_sequence_model.py#L106-L110 |
251,322 | MillionIntegrals/vel | vel/api/learner.py | Learner.initialize_training | def initialize_training(self, training_info: TrainingInfo, model_state=None, hidden_state=None):
""" Prepare for training """
if model_state is None:
self.model.reset_weights()
else:
self.model.load_state_dict(model_state) | python | def initialize_training(self, training_info: TrainingInfo, model_state=None, hidden_state=None):
if model_state is None:
self.model.reset_weights()
else:
self.model.load_state_dict(model_state) | [
"def",
"initialize_training",
"(",
"self",
",",
"training_info",
":",
"TrainingInfo",
",",
"model_state",
"=",
"None",
",",
"hidden_state",
"=",
"None",
")",
":",
"if",
"model_state",
"is",
"None",
":",
"self",
".",
"model",
".",
"reset_weights",
"(",
")",
"else",
":",
"self",
".",
"model",
".",
"load_state_dict",
"(",
"model_state",
")"
] | Prepare for training | [
"Prepare",
"for",
"training"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L36-L41 |
251,323 | MillionIntegrals/vel | vel/api/learner.py | Learner.run_epoch | def run_epoch(self, epoch_info: EpochInfo, source: 'vel.api.Source'):
""" Run full epoch of learning """
epoch_info.on_epoch_begin()
lr = epoch_info.optimizer.param_groups[-1]['lr']
print("|-------- Epoch {:06} Lr={:.6f} ----------|".format(epoch_info.global_epoch_idx, lr))
self.train_epoch(epoch_info, source)
epoch_info.result_accumulator.freeze_results('train')
self.validation_epoch(epoch_info, source)
epoch_info.result_accumulator.freeze_results('val')
epoch_info.on_epoch_end() | python | def run_epoch(self, epoch_info: EpochInfo, source: 'vel.api.Source'):
epoch_info.on_epoch_begin()
lr = epoch_info.optimizer.param_groups[-1]['lr']
print("|-------- Epoch {:06} Lr={:.6f} ----------|".format(epoch_info.global_epoch_idx, lr))
self.train_epoch(epoch_info, source)
epoch_info.result_accumulator.freeze_results('train')
self.validation_epoch(epoch_info, source)
epoch_info.result_accumulator.freeze_results('val')
epoch_info.on_epoch_end() | [
"def",
"run_epoch",
"(",
"self",
",",
"epoch_info",
":",
"EpochInfo",
",",
"source",
":",
"'vel.api.Source'",
")",
":",
"epoch_info",
".",
"on_epoch_begin",
"(",
")",
"lr",
"=",
"epoch_info",
".",
"optimizer",
".",
"param_groups",
"[",
"-",
"1",
"]",
"[",
"'lr'",
"]",
"print",
"(",
"\"|-------- Epoch {:06} Lr={:.6f} ----------|\"",
".",
"format",
"(",
"epoch_info",
".",
"global_epoch_idx",
",",
"lr",
")",
")",
"self",
".",
"train_epoch",
"(",
"epoch_info",
",",
"source",
")",
"epoch_info",
".",
"result_accumulator",
".",
"freeze_results",
"(",
"'train'",
")",
"self",
".",
"validation_epoch",
"(",
"epoch_info",
",",
"source",
")",
"epoch_info",
".",
"result_accumulator",
".",
"freeze_results",
"(",
"'val'",
")",
"epoch_info",
".",
"on_epoch_end",
"(",
")"
] | Run full epoch of learning | [
"Run",
"full",
"epoch",
"of",
"learning"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L43-L56 |
251,324 | MillionIntegrals/vel | vel/api/learner.py | Learner.train_epoch | def train_epoch(self, epoch_info, source: 'vel.api.Source', interactive=True):
""" Run a single training epoch """
self.train()
if interactive:
iterator = tqdm.tqdm(source.train_loader(), desc="Training", unit="iter", file=sys.stdout)
else:
iterator = source.train_loader()
for batch_idx, (data, target) in enumerate(iterator):
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_batch_begin()
self.train_batch(batch_info, data, target)
batch_info.on_batch_end()
iterator.set_postfix(loss=epoch_info.result_accumulator.intermediate_value('loss')) | python | def train_epoch(self, epoch_info, source: 'vel.api.Source', interactive=True):
self.train()
if interactive:
iterator = tqdm.tqdm(source.train_loader(), desc="Training", unit="iter", file=sys.stdout)
else:
iterator = source.train_loader()
for batch_idx, (data, target) in enumerate(iterator):
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_batch_begin()
self.train_batch(batch_info, data, target)
batch_info.on_batch_end()
iterator.set_postfix(loss=epoch_info.result_accumulator.intermediate_value('loss')) | [
"def",
"train_epoch",
"(",
"self",
",",
"epoch_info",
",",
"source",
":",
"'vel.api.Source'",
",",
"interactive",
"=",
"True",
")",
":",
"self",
".",
"train",
"(",
")",
"if",
"interactive",
":",
"iterator",
"=",
"tqdm",
".",
"tqdm",
"(",
"source",
".",
"train_loader",
"(",
")",
",",
"desc",
"=",
"\"Training\"",
",",
"unit",
"=",
"\"iter\"",
",",
"file",
"=",
"sys",
".",
"stdout",
")",
"else",
":",
"iterator",
"=",
"source",
".",
"train_loader",
"(",
")",
"for",
"batch_idx",
",",
"(",
"data",
",",
"target",
")",
"in",
"enumerate",
"(",
"iterator",
")",
":",
"batch_info",
"=",
"BatchInfo",
"(",
"epoch_info",
",",
"batch_idx",
")",
"batch_info",
".",
"on_batch_begin",
"(",
")",
"self",
".",
"train_batch",
"(",
"batch_info",
",",
"data",
",",
"target",
")",
"batch_info",
".",
"on_batch_end",
"(",
")",
"iterator",
".",
"set_postfix",
"(",
"loss",
"=",
"epoch_info",
".",
"result_accumulator",
".",
"intermediate_value",
"(",
"'loss'",
")",
")"
] | Run a single training epoch | [
"Run",
"a",
"single",
"training",
"epoch"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L58-L74 |
251,325 | MillionIntegrals/vel | vel/api/learner.py | Learner.validation_epoch | def validation_epoch(self, epoch_info, source: 'vel.api.Source'):
""" Run a single evaluation epoch """
self.eval()
iterator = tqdm.tqdm(source.val_loader(), desc="Validation", unit="iter", file=sys.stdout)
with torch.no_grad():
for batch_idx, (data, target) in enumerate(iterator):
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_validation_batch_begin()
self.feed_batch(batch_info, data, target)
batch_info.on_validation_batch_end() | python | def validation_epoch(self, epoch_info, source: 'vel.api.Source'):
self.eval()
iterator = tqdm.tqdm(source.val_loader(), desc="Validation", unit="iter", file=sys.stdout)
with torch.no_grad():
for batch_idx, (data, target) in enumerate(iterator):
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_validation_batch_begin()
self.feed_batch(batch_info, data, target)
batch_info.on_validation_batch_end() | [
"def",
"validation_epoch",
"(",
"self",
",",
"epoch_info",
",",
"source",
":",
"'vel.api.Source'",
")",
":",
"self",
".",
"eval",
"(",
")",
"iterator",
"=",
"tqdm",
".",
"tqdm",
"(",
"source",
".",
"val_loader",
"(",
")",
",",
"desc",
"=",
"\"Validation\"",
",",
"unit",
"=",
"\"iter\"",
",",
"file",
"=",
"sys",
".",
"stdout",
")",
"with",
"torch",
".",
"no_grad",
"(",
")",
":",
"for",
"batch_idx",
",",
"(",
"data",
",",
"target",
")",
"in",
"enumerate",
"(",
"iterator",
")",
":",
"batch_info",
"=",
"BatchInfo",
"(",
"epoch_info",
",",
"batch_idx",
")",
"batch_info",
".",
"on_validation_batch_begin",
"(",
")",
"self",
".",
"feed_batch",
"(",
"batch_info",
",",
"data",
",",
"target",
")",
"batch_info",
".",
"on_validation_batch_end",
"(",
")"
] | Run a single evaluation epoch | [
"Run",
"a",
"single",
"evaluation",
"epoch"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L76-L88 |
251,326 | MillionIntegrals/vel | vel/api/learner.py | Learner.feed_batch | def feed_batch(self, batch_info, data, target):
""" Run single batch of data """
data, target = data.to(self.device), target.to(self.device)
output, loss = self.model.loss(data, target)
# Store extra batch information for calculation of the statistics
batch_info['data'] = data
batch_info['target'] = target
batch_info['output'] = output
batch_info['loss'] = loss
return loss | python | def feed_batch(self, batch_info, data, target):
data, target = data.to(self.device), target.to(self.device)
output, loss = self.model.loss(data, target)
# Store extra batch information for calculation of the statistics
batch_info['data'] = data
batch_info['target'] = target
batch_info['output'] = output
batch_info['loss'] = loss
return loss | [
"def",
"feed_batch",
"(",
"self",
",",
"batch_info",
",",
"data",
",",
"target",
")",
":",
"data",
",",
"target",
"=",
"data",
".",
"to",
"(",
"self",
".",
"device",
")",
",",
"target",
".",
"to",
"(",
"self",
".",
"device",
")",
"output",
",",
"loss",
"=",
"self",
".",
"model",
".",
"loss",
"(",
"data",
",",
"target",
")",
"# Store extra batch information for calculation of the statistics",
"batch_info",
"[",
"'data'",
"]",
"=",
"data",
"batch_info",
"[",
"'target'",
"]",
"=",
"target",
"batch_info",
"[",
"'output'",
"]",
"=",
"output",
"batch_info",
"[",
"'loss'",
"]",
"=",
"loss",
"return",
"loss"
] | Run single batch of data | [
"Run",
"single",
"batch",
"of",
"data"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L90-L101 |
251,327 | MillionIntegrals/vel | vel/api/learner.py | Learner.train_batch | def train_batch(self, batch_info, data, target):
""" Train single batch of data """
batch_info.optimizer.zero_grad()
loss = self.feed_batch(batch_info, data, target)
loss.backward()
if self.max_grad_norm is not None:
batch_info['grad_norm'] = torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, self.model.parameters()),
max_norm=self.max_grad_norm
)
batch_info.optimizer.step() | python | def train_batch(self, batch_info, data, target):
batch_info.optimizer.zero_grad()
loss = self.feed_batch(batch_info, data, target)
loss.backward()
if self.max_grad_norm is not None:
batch_info['grad_norm'] = torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, self.model.parameters()),
max_norm=self.max_grad_norm
)
batch_info.optimizer.step() | [
"def",
"train_batch",
"(",
"self",
",",
"batch_info",
",",
"data",
",",
"target",
")",
":",
"batch_info",
".",
"optimizer",
".",
"zero_grad",
"(",
")",
"loss",
"=",
"self",
".",
"feed_batch",
"(",
"batch_info",
",",
"data",
",",
"target",
")",
"loss",
".",
"backward",
"(",
")",
"if",
"self",
".",
"max_grad_norm",
"is",
"not",
"None",
":",
"batch_info",
"[",
"'grad_norm'",
"]",
"=",
"torch",
".",
"nn",
".",
"utils",
".",
"clip_grad_norm_",
"(",
"filter",
"(",
"lambda",
"p",
":",
"p",
".",
"requires_grad",
",",
"self",
".",
"model",
".",
"parameters",
"(",
")",
")",
",",
"max_norm",
"=",
"self",
".",
"max_grad_norm",
")",
"batch_info",
".",
"optimizer",
".",
"step",
"(",
")"
] | Train single batch of data | [
"Train",
"single",
"batch",
"of",
"data"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/learner.py#L103-L115 |
251,328 | MillionIntegrals/vel | vel/util/situational.py | process_environment_settings | def process_environment_settings(default_dictionary: dict, settings: typing.Optional[dict]=None,
presets: typing.Optional[dict]=None):
""" Process a dictionary of env settings """
settings = settings if settings is not None else {}
presets = presets if presets is not None else {}
env_keys = sorted(set(default_dictionary.keys()) | set(presets.keys()))
result_dict = {}
for key in env_keys:
if key in default_dictionary:
new_dict = default_dictionary[key].copy()
else:
new_dict = {}
new_dict.update(settings)
if key in presets:
new_dict.update(presets[key])
result_dict[key] = new_dict
return result_dict | python | def process_environment_settings(default_dictionary: dict, settings: typing.Optional[dict]=None,
presets: typing.Optional[dict]=None):
settings = settings if settings is not None else {}
presets = presets if presets is not None else {}
env_keys = sorted(set(default_dictionary.keys()) | set(presets.keys()))
result_dict = {}
for key in env_keys:
if key in default_dictionary:
new_dict = default_dictionary[key].copy()
else:
new_dict = {}
new_dict.update(settings)
if key in presets:
new_dict.update(presets[key])
result_dict[key] = new_dict
return result_dict | [
"def",
"process_environment_settings",
"(",
"default_dictionary",
":",
"dict",
",",
"settings",
":",
"typing",
".",
"Optional",
"[",
"dict",
"]",
"=",
"None",
",",
"presets",
":",
"typing",
".",
"Optional",
"[",
"dict",
"]",
"=",
"None",
")",
":",
"settings",
"=",
"settings",
"if",
"settings",
"is",
"not",
"None",
"else",
"{",
"}",
"presets",
"=",
"presets",
"if",
"presets",
"is",
"not",
"None",
"else",
"{",
"}",
"env_keys",
"=",
"sorted",
"(",
"set",
"(",
"default_dictionary",
".",
"keys",
"(",
")",
")",
"|",
"set",
"(",
"presets",
".",
"keys",
"(",
")",
")",
")",
"result_dict",
"=",
"{",
"}",
"for",
"key",
"in",
"env_keys",
":",
"if",
"key",
"in",
"default_dictionary",
":",
"new_dict",
"=",
"default_dictionary",
"[",
"key",
"]",
".",
"copy",
"(",
")",
"else",
":",
"new_dict",
"=",
"{",
"}",
"new_dict",
".",
"update",
"(",
"settings",
")",
"if",
"key",
"in",
"presets",
":",
"new_dict",
".",
"update",
"(",
"presets",
"[",
"key",
"]",
")",
"result_dict",
"[",
"key",
"]",
"=",
"new_dict",
"return",
"result_dict"
] | Process a dictionary of env settings | [
"Process",
"a",
"dictionary",
"of",
"env",
"settings"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/situational.py#L4-L27 |
251,329 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_off_policy_iteration_reinforcer.py | BufferedOffPolicyIterationReinforcer.roll_out_and_store | def roll_out_and_store(self, batch_info):
""" Roll out environment and store result in the replay buffer """
self.model.train()
if self.env_roller.is_ready_for_sampling():
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.rollout_steps).to_device(self.device)
# Store some information about the rollout, no training phase
batch_info['frames'] = rollout.frames()
batch_info['episode_infos'] = rollout.episode_information()
else:
frames = 0
episode_infos = []
with tqdm.tqdm(desc="Populating memory", total=self.env_roller.initial_memory_size_hint()) as pbar:
while not self.env_roller.is_ready_for_sampling():
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.rollout_steps).to_device(self.device)
new_frames = rollout.frames()
frames += new_frames
episode_infos.extend(rollout.episode_information())
pbar.update(new_frames)
# Store some information about the rollout, no training phase
batch_info['frames'] = frames
batch_info['episode_infos'] = episode_infos | python | def roll_out_and_store(self, batch_info):
self.model.train()
if self.env_roller.is_ready_for_sampling():
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.rollout_steps).to_device(self.device)
# Store some information about the rollout, no training phase
batch_info['frames'] = rollout.frames()
batch_info['episode_infos'] = rollout.episode_information()
else:
frames = 0
episode_infos = []
with tqdm.tqdm(desc="Populating memory", total=self.env_roller.initial_memory_size_hint()) as pbar:
while not self.env_roller.is_ready_for_sampling():
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.rollout_steps).to_device(self.device)
new_frames = rollout.frames()
frames += new_frames
episode_infos.extend(rollout.episode_information())
pbar.update(new_frames)
# Store some information about the rollout, no training phase
batch_info['frames'] = frames
batch_info['episode_infos'] = episode_infos | [
"def",
"roll_out_and_store",
"(",
"self",
",",
"batch_info",
")",
":",
"self",
".",
"model",
".",
"train",
"(",
")",
"if",
"self",
".",
"env_roller",
".",
"is_ready_for_sampling",
"(",
")",
":",
"rollout",
"=",
"self",
".",
"env_roller",
".",
"rollout",
"(",
"batch_info",
",",
"self",
".",
"model",
",",
"self",
".",
"settings",
".",
"rollout_steps",
")",
".",
"to_device",
"(",
"self",
".",
"device",
")",
"# Store some information about the rollout, no training phase",
"batch_info",
"[",
"'frames'",
"]",
"=",
"rollout",
".",
"frames",
"(",
")",
"batch_info",
"[",
"'episode_infos'",
"]",
"=",
"rollout",
".",
"episode_information",
"(",
")",
"else",
":",
"frames",
"=",
"0",
"episode_infos",
"=",
"[",
"]",
"with",
"tqdm",
".",
"tqdm",
"(",
"desc",
"=",
"\"Populating memory\"",
",",
"total",
"=",
"self",
".",
"env_roller",
".",
"initial_memory_size_hint",
"(",
")",
")",
"as",
"pbar",
":",
"while",
"not",
"self",
".",
"env_roller",
".",
"is_ready_for_sampling",
"(",
")",
":",
"rollout",
"=",
"self",
".",
"env_roller",
".",
"rollout",
"(",
"batch_info",
",",
"self",
".",
"model",
",",
"self",
".",
"settings",
".",
"rollout_steps",
")",
".",
"to_device",
"(",
"self",
".",
"device",
")",
"new_frames",
"=",
"rollout",
".",
"frames",
"(",
")",
"frames",
"+=",
"new_frames",
"episode_infos",
".",
"extend",
"(",
"rollout",
".",
"episode_information",
"(",
")",
")",
"pbar",
".",
"update",
"(",
"new_frames",
")",
"# Store some information about the rollout, no training phase",
"batch_info",
"[",
"'frames'",
"]",
"=",
"frames",
"batch_info",
"[",
"'episode_infos'",
"]",
"=",
"episode_infos"
] | Roll out environment and store result in the replay buffer | [
"Roll",
"out",
"environment",
"and",
"store",
"result",
"in",
"the",
"replay",
"buffer"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_off_policy_iteration_reinforcer.py#L109-L135 |
251,330 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_off_policy_iteration_reinforcer.py | BufferedOffPolicyIterationReinforcer.train_on_replay_memory | def train_on_replay_memory(self, batch_info):
""" Train agent on a memory gotten from replay buffer """
self.model.train()
# Algo will aggregate data into this list:
batch_info['sub_batch_data'] = []
for i in range(self.settings.training_rounds):
sampled_rollout = self.env_roller.sample(batch_info, self.model, self.settings.training_steps)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=sampled_rollout.to_device(self.device)
)
self.env_roller.update(rollout=sampled_rollout, batch_info=batch_result)
batch_info['sub_batch_data'].append(batch_result)
batch_info.aggregate_key('sub_batch_data') | python | def train_on_replay_memory(self, batch_info):
self.model.train()
# Algo will aggregate data into this list:
batch_info['sub_batch_data'] = []
for i in range(self.settings.training_rounds):
sampled_rollout = self.env_roller.sample(batch_info, self.model, self.settings.training_steps)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=sampled_rollout.to_device(self.device)
)
self.env_roller.update(rollout=sampled_rollout, batch_info=batch_result)
batch_info['sub_batch_data'].append(batch_result)
batch_info.aggregate_key('sub_batch_data') | [
"def",
"train_on_replay_memory",
"(",
"self",
",",
"batch_info",
")",
":",
"self",
".",
"model",
".",
"train",
"(",
")",
"# Algo will aggregate data into this list:",
"batch_info",
"[",
"'sub_batch_data'",
"]",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"settings",
".",
"training_rounds",
")",
":",
"sampled_rollout",
"=",
"self",
".",
"env_roller",
".",
"sample",
"(",
"batch_info",
",",
"self",
".",
"model",
",",
"self",
".",
"settings",
".",
"training_steps",
")",
"batch_result",
"=",
"self",
".",
"algo",
".",
"optimizer_step",
"(",
"batch_info",
"=",
"batch_info",
",",
"device",
"=",
"self",
".",
"device",
",",
"model",
"=",
"self",
".",
"model",
",",
"rollout",
"=",
"sampled_rollout",
".",
"to_device",
"(",
"self",
".",
"device",
")",
")",
"self",
".",
"env_roller",
".",
"update",
"(",
"rollout",
"=",
"sampled_rollout",
",",
"batch_info",
"=",
"batch_result",
")",
"batch_info",
"[",
"'sub_batch_data'",
"]",
".",
"append",
"(",
"batch_result",
")",
"batch_info",
".",
"aggregate_key",
"(",
"'sub_batch_data'",
")"
] | Train agent on a memory gotten from replay buffer | [
"Train",
"agent",
"on",
"a",
"memory",
"gotten",
"from",
"replay",
"buffer"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_off_policy_iteration_reinforcer.py#L137-L158 |
251,331 | MillionIntegrals/vel | vel/modules/resnet_v1.py | conv3x3 | def conv3x3(in_channels, out_channels, stride=1):
"""
3x3 convolution with padding.
Original code has had bias turned off, because Batch Norm would remove the bias either way
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) | python | def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) | [
"def",
"conv3x3",
"(",
"in_channels",
",",
"out_channels",
",",
"stride",
"=",
"1",
")",
":",
"return",
"nn",
".",
"Conv2d",
"(",
"in_channels",
",",
"out_channels",
",",
"kernel_size",
"=",
"3",
",",
"stride",
"=",
"stride",
",",
"padding",
"=",
"1",
",",
"bias",
"=",
"False",
")"
] | 3x3 convolution with padding.
Original code has had bias turned off, because Batch Norm would remove the bias either way | [
"3x3",
"convolution",
"with",
"padding",
".",
"Original",
"code",
"has",
"had",
"bias",
"turned",
"off",
"because",
"Batch",
"Norm",
"would",
"remove",
"the",
"bias",
"either",
"way"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/modules/resnet_v1.py#L10-L15 |
251,332 | MillionIntegrals/vel | vel/notebook/loader.py | load | def load(config_path, run_number=0, device='cuda:0'):
""" Load a ModelConfig from filename """
model_config = ModelConfig.from_file(config_path, run_number, device=device)
return model_config | python | def load(config_path, run_number=0, device='cuda:0'):
model_config = ModelConfig.from_file(config_path, run_number, device=device)
return model_config | [
"def",
"load",
"(",
"config_path",
",",
"run_number",
"=",
"0",
",",
"device",
"=",
"'cuda:0'",
")",
":",
"model_config",
"=",
"ModelConfig",
".",
"from_file",
"(",
"config_path",
",",
"run_number",
",",
"device",
"=",
"device",
")",
"return",
"model_config"
] | Load a ModelConfig from filename | [
"Load",
"a",
"ModelConfig",
"from",
"filename"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/notebook/loader.py#L4-L8 |
251,333 | MillionIntegrals/vel | vel/api/info.py | TrainingInfo.restore | def restore(self, hidden_state):
""" Restore any state from checkpoint - currently not implemented but possible to do so in the future """
for callback in self.callbacks:
callback.load_state_dict(self, hidden_state)
if 'optimizer' in hidden_state:
self.optimizer_initial_state = hidden_state['optimizer'] | python | def restore(self, hidden_state):
for callback in self.callbacks:
callback.load_state_dict(self, hidden_state)
if 'optimizer' in hidden_state:
self.optimizer_initial_state = hidden_state['optimizer'] | [
"def",
"restore",
"(",
"self",
",",
"hidden_state",
")",
":",
"for",
"callback",
"in",
"self",
".",
"callbacks",
":",
"callback",
".",
"load_state_dict",
"(",
"self",
",",
"hidden_state",
")",
"if",
"'optimizer'",
"in",
"hidden_state",
":",
"self",
".",
"optimizer_initial_state",
"=",
"hidden_state",
"[",
"'optimizer'",
"]"
] | Restore any state from checkpoint - currently not implemented but possible to do so in the future | [
"Restore",
"any",
"state",
"from",
"checkpoint",
"-",
"currently",
"not",
"implemented",
"but",
"possible",
"to",
"do",
"so",
"in",
"the",
"future"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/info.py#L47-L53 |
251,334 | MillionIntegrals/vel | vel/api/info.py | EpochResultAccumulator.result | def result(self):
""" Return the epoch result """
final_result = {'epoch_idx': self.global_epoch_idx}
for key, value in self.frozen_results.items():
final_result[key] = value
return final_result | python | def result(self):
final_result = {'epoch_idx': self.global_epoch_idx}
for key, value in self.frozen_results.items():
final_result[key] = value
return final_result | [
"def",
"result",
"(",
"self",
")",
":",
"final_result",
"=",
"{",
"'epoch_idx'",
":",
"self",
".",
"global_epoch_idx",
"}",
"for",
"key",
",",
"value",
"in",
"self",
".",
"frozen_results",
".",
"items",
"(",
")",
":",
"final_result",
"[",
"key",
"]",
"=",
"value",
"return",
"final_result"
] | Return the epoch result | [
"Return",
"the",
"epoch",
"result"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/info.py#L144-L151 |
251,335 | MillionIntegrals/vel | vel/api/info.py | EpochInfo.state_dict | def state_dict(self) -> dict:
""" Calculate hidden state dictionary """
hidden_state = {}
if self.optimizer is not None:
hidden_state['optimizer'] = self.optimizer.state_dict()
for callback in self.callbacks:
callback.write_state_dict(self.training_info, hidden_state)
return hidden_state | python | def state_dict(self) -> dict:
hidden_state = {}
if self.optimizer is not None:
hidden_state['optimizer'] = self.optimizer.state_dict()
for callback in self.callbacks:
callback.write_state_dict(self.training_info, hidden_state)
return hidden_state | [
"def",
"state_dict",
"(",
"self",
")",
"->",
"dict",
":",
"hidden_state",
"=",
"{",
"}",
"if",
"self",
".",
"optimizer",
"is",
"not",
"None",
":",
"hidden_state",
"[",
"'optimizer'",
"]",
"=",
"self",
".",
"optimizer",
".",
"state_dict",
"(",
")",
"for",
"callback",
"in",
"self",
".",
"callbacks",
":",
"callback",
".",
"write_state_dict",
"(",
"self",
".",
"training_info",
",",
"hidden_state",
")",
"return",
"hidden_state"
] | Calculate hidden state dictionary | [
"Calculate",
"hidden",
"state",
"dictionary"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/info.py#L186-L196 |
251,336 | MillionIntegrals/vel | vel/api/info.py | EpochInfo.on_epoch_end | def on_epoch_end(self):
""" Finish epoch processing """
self.freeze_epoch_result()
for callback in self.callbacks:
callback.on_epoch_end(self)
self.training_info.history.add(self.result) | python | def on_epoch_end(self):
self.freeze_epoch_result()
for callback in self.callbacks:
callback.on_epoch_end(self)
self.training_info.history.add(self.result) | [
"def",
"on_epoch_end",
"(",
"self",
")",
":",
"self",
".",
"freeze_epoch_result",
"(",
")",
"for",
"callback",
"in",
"self",
".",
"callbacks",
":",
"callback",
".",
"on_epoch_end",
"(",
"self",
")",
"self",
".",
"training_info",
".",
"history",
".",
"add",
"(",
"self",
".",
"result",
")"
] | Finish epoch processing | [
"Finish",
"epoch",
"processing"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/info.py#L203-L210 |
251,337 | MillionIntegrals/vel | vel/api/info.py | BatchInfo.aggregate_key | def aggregate_key(self, aggregate_key):
""" Aggregate values from key and put them into the top-level dictionary """
aggregation = self.data_dict[aggregate_key] # List of dictionaries of numpy arrays/scalars
# Aggregate sub batch data
data_dict_keys = {y for x in aggregation for y in x.keys()}
for key in data_dict_keys:
# Just average all the statistics from the loss function
stacked = np.stack([d[key] for d in aggregation], axis=0)
self.data_dict[key] = np.mean(stacked, axis=0) | python | def aggregate_key(self, aggregate_key):
aggregation = self.data_dict[aggregate_key] # List of dictionaries of numpy arrays/scalars
# Aggregate sub batch data
data_dict_keys = {y for x in aggregation for y in x.keys()}
for key in data_dict_keys:
# Just average all the statistics from the loss function
stacked = np.stack([d[key] for d in aggregation], axis=0)
self.data_dict[key] = np.mean(stacked, axis=0) | [
"def",
"aggregate_key",
"(",
"self",
",",
"aggregate_key",
")",
":",
"aggregation",
"=",
"self",
".",
"data_dict",
"[",
"aggregate_key",
"]",
"# List of dictionaries of numpy arrays/scalars",
"# Aggregate sub batch data",
"data_dict_keys",
"=",
"{",
"y",
"for",
"x",
"in",
"aggregation",
"for",
"y",
"in",
"x",
".",
"keys",
"(",
")",
"}",
"for",
"key",
"in",
"data_dict_keys",
":",
"# Just average all the statistics from the loss function",
"stacked",
"=",
"np",
".",
"stack",
"(",
"[",
"d",
"[",
"key",
"]",
"for",
"d",
"in",
"aggregation",
"]",
",",
"axis",
"=",
"0",
")",
"self",
".",
"data_dict",
"[",
"key",
"]",
"=",
"np",
".",
"mean",
"(",
"stacked",
",",
"axis",
"=",
"0",
")"
] | Aggregate values from key and put them into the top-level dictionary | [
"Aggregate",
"values",
"from",
"key",
"and",
"put",
"them",
"into",
"the",
"top",
"-",
"level",
"dictionary"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/info.py#L316-L326 |
251,338 | MillionIntegrals/vel | vel/rl/commands/rl_train_command.py | RlTrainCommand.run | def run(self):
""" Run reinforcement learning algorithm """
device = self.model_config.torch_device()
# Reinforcer is the learner for the reinforcement learning model
reinforcer = self.reinforcer.instantiate(device)
optimizer = self.optimizer_factory.instantiate(reinforcer.model)
# All callbacks used for learning
callbacks = self.gather_callbacks(optimizer)
# Metrics to track through this training
metrics = reinforcer.metrics()
training_info = self.resume_training(reinforcer, callbacks, metrics)
reinforcer.initialize_training(training_info)
training_info.on_train_begin()
if training_info.optimizer_initial_state:
optimizer.load_state_dict(training_info.optimizer_initial_state)
global_epoch_idx = training_info.start_epoch_idx + 1
while training_info['frames'] < self.total_frames:
epoch_info = EpochInfo(
training_info,
global_epoch_idx=global_epoch_idx,
batches_per_epoch=self.batches_per_epoch,
optimizer=optimizer,
)
reinforcer.train_epoch(epoch_info)
if self.openai_logging:
self._openai_logging(epoch_info.result)
self.storage.checkpoint(epoch_info, reinforcer.model)
global_epoch_idx += 1
training_info.on_train_end()
return training_info | python | def run(self):
device = self.model_config.torch_device()
# Reinforcer is the learner for the reinforcement learning model
reinforcer = self.reinforcer.instantiate(device)
optimizer = self.optimizer_factory.instantiate(reinforcer.model)
# All callbacks used for learning
callbacks = self.gather_callbacks(optimizer)
# Metrics to track through this training
metrics = reinforcer.metrics()
training_info = self.resume_training(reinforcer, callbacks, metrics)
reinforcer.initialize_training(training_info)
training_info.on_train_begin()
if training_info.optimizer_initial_state:
optimizer.load_state_dict(training_info.optimizer_initial_state)
global_epoch_idx = training_info.start_epoch_idx + 1
while training_info['frames'] < self.total_frames:
epoch_info = EpochInfo(
training_info,
global_epoch_idx=global_epoch_idx,
batches_per_epoch=self.batches_per_epoch,
optimizer=optimizer,
)
reinforcer.train_epoch(epoch_info)
if self.openai_logging:
self._openai_logging(epoch_info.result)
self.storage.checkpoint(epoch_info, reinforcer.model)
global_epoch_idx += 1
training_info.on_train_end()
return training_info | [
"def",
"run",
"(",
"self",
")",
":",
"device",
"=",
"self",
".",
"model_config",
".",
"torch_device",
"(",
")",
"# Reinforcer is the learner for the reinforcement learning model",
"reinforcer",
"=",
"self",
".",
"reinforcer",
".",
"instantiate",
"(",
"device",
")",
"optimizer",
"=",
"self",
".",
"optimizer_factory",
".",
"instantiate",
"(",
"reinforcer",
".",
"model",
")",
"# All callbacks used for learning",
"callbacks",
"=",
"self",
".",
"gather_callbacks",
"(",
"optimizer",
")",
"# Metrics to track through this training",
"metrics",
"=",
"reinforcer",
".",
"metrics",
"(",
")",
"training_info",
"=",
"self",
".",
"resume_training",
"(",
"reinforcer",
",",
"callbacks",
",",
"metrics",
")",
"reinforcer",
".",
"initialize_training",
"(",
"training_info",
")",
"training_info",
".",
"on_train_begin",
"(",
")",
"if",
"training_info",
".",
"optimizer_initial_state",
":",
"optimizer",
".",
"load_state_dict",
"(",
"training_info",
".",
"optimizer_initial_state",
")",
"global_epoch_idx",
"=",
"training_info",
".",
"start_epoch_idx",
"+",
"1",
"while",
"training_info",
"[",
"'frames'",
"]",
"<",
"self",
".",
"total_frames",
":",
"epoch_info",
"=",
"EpochInfo",
"(",
"training_info",
",",
"global_epoch_idx",
"=",
"global_epoch_idx",
",",
"batches_per_epoch",
"=",
"self",
".",
"batches_per_epoch",
",",
"optimizer",
"=",
"optimizer",
",",
")",
"reinforcer",
".",
"train_epoch",
"(",
"epoch_info",
")",
"if",
"self",
".",
"openai_logging",
":",
"self",
".",
"_openai_logging",
"(",
"epoch_info",
".",
"result",
")",
"self",
".",
"storage",
".",
"checkpoint",
"(",
"epoch_info",
",",
"reinforcer",
".",
"model",
")",
"global_epoch_idx",
"+=",
"1",
"training_info",
".",
"on_train_end",
"(",
")",
"return",
"training_info"
] | Run reinforcement learning algorithm | [
"Run",
"reinforcement",
"learning",
"algorithm"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/commands/rl_train_command.py#L62-L104 |
251,339 | MillionIntegrals/vel | vel/rl/commands/rl_train_command.py | RlTrainCommand.resume_training | def resume_training(self, reinforcer, callbacks, metrics) -> TrainingInfo:
""" Possibly resume training from a saved state from the storage """
if self.model_config.continue_training:
start_epoch = self.storage.last_epoch_idx()
else:
start_epoch = 0
training_info = TrainingInfo(
start_epoch_idx=start_epoch,
run_name=self.model_config.run_name,
metrics=metrics, callbacks=callbacks
)
if start_epoch == 0:
self.storage.reset(self.model_config.render_configuration())
training_info.initialize()
reinforcer.initialize_training(training_info)
else:
model_state, hidden_state = self.storage.load(training_info)
reinforcer.initialize_training(training_info, model_state, hidden_state)
return training_info | python | def resume_training(self, reinforcer, callbacks, metrics) -> TrainingInfo:
if self.model_config.continue_training:
start_epoch = self.storage.last_epoch_idx()
else:
start_epoch = 0
training_info = TrainingInfo(
start_epoch_idx=start_epoch,
run_name=self.model_config.run_name,
metrics=metrics, callbacks=callbacks
)
if start_epoch == 0:
self.storage.reset(self.model_config.render_configuration())
training_info.initialize()
reinforcer.initialize_training(training_info)
else:
model_state, hidden_state = self.storage.load(training_info)
reinforcer.initialize_training(training_info, model_state, hidden_state)
return training_info | [
"def",
"resume_training",
"(",
"self",
",",
"reinforcer",
",",
"callbacks",
",",
"metrics",
")",
"->",
"TrainingInfo",
":",
"if",
"self",
".",
"model_config",
".",
"continue_training",
":",
"start_epoch",
"=",
"self",
".",
"storage",
".",
"last_epoch_idx",
"(",
")",
"else",
":",
"start_epoch",
"=",
"0",
"training_info",
"=",
"TrainingInfo",
"(",
"start_epoch_idx",
"=",
"start_epoch",
",",
"run_name",
"=",
"self",
".",
"model_config",
".",
"run_name",
",",
"metrics",
"=",
"metrics",
",",
"callbacks",
"=",
"callbacks",
")",
"if",
"start_epoch",
"==",
"0",
":",
"self",
".",
"storage",
".",
"reset",
"(",
"self",
".",
"model_config",
".",
"render_configuration",
"(",
")",
")",
"training_info",
".",
"initialize",
"(",
")",
"reinforcer",
".",
"initialize_training",
"(",
"training_info",
")",
"else",
":",
"model_state",
",",
"hidden_state",
"=",
"self",
".",
"storage",
".",
"load",
"(",
"training_info",
")",
"reinforcer",
".",
"initialize_training",
"(",
"training_info",
",",
"model_state",
",",
"hidden_state",
")",
"return",
"training_info"
] | Possibly resume training from a saved state from the storage | [
"Possibly",
"resume",
"training",
"from",
"a",
"saved",
"state",
"from",
"the",
"storage"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/commands/rl_train_command.py#L118-L139 |
251,340 | MillionIntegrals/vel | vel/rl/commands/rl_train_command.py | RlTrainCommand._openai_logging | def _openai_logging(self, epoch_result):
""" Use OpenAI logging facilities for the same type of logging """
for key in sorted(epoch_result.keys()):
if key == 'fps':
# Not super elegant, but I like nicer display of FPS
openai_logger.record_tabular(key, int(epoch_result[key]))
else:
openai_logger.record_tabular(key, epoch_result[key])
openai_logger.dump_tabular() | python | def _openai_logging(self, epoch_result):
for key in sorted(epoch_result.keys()):
if key == 'fps':
# Not super elegant, but I like nicer display of FPS
openai_logger.record_tabular(key, int(epoch_result[key]))
else:
openai_logger.record_tabular(key, epoch_result[key])
openai_logger.dump_tabular() | [
"def",
"_openai_logging",
"(",
"self",
",",
"epoch_result",
")",
":",
"for",
"key",
"in",
"sorted",
"(",
"epoch_result",
".",
"keys",
"(",
")",
")",
":",
"if",
"key",
"==",
"'fps'",
":",
"# Not super elegant, but I like nicer display of FPS",
"openai_logger",
".",
"record_tabular",
"(",
"key",
",",
"int",
"(",
"epoch_result",
"[",
"key",
"]",
")",
")",
"else",
":",
"openai_logger",
".",
"record_tabular",
"(",
"key",
",",
"epoch_result",
"[",
"key",
"]",
")",
"openai_logger",
".",
"dump_tabular",
"(",
")"
] | Use OpenAI logging facilities for the same type of logging | [
"Use",
"OpenAI",
"logging",
"facilities",
"for",
"the",
"same",
"type",
"of",
"logging"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/commands/rl_train_command.py#L141-L150 |
251,341 | MillionIntegrals/vel | vel/util/module_util.py | module_broadcast | def module_broadcast(m, broadcast_fn, *args, **kwargs):
""" Call given function in all submodules with given parameters """
apply_leaf(m, lambda x: module_apply_broadcast(x, broadcast_fn, args, kwargs)) | python | def module_broadcast(m, broadcast_fn, *args, **kwargs):
apply_leaf(m, lambda x: module_apply_broadcast(x, broadcast_fn, args, kwargs)) | [
"def",
"module_broadcast",
"(",
"m",
",",
"broadcast_fn",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"apply_leaf",
"(",
"m",
",",
"lambda",
"x",
":",
"module_apply_broadcast",
"(",
"x",
",",
"broadcast_fn",
",",
"args",
",",
"kwargs",
")",
")"
] | Call given function in all submodules with given parameters | [
"Call",
"given",
"function",
"in",
"all",
"submodules",
"with",
"given",
"parameters"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/module_util.py#L34-L36 |
251,342 | MillionIntegrals/vel | vel/commands/phase_train_command.py | PhaseTrainCommand._select_phase_left_bound | def _select_phase_left_bound(self, epoch_number):
"""
Return number of current phase.
Return index of first phase not done after all up to epoch_number were done.
"""
idx = bisect.bisect_left(self.ladder, epoch_number)
if idx >= len(self.ladder):
return len(self.ladder) - 1
elif self.ladder[idx] > epoch_number:
return idx - 1
else:
return idx | python | def _select_phase_left_bound(self, epoch_number):
idx = bisect.bisect_left(self.ladder, epoch_number)
if idx >= len(self.ladder):
return len(self.ladder) - 1
elif self.ladder[idx] > epoch_number:
return idx - 1
else:
return idx | [
"def",
"_select_phase_left_bound",
"(",
"self",
",",
"epoch_number",
")",
":",
"idx",
"=",
"bisect",
".",
"bisect_left",
"(",
"self",
".",
"ladder",
",",
"epoch_number",
")",
"if",
"idx",
">=",
"len",
"(",
"self",
".",
"ladder",
")",
":",
"return",
"len",
"(",
"self",
".",
"ladder",
")",
"-",
"1",
"elif",
"self",
".",
"ladder",
"[",
"idx",
"]",
">",
"epoch_number",
":",
"return",
"idx",
"-",
"1",
"else",
":",
"return",
"idx"
] | Return number of current phase.
Return index of first phase not done after all up to epoch_number were done. | [
"Return",
"number",
"of",
"current",
"phase",
".",
"Return",
"index",
"of",
"first",
"phase",
"not",
"done",
"after",
"all",
"up",
"to",
"epoch_number",
"were",
"done",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/commands/phase_train_command.py#L29-L41 |
251,343 | MillionIntegrals/vel | vel/rl/env/classic_atari.py | wrapped_env_maker | def wrapped_env_maker(environment_id, seed, serial_id, disable_reward_clipping=False, disable_episodic_life=False,
monitor=False, allow_early_resets=False, scale_float_frames=False,
max_episode_frames=10000, frame_stack=None):
""" Wrap atari environment so that it's nicer to learn RL algorithms """
env = env_maker(environment_id)
env.seed(seed + serial_id)
if max_episode_frames is not None:
env = ClipEpisodeLengthWrapper(env, max_episode_length=max_episode_frames)
# Monitoring the env
if monitor:
logdir = logger.get_dir() and os.path.join(logger.get_dir(), str(serial_id))
else:
logdir = None
env = Monitor(env, logdir, allow_early_resets=allow_early_resets)
if not disable_episodic_life:
# Make end-of-life == end-of-episode, but only reset on true game over.
# Done by DeepMind for the DQN and co. since it helps value estimation.
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
# Take action on reset for environments that are fixed until firing.
if disable_episodic_life:
env = FireEpisodicLifeEnv(env)
else:
env = FireResetEnv(env)
# Warp frames to 84x84 as done in the Nature paper and later work.
env = WarpFrame(env)
if scale_float_frames:
env = ScaledFloatFrame(env)
if not disable_reward_clipping:
# Bin reward to {+1, 0, -1} by its sign.
env = ClipRewardEnv(env)
if frame_stack is not None:
env = FrameStack(env, frame_stack)
return env | python | def wrapped_env_maker(environment_id, seed, serial_id, disable_reward_clipping=False, disable_episodic_life=False,
monitor=False, allow_early_resets=False, scale_float_frames=False,
max_episode_frames=10000, frame_stack=None):
env = env_maker(environment_id)
env.seed(seed + serial_id)
if max_episode_frames is not None:
env = ClipEpisodeLengthWrapper(env, max_episode_length=max_episode_frames)
# Monitoring the env
if monitor:
logdir = logger.get_dir() and os.path.join(logger.get_dir(), str(serial_id))
else:
logdir = None
env = Monitor(env, logdir, allow_early_resets=allow_early_resets)
if not disable_episodic_life:
# Make end-of-life == end-of-episode, but only reset on true game over.
# Done by DeepMind for the DQN and co. since it helps value estimation.
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
# Take action on reset for environments that are fixed until firing.
if disable_episodic_life:
env = FireEpisodicLifeEnv(env)
else:
env = FireResetEnv(env)
# Warp frames to 84x84 as done in the Nature paper and later work.
env = WarpFrame(env)
if scale_float_frames:
env = ScaledFloatFrame(env)
if not disable_reward_clipping:
# Bin reward to {+1, 0, -1} by its sign.
env = ClipRewardEnv(env)
if frame_stack is not None:
env = FrameStack(env, frame_stack)
return env | [
"def",
"wrapped_env_maker",
"(",
"environment_id",
",",
"seed",
",",
"serial_id",
",",
"disable_reward_clipping",
"=",
"False",
",",
"disable_episodic_life",
"=",
"False",
",",
"monitor",
"=",
"False",
",",
"allow_early_resets",
"=",
"False",
",",
"scale_float_frames",
"=",
"False",
",",
"max_episode_frames",
"=",
"10000",
",",
"frame_stack",
"=",
"None",
")",
":",
"env",
"=",
"env_maker",
"(",
"environment_id",
")",
"env",
".",
"seed",
"(",
"seed",
"+",
"serial_id",
")",
"if",
"max_episode_frames",
"is",
"not",
"None",
":",
"env",
"=",
"ClipEpisodeLengthWrapper",
"(",
"env",
",",
"max_episode_length",
"=",
"max_episode_frames",
")",
"# Monitoring the env",
"if",
"monitor",
":",
"logdir",
"=",
"logger",
".",
"get_dir",
"(",
")",
"and",
"os",
".",
"path",
".",
"join",
"(",
"logger",
".",
"get_dir",
"(",
")",
",",
"str",
"(",
"serial_id",
")",
")",
"else",
":",
"logdir",
"=",
"None",
"env",
"=",
"Monitor",
"(",
"env",
",",
"logdir",
",",
"allow_early_resets",
"=",
"allow_early_resets",
")",
"if",
"not",
"disable_episodic_life",
":",
"# Make end-of-life == end-of-episode, but only reset on true game over.",
"# Done by DeepMind for the DQN and co. since it helps value estimation.",
"env",
"=",
"EpisodicLifeEnv",
"(",
"env",
")",
"if",
"'FIRE'",
"in",
"env",
".",
"unwrapped",
".",
"get_action_meanings",
"(",
")",
":",
"# Take action on reset for environments that are fixed until firing.",
"if",
"disable_episodic_life",
":",
"env",
"=",
"FireEpisodicLifeEnv",
"(",
"env",
")",
"else",
":",
"env",
"=",
"FireResetEnv",
"(",
"env",
")",
"# Warp frames to 84x84 as done in the Nature paper and later work.",
"env",
"=",
"WarpFrame",
"(",
"env",
")",
"if",
"scale_float_frames",
":",
"env",
"=",
"ScaledFloatFrame",
"(",
"env",
")",
"if",
"not",
"disable_reward_clipping",
":",
"# Bin reward to {+1, 0, -1} by its sign.",
"env",
"=",
"ClipRewardEnv",
"(",
"env",
")",
"if",
"frame_stack",
"is",
"not",
"None",
":",
"env",
"=",
"FrameStack",
"(",
"env",
",",
"frame_stack",
")",
"return",
"env"
] | Wrap atari environment so that it's nicer to learn RL algorithms | [
"Wrap",
"atari",
"environment",
"so",
"that",
"it",
"s",
"nicer",
"to",
"learn",
"RL",
"algorithms"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/env/classic_atari.py#L55-L98 |
251,344 | MillionIntegrals/vel | vel/rl/env/classic_atari.py | ClassicAtariEnv.instantiate | def instantiate(self, seed=0, serial_id=0, preset='default', extra_args=None) -> gym.Env:
""" Make a single environment compatible with the experiments """
settings = self.get_preset(preset)
return wrapped_env_maker(self.envname, seed, serial_id, **settings) | python | def instantiate(self, seed=0, serial_id=0, preset='default', extra_args=None) -> gym.Env:
settings = self.get_preset(preset)
return wrapped_env_maker(self.envname, seed, serial_id, **settings) | [
"def",
"instantiate",
"(",
"self",
",",
"seed",
"=",
"0",
",",
"serial_id",
"=",
"0",
",",
"preset",
"=",
"'default'",
",",
"extra_args",
"=",
"None",
")",
"->",
"gym",
".",
"Env",
":",
"settings",
"=",
"self",
".",
"get_preset",
"(",
"preset",
")",
"return",
"wrapped_env_maker",
"(",
"self",
".",
"envname",
",",
"seed",
",",
"serial_id",
",",
"*",
"*",
"settings",
")"
] | Make a single environment compatible with the experiments | [
"Make",
"a",
"single",
"environment",
"compatible",
"with",
"the",
"experiments"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/env/classic_atari.py#L115-L118 |
251,345 | MillionIntegrals/vel | vel/util/visdom.py | visdom_send_metrics | def visdom_send_metrics(vis, metrics, update='replace'):
""" Send set of metrics to visdom """
visited = {}
sorted_metrics = sorted(metrics.columns, key=_column_original_name)
for metric_basename, metric_list in it.groupby(sorted_metrics, key=_column_original_name):
metric_list = list(metric_list)
for metric in metric_list:
if vis.win_exists(metric_basename) and (not visited.get(metric, False)):
update = update
elif not vis.win_exists(metric_basename):
update = None
else:
update = 'append'
vis.line(
metrics[metric].values,
metrics.index.values,
win=metric_basename,
name=metric,
opts={
'title': metric_basename,
'showlegend': True
},
update=update
)
if metric_basename != metric and len(metric_list) > 1:
if vis.win_exists(metric):
update = update
else:
update = None
vis.line(
metrics[metric].values,
metrics.index.values,
win=metric,
name=metric,
opts={
'title': metric,
'showlegend': True
},
update=update
) | python | def visdom_send_metrics(vis, metrics, update='replace'):
visited = {}
sorted_metrics = sorted(metrics.columns, key=_column_original_name)
for metric_basename, metric_list in it.groupby(sorted_metrics, key=_column_original_name):
metric_list = list(metric_list)
for metric in metric_list:
if vis.win_exists(metric_basename) and (not visited.get(metric, False)):
update = update
elif not vis.win_exists(metric_basename):
update = None
else:
update = 'append'
vis.line(
metrics[metric].values,
metrics.index.values,
win=metric_basename,
name=metric,
opts={
'title': metric_basename,
'showlegend': True
},
update=update
)
if metric_basename != metric and len(metric_list) > 1:
if vis.win_exists(metric):
update = update
else:
update = None
vis.line(
metrics[metric].values,
metrics.index.values,
win=metric,
name=metric,
opts={
'title': metric,
'showlegend': True
},
update=update
) | [
"def",
"visdom_send_metrics",
"(",
"vis",
",",
"metrics",
",",
"update",
"=",
"'replace'",
")",
":",
"visited",
"=",
"{",
"}",
"sorted_metrics",
"=",
"sorted",
"(",
"metrics",
".",
"columns",
",",
"key",
"=",
"_column_original_name",
")",
"for",
"metric_basename",
",",
"metric_list",
"in",
"it",
".",
"groupby",
"(",
"sorted_metrics",
",",
"key",
"=",
"_column_original_name",
")",
":",
"metric_list",
"=",
"list",
"(",
"metric_list",
")",
"for",
"metric",
"in",
"metric_list",
":",
"if",
"vis",
".",
"win_exists",
"(",
"metric_basename",
")",
"and",
"(",
"not",
"visited",
".",
"get",
"(",
"metric",
",",
"False",
")",
")",
":",
"update",
"=",
"update",
"elif",
"not",
"vis",
".",
"win_exists",
"(",
"metric_basename",
")",
":",
"update",
"=",
"None",
"else",
":",
"update",
"=",
"'append'",
"vis",
".",
"line",
"(",
"metrics",
"[",
"metric",
"]",
".",
"values",
",",
"metrics",
".",
"index",
".",
"values",
",",
"win",
"=",
"metric_basename",
",",
"name",
"=",
"metric",
",",
"opts",
"=",
"{",
"'title'",
":",
"metric_basename",
",",
"'showlegend'",
":",
"True",
"}",
",",
"update",
"=",
"update",
")",
"if",
"metric_basename",
"!=",
"metric",
"and",
"len",
"(",
"metric_list",
")",
">",
"1",
":",
"if",
"vis",
".",
"win_exists",
"(",
"metric",
")",
":",
"update",
"=",
"update",
"else",
":",
"update",
"=",
"None",
"vis",
".",
"line",
"(",
"metrics",
"[",
"metric",
"]",
".",
"values",
",",
"metrics",
".",
"index",
".",
"values",
",",
"win",
"=",
"metric",
",",
"name",
"=",
"metric",
",",
"opts",
"=",
"{",
"'title'",
":",
"metric",
",",
"'showlegend'",
":",
"True",
"}",
",",
"update",
"=",
"update",
")"
] | Send set of metrics to visdom | [
"Send",
"set",
"of",
"metrics",
"to",
"visdom"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/visdom.py#L27-L71 |
251,346 | MillionIntegrals/vel | vel/api/train_phase.py | TrainPhase.restore | def restore(self, training_info: TrainingInfo, local_batch_idx: int, model: Model, hidden_state: dict):
"""
Restore learning from intermediate state.
"""
pass | python | def restore(self, training_info: TrainingInfo, local_batch_idx: int, model: Model, hidden_state: dict):
pass | [
"def",
"restore",
"(",
"self",
",",
"training_info",
":",
"TrainingInfo",
",",
"local_batch_idx",
":",
"int",
",",
"model",
":",
"Model",
",",
"hidden_state",
":",
"dict",
")",
":",
"pass"
] | Restore learning from intermediate state. | [
"Restore",
"learning",
"from",
"intermediate",
"state",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/train_phase.py#L18-L22 |
251,347 | MillionIntegrals/vel | vel/rl/buffers/backend/prioritized_vec_buffer_backend.py | PrioritizedCircularVecEnvBufferBackend.update_priority | def update_priority(self, tree_idx_list, priority_list):
""" Update priorities of the elements in the tree """
for tree_idx, priority, segment_tree in zip(tree_idx_list, priority_list, self.segment_trees):
segment_tree.update(tree_idx, priority) | python | def update_priority(self, tree_idx_list, priority_list):
for tree_idx, priority, segment_tree in zip(tree_idx_list, priority_list, self.segment_trees):
segment_tree.update(tree_idx, priority) | [
"def",
"update_priority",
"(",
"self",
",",
"tree_idx_list",
",",
"priority_list",
")",
":",
"for",
"tree_idx",
",",
"priority",
",",
"segment_tree",
"in",
"zip",
"(",
"tree_idx_list",
",",
"priority_list",
",",
"self",
".",
"segment_trees",
")",
":",
"segment_tree",
".",
"update",
"(",
"tree_idx",
",",
"priority",
")"
] | Update priorities of the elements in the tree | [
"Update",
"priorities",
"of",
"the",
"elements",
"in",
"the",
"tree"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/prioritized_vec_buffer_backend.py#L72-L75 |
251,348 | MillionIntegrals/vel | vel/rl/buffers/backend/prioritized_vec_buffer_backend.py | PrioritizedCircularVecEnvBufferBackend._sample_batch_prioritized | def _sample_batch_prioritized(self, segment_tree, batch_size, history, forward_steps=1):
""" Return indexes of the next sample in from prioritized distribution """
p_total = segment_tree.total()
segment = p_total / batch_size
# Get batch of valid samples
batch = [
self._get_sample_from_segment(segment_tree, segment, i, history, forward_steps)
for i in range(batch_size)
]
probs, idxs, tree_idxs = zip(*batch)
return np.array(probs), np.array(idxs), np.array(tree_idxs) | python | def _sample_batch_prioritized(self, segment_tree, batch_size, history, forward_steps=1):
p_total = segment_tree.total()
segment = p_total / batch_size
# Get batch of valid samples
batch = [
self._get_sample_from_segment(segment_tree, segment, i, history, forward_steps)
for i in range(batch_size)
]
probs, idxs, tree_idxs = zip(*batch)
return np.array(probs), np.array(idxs), np.array(tree_idxs) | [
"def",
"_sample_batch_prioritized",
"(",
"self",
",",
"segment_tree",
",",
"batch_size",
",",
"history",
",",
"forward_steps",
"=",
"1",
")",
":",
"p_total",
"=",
"segment_tree",
".",
"total",
"(",
")",
"segment",
"=",
"p_total",
"/",
"batch_size",
"# Get batch of valid samples",
"batch",
"=",
"[",
"self",
".",
"_get_sample_from_segment",
"(",
"segment_tree",
",",
"segment",
",",
"i",
",",
"history",
",",
"forward_steps",
")",
"for",
"i",
"in",
"range",
"(",
"batch_size",
")",
"]",
"probs",
",",
"idxs",
",",
"tree_idxs",
"=",
"zip",
"(",
"*",
"batch",
")",
"return",
"np",
".",
"array",
"(",
"probs",
")",
",",
"np",
".",
"array",
"(",
"idxs",
")",
",",
"np",
".",
"array",
"(",
"tree_idxs",
")"
] | Return indexes of the next sample in from prioritized distribution | [
"Return",
"indexes",
"of",
"the",
"next",
"sample",
"in",
"from",
"prioritized",
"distribution"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/prioritized_vec_buffer_backend.py#L87-L99 |
251,349 | MillionIntegrals/vel | vel/rl/buffers/backend/circular_vec_buffer_backend.py | take_along_axis | def take_along_axis(large_array, indexes):
""" Take along axis """
# Reshape indexes into the right shape
if len(large_array.shape) > len(indexes.shape):
indexes = indexes.reshape(indexes.shape + tuple([1] * (len(large_array.shape) - len(indexes.shape))))
return np.take_along_axis(large_array, indexes, axis=0) | python | def take_along_axis(large_array, indexes):
# Reshape indexes into the right shape
if len(large_array.shape) > len(indexes.shape):
indexes = indexes.reshape(indexes.shape + tuple([1] * (len(large_array.shape) - len(indexes.shape))))
return np.take_along_axis(large_array, indexes, axis=0) | [
"def",
"take_along_axis",
"(",
"large_array",
",",
"indexes",
")",
":",
"# Reshape indexes into the right shape",
"if",
"len",
"(",
"large_array",
".",
"shape",
")",
">",
"len",
"(",
"indexes",
".",
"shape",
")",
":",
"indexes",
"=",
"indexes",
".",
"reshape",
"(",
"indexes",
".",
"shape",
"+",
"tuple",
"(",
"[",
"1",
"]",
"*",
"(",
"len",
"(",
"large_array",
".",
"shape",
")",
"-",
"len",
"(",
"indexes",
".",
"shape",
")",
")",
")",
")",
"return",
"np",
".",
"take_along_axis",
"(",
"large_array",
",",
"indexes",
",",
"axis",
"=",
"0",
")"
] | Take along axis | [
"Take",
"along",
"axis"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/circular_vec_buffer_backend.py#L7-L13 |
251,350 | MillionIntegrals/vel | vel/rl/buffers/backend/circular_vec_buffer_backend.py | CircularVecEnvBufferBackend.get_transition | def get_transition(self, frame_idx, env_idx):
""" Single transition with given index """
past_frame, future_frame = self.get_frame_with_future(frame_idx, env_idx)
data_dict = {
'observations': past_frame,
'observations_next': future_frame,
'actions': self.action_buffer[frame_idx, env_idx],
'rewards': self.reward_buffer[frame_idx, env_idx],
'dones': self.dones_buffer[frame_idx, env_idx],
}
for name in self.extra_data:
data_dict[name] = self.extra_data[name][frame_idx, env_idx]
return data_dict | python | def get_transition(self, frame_idx, env_idx):
past_frame, future_frame = self.get_frame_with_future(frame_idx, env_idx)
data_dict = {
'observations': past_frame,
'observations_next': future_frame,
'actions': self.action_buffer[frame_idx, env_idx],
'rewards': self.reward_buffer[frame_idx, env_idx],
'dones': self.dones_buffer[frame_idx, env_idx],
}
for name in self.extra_data:
data_dict[name] = self.extra_data[name][frame_idx, env_idx]
return data_dict | [
"def",
"get_transition",
"(",
"self",
",",
"frame_idx",
",",
"env_idx",
")",
":",
"past_frame",
",",
"future_frame",
"=",
"self",
".",
"get_frame_with_future",
"(",
"frame_idx",
",",
"env_idx",
")",
"data_dict",
"=",
"{",
"'observations'",
":",
"past_frame",
",",
"'observations_next'",
":",
"future_frame",
",",
"'actions'",
":",
"self",
".",
"action_buffer",
"[",
"frame_idx",
",",
"env_idx",
"]",
",",
"'rewards'",
":",
"self",
".",
"reward_buffer",
"[",
"frame_idx",
",",
"env_idx",
"]",
",",
"'dones'",
":",
"self",
".",
"dones_buffer",
"[",
"frame_idx",
",",
"env_idx",
"]",
",",
"}",
"for",
"name",
"in",
"self",
".",
"extra_data",
":",
"data_dict",
"[",
"name",
"]",
"=",
"self",
".",
"extra_data",
"[",
"name",
"]",
"[",
"frame_idx",
",",
"env_idx",
"]",
"return",
"data_dict"
] | Single transition with given index | [
"Single",
"transition",
"with",
"given",
"index"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/circular_vec_buffer_backend.py#L190-L205 |
251,351 | MillionIntegrals/vel | vel/rl/buffers/backend/circular_vec_buffer_backend.py | CircularVecEnvBufferBackend.get_transitions_forward_steps | def get_transitions_forward_steps(self, indexes, forward_steps, discount_factor):
"""
Get dictionary of a transition data - where the target of a transition is
n steps forward along the trajectory. Rewards are properly aggregated according to the discount factor,
and the process stops when trajectory is done.
"""
frame_batch_shape = (
[indexes.shape[0], indexes.shape[1]]
+ list(self.state_buffer.shape[2:-1])
+ [self.state_buffer.shape[-1] * self.frame_history]
)
simple_batch_shape = [indexes.shape[0], indexes.shape[1]]
past_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype)
future_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype)
reward_buffer = np.zeros(simple_batch_shape, dtype=np.float32)
dones_buffer = np.zeros(simple_batch_shape, dtype=bool)
for buffer_idx, frame_row in enumerate(indexes):
for env_idx, frame_idx in enumerate(frame_row):
past_frame, future_frame, reward, done = self.get_frame_with_future_forward_steps(
frame_idx, env_idx, forward_steps=forward_steps, discount_factor=discount_factor
)
past_frame_buffer[buffer_idx, env_idx] = past_frame
future_frame_buffer[buffer_idx, env_idx] = future_frame
reward_buffer[buffer_idx, env_idx] = reward
dones_buffer[buffer_idx, env_idx] = done
actions = take_along_axis(self.action_buffer, indexes)
transition_tensors = {
'observations': past_frame_buffer,
'actions': actions,
'rewards': reward_buffer,
'observations_next': future_frame_buffer,
'dones': dones_buffer.astype(np.float32),
}
for name in self.extra_data:
transition_tensors[name] = take_along_axis(self.extra_data[name], indexes)
return transition_tensors | python | def get_transitions_forward_steps(self, indexes, forward_steps, discount_factor):
frame_batch_shape = (
[indexes.shape[0], indexes.shape[1]]
+ list(self.state_buffer.shape[2:-1])
+ [self.state_buffer.shape[-1] * self.frame_history]
)
simple_batch_shape = [indexes.shape[0], indexes.shape[1]]
past_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype)
future_frame_buffer = np.zeros(frame_batch_shape, dtype=self.state_buffer.dtype)
reward_buffer = np.zeros(simple_batch_shape, dtype=np.float32)
dones_buffer = np.zeros(simple_batch_shape, dtype=bool)
for buffer_idx, frame_row in enumerate(indexes):
for env_idx, frame_idx in enumerate(frame_row):
past_frame, future_frame, reward, done = self.get_frame_with_future_forward_steps(
frame_idx, env_idx, forward_steps=forward_steps, discount_factor=discount_factor
)
past_frame_buffer[buffer_idx, env_idx] = past_frame
future_frame_buffer[buffer_idx, env_idx] = future_frame
reward_buffer[buffer_idx, env_idx] = reward
dones_buffer[buffer_idx, env_idx] = done
actions = take_along_axis(self.action_buffer, indexes)
transition_tensors = {
'observations': past_frame_buffer,
'actions': actions,
'rewards': reward_buffer,
'observations_next': future_frame_buffer,
'dones': dones_buffer.astype(np.float32),
}
for name in self.extra_data:
transition_tensors[name] = take_along_axis(self.extra_data[name], indexes)
return transition_tensors | [
"def",
"get_transitions_forward_steps",
"(",
"self",
",",
"indexes",
",",
"forward_steps",
",",
"discount_factor",
")",
":",
"frame_batch_shape",
"=",
"(",
"[",
"indexes",
".",
"shape",
"[",
"0",
"]",
",",
"indexes",
".",
"shape",
"[",
"1",
"]",
"]",
"+",
"list",
"(",
"self",
".",
"state_buffer",
".",
"shape",
"[",
"2",
":",
"-",
"1",
"]",
")",
"+",
"[",
"self",
".",
"state_buffer",
".",
"shape",
"[",
"-",
"1",
"]",
"*",
"self",
".",
"frame_history",
"]",
")",
"simple_batch_shape",
"=",
"[",
"indexes",
".",
"shape",
"[",
"0",
"]",
",",
"indexes",
".",
"shape",
"[",
"1",
"]",
"]",
"past_frame_buffer",
"=",
"np",
".",
"zeros",
"(",
"frame_batch_shape",
",",
"dtype",
"=",
"self",
".",
"state_buffer",
".",
"dtype",
")",
"future_frame_buffer",
"=",
"np",
".",
"zeros",
"(",
"frame_batch_shape",
",",
"dtype",
"=",
"self",
".",
"state_buffer",
".",
"dtype",
")",
"reward_buffer",
"=",
"np",
".",
"zeros",
"(",
"simple_batch_shape",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"dones_buffer",
"=",
"np",
".",
"zeros",
"(",
"simple_batch_shape",
",",
"dtype",
"=",
"bool",
")",
"for",
"buffer_idx",
",",
"frame_row",
"in",
"enumerate",
"(",
"indexes",
")",
":",
"for",
"env_idx",
",",
"frame_idx",
"in",
"enumerate",
"(",
"frame_row",
")",
":",
"past_frame",
",",
"future_frame",
",",
"reward",
",",
"done",
"=",
"self",
".",
"get_frame_with_future_forward_steps",
"(",
"frame_idx",
",",
"env_idx",
",",
"forward_steps",
"=",
"forward_steps",
",",
"discount_factor",
"=",
"discount_factor",
")",
"past_frame_buffer",
"[",
"buffer_idx",
",",
"env_idx",
"]",
"=",
"past_frame",
"future_frame_buffer",
"[",
"buffer_idx",
",",
"env_idx",
"]",
"=",
"future_frame",
"reward_buffer",
"[",
"buffer_idx",
",",
"env_idx",
"]",
"=",
"reward",
"dones_buffer",
"[",
"buffer_idx",
",",
"env_idx",
"]",
"=",
"done",
"actions",
"=",
"take_along_axis",
"(",
"self",
".",
"action_buffer",
",",
"indexes",
")",
"transition_tensors",
"=",
"{",
"'observations'",
":",
"past_frame_buffer",
",",
"'actions'",
":",
"actions",
",",
"'rewards'",
":",
"reward_buffer",
",",
"'observations_next'",
":",
"future_frame_buffer",
",",
"'dones'",
":",
"dones_buffer",
".",
"astype",
"(",
"np",
".",
"float32",
")",
",",
"}",
"for",
"name",
"in",
"self",
".",
"extra_data",
":",
"transition_tensors",
"[",
"name",
"]",
"=",
"take_along_axis",
"(",
"self",
".",
"extra_data",
"[",
"name",
"]",
",",
"indexes",
")",
"return",
"transition_tensors"
] | Get dictionary of a transition data - where the target of a transition is
n steps forward along the trajectory. Rewards are properly aggregated according to the discount factor,
and the process stops when trajectory is done. | [
"Get",
"dictionary",
"of",
"a",
"transition",
"data",
"-",
"where",
"the",
"target",
"of",
"a",
"transition",
"is",
"n",
"steps",
"forward",
"along",
"the",
"trajectory",
".",
"Rewards",
"are",
"properly",
"aggregated",
"according",
"to",
"the",
"discount",
"factor",
"and",
"the",
"process",
"stops",
"when",
"trajectory",
"is",
"done",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/circular_vec_buffer_backend.py#L244-L288 |
251,352 | MillionIntegrals/vel | vel/rl/buffers/backend/circular_vec_buffer_backend.py | CircularVecEnvBufferBackend.sample_batch_trajectories | def sample_batch_trajectories(self, rollout_length):
""" Return indexes of next random rollout """
results = []
for i in range(self.num_envs):
results.append(self.sample_rollout_single_env(rollout_length))
return np.stack(results, axis=-1) | python | def sample_batch_trajectories(self, rollout_length):
results = []
for i in range(self.num_envs):
results.append(self.sample_rollout_single_env(rollout_length))
return np.stack(results, axis=-1) | [
"def",
"sample_batch_trajectories",
"(",
"self",
",",
"rollout_length",
")",
":",
"results",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"num_envs",
")",
":",
"results",
".",
"append",
"(",
"self",
".",
"sample_rollout_single_env",
"(",
"rollout_length",
")",
")",
"return",
"np",
".",
"stack",
"(",
"results",
",",
"axis",
"=",
"-",
"1",
")"
] | Return indexes of next random rollout | [
"Return",
"indexes",
"of",
"next",
"random",
"rollout"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/circular_vec_buffer_backend.py#L310-L317 |
251,353 | MillionIntegrals/vel | vel/rl/buffers/backend/circular_vec_buffer_backend.py | CircularVecEnvBufferBackend.sample_frame_single_env | def sample_frame_single_env(self, batch_size, forward_steps=1):
""" Return an in index of a random set of frames from a buffer, that have enough history and future """
# Whole idea of this function is to make sure that sample we take is far away from the point which we are
# currently writing to the buffer, which is 'discontinuous'
if self.current_size < self.buffer_capacity:
# Sample from up to total size of the buffer
# -1 because we cannot take the last one
return np.random.choice(self.current_size - forward_steps, batch_size, replace=False)
else:
candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False)
forbidden_ones = (
np.arange(self.current_idx - forward_steps + 1, self.current_idx + self.frame_history)
% self.buffer_capacity
)
# Exclude these frames for learning as they may have some part of history overwritten
while any(x in candidate for x in forbidden_ones):
candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False)
return candidate | python | def sample_frame_single_env(self, batch_size, forward_steps=1):
# Whole idea of this function is to make sure that sample we take is far away from the point which we are
# currently writing to the buffer, which is 'discontinuous'
if self.current_size < self.buffer_capacity:
# Sample from up to total size of the buffer
# -1 because we cannot take the last one
return np.random.choice(self.current_size - forward_steps, batch_size, replace=False)
else:
candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False)
forbidden_ones = (
np.arange(self.current_idx - forward_steps + 1, self.current_idx + self.frame_history)
% self.buffer_capacity
)
# Exclude these frames for learning as they may have some part of history overwritten
while any(x in candidate for x in forbidden_ones):
candidate = np.random.choice(self.buffer_capacity, batch_size, replace=False)
return candidate | [
"def",
"sample_frame_single_env",
"(",
"self",
",",
"batch_size",
",",
"forward_steps",
"=",
"1",
")",
":",
"# Whole idea of this function is to make sure that sample we take is far away from the point which we are",
"# currently writing to the buffer, which is 'discontinuous'",
"if",
"self",
".",
"current_size",
"<",
"self",
".",
"buffer_capacity",
":",
"# Sample from up to total size of the buffer",
"# -1 because we cannot take the last one",
"return",
"np",
".",
"random",
".",
"choice",
"(",
"self",
".",
"current_size",
"-",
"forward_steps",
",",
"batch_size",
",",
"replace",
"=",
"False",
")",
"else",
":",
"candidate",
"=",
"np",
".",
"random",
".",
"choice",
"(",
"self",
".",
"buffer_capacity",
",",
"batch_size",
",",
"replace",
"=",
"False",
")",
"forbidden_ones",
"=",
"(",
"np",
".",
"arange",
"(",
"self",
".",
"current_idx",
"-",
"forward_steps",
"+",
"1",
",",
"self",
".",
"current_idx",
"+",
"self",
".",
"frame_history",
")",
"%",
"self",
".",
"buffer_capacity",
")",
"# Exclude these frames for learning as they may have some part of history overwritten",
"while",
"any",
"(",
"x",
"in",
"candidate",
"for",
"x",
"in",
"forbidden_ones",
")",
":",
"candidate",
"=",
"np",
".",
"random",
".",
"choice",
"(",
"self",
".",
"buffer_capacity",
",",
"batch_size",
",",
"replace",
"=",
"False",
")",
"return",
"candidate"
] | Return an in index of a random set of frames from a buffer, that have enough history and future | [
"Return",
"an",
"in",
"index",
"of",
"a",
"random",
"set",
"of",
"frames",
"from",
"a",
"buffer",
"that",
"have",
"enough",
"history",
"and",
"future"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/backend/circular_vec_buffer_backend.py#L346-L367 |
251,354 | MillionIntegrals/vel | vel/rl/commands/record_movie_command.py | RecordMovieCommand.record_take | def record_take(self, model, env_instance, device, take_number):
""" Record a single movie and store it on hard drive """
frames = []
observation = env_instance.reset()
if model.is_recurrent:
hidden_state = model.zero_state(1).to(device)
frames.append(env_instance.render('rgb_array'))
print("Evaluating environment...")
while True:
observation_array = np.expand_dims(np.array(observation), axis=0)
observation_tensor = torch.from_numpy(observation_array).to(device)
if model.is_recurrent:
output = model.step(observation_tensor, hidden_state, **self.sample_args)
hidden_state = output['state']
actions = output['actions']
else:
actions = model.step(observation_tensor, **self.sample_args)['actions']
actions = actions.detach().cpu().numpy()
observation, reward, done, epinfo = env_instance.step(actions[0])
frames.append(env_instance.render('rgb_array'))
if 'episode' in epinfo:
# End of an episode
break
takename = self.model_config.output_dir('videos', self.model_config.run_name, self.videoname.format(take_number))
pathlib.Path(os.path.dirname(takename)).mkdir(parents=True, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
video = cv2.VideoWriter(takename, fourcc, self.fps, (frames[0].shape[1], frames[0].shape[0]))
for i in tqdm.trange(len(frames), file=sys.stdout):
video.write(cv2.cvtColor(frames[i], cv2.COLOR_RGB2BGR))
video.release()
print("Written {}".format(takename)) | python | def record_take(self, model, env_instance, device, take_number):
frames = []
observation = env_instance.reset()
if model.is_recurrent:
hidden_state = model.zero_state(1).to(device)
frames.append(env_instance.render('rgb_array'))
print("Evaluating environment...")
while True:
observation_array = np.expand_dims(np.array(observation), axis=0)
observation_tensor = torch.from_numpy(observation_array).to(device)
if model.is_recurrent:
output = model.step(observation_tensor, hidden_state, **self.sample_args)
hidden_state = output['state']
actions = output['actions']
else:
actions = model.step(observation_tensor, **self.sample_args)['actions']
actions = actions.detach().cpu().numpy()
observation, reward, done, epinfo = env_instance.step(actions[0])
frames.append(env_instance.render('rgb_array'))
if 'episode' in epinfo:
# End of an episode
break
takename = self.model_config.output_dir('videos', self.model_config.run_name, self.videoname.format(take_number))
pathlib.Path(os.path.dirname(takename)).mkdir(parents=True, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
video = cv2.VideoWriter(takename, fourcc, self.fps, (frames[0].shape[1], frames[0].shape[0]))
for i in tqdm.trange(len(frames), file=sys.stdout):
video.write(cv2.cvtColor(frames[i], cv2.COLOR_RGB2BGR))
video.release()
print("Written {}".format(takename)) | [
"def",
"record_take",
"(",
"self",
",",
"model",
",",
"env_instance",
",",
"device",
",",
"take_number",
")",
":",
"frames",
"=",
"[",
"]",
"observation",
"=",
"env_instance",
".",
"reset",
"(",
")",
"if",
"model",
".",
"is_recurrent",
":",
"hidden_state",
"=",
"model",
".",
"zero_state",
"(",
"1",
")",
".",
"to",
"(",
"device",
")",
"frames",
".",
"append",
"(",
"env_instance",
".",
"render",
"(",
"'rgb_array'",
")",
")",
"print",
"(",
"\"Evaluating environment...\"",
")",
"while",
"True",
":",
"observation_array",
"=",
"np",
".",
"expand_dims",
"(",
"np",
".",
"array",
"(",
"observation",
")",
",",
"axis",
"=",
"0",
")",
"observation_tensor",
"=",
"torch",
".",
"from_numpy",
"(",
"observation_array",
")",
".",
"to",
"(",
"device",
")",
"if",
"model",
".",
"is_recurrent",
":",
"output",
"=",
"model",
".",
"step",
"(",
"observation_tensor",
",",
"hidden_state",
",",
"*",
"*",
"self",
".",
"sample_args",
")",
"hidden_state",
"=",
"output",
"[",
"'state'",
"]",
"actions",
"=",
"output",
"[",
"'actions'",
"]",
"else",
":",
"actions",
"=",
"model",
".",
"step",
"(",
"observation_tensor",
",",
"*",
"*",
"self",
".",
"sample_args",
")",
"[",
"'actions'",
"]",
"actions",
"=",
"actions",
".",
"detach",
"(",
")",
".",
"cpu",
"(",
")",
".",
"numpy",
"(",
")",
"observation",
",",
"reward",
",",
"done",
",",
"epinfo",
"=",
"env_instance",
".",
"step",
"(",
"actions",
"[",
"0",
"]",
")",
"frames",
".",
"append",
"(",
"env_instance",
".",
"render",
"(",
"'rgb_array'",
")",
")",
"if",
"'episode'",
"in",
"epinfo",
":",
"# End of an episode",
"break",
"takename",
"=",
"self",
".",
"model_config",
".",
"output_dir",
"(",
"'videos'",
",",
"self",
".",
"model_config",
".",
"run_name",
",",
"self",
".",
"videoname",
".",
"format",
"(",
"take_number",
")",
")",
"pathlib",
".",
"Path",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"takename",
")",
")",
".",
"mkdir",
"(",
"parents",
"=",
"True",
",",
"exist_ok",
"=",
"True",
")",
"fourcc",
"=",
"cv2",
".",
"VideoWriter_fourcc",
"(",
"'M'",
",",
"'J'",
",",
"'P'",
",",
"'G'",
")",
"video",
"=",
"cv2",
".",
"VideoWriter",
"(",
"takename",
",",
"fourcc",
",",
"self",
".",
"fps",
",",
"(",
"frames",
"[",
"0",
"]",
".",
"shape",
"[",
"1",
"]",
",",
"frames",
"[",
"0",
"]",
".",
"shape",
"[",
"0",
"]",
")",
")",
"for",
"i",
"in",
"tqdm",
".",
"trange",
"(",
"len",
"(",
"frames",
")",
",",
"file",
"=",
"sys",
".",
"stdout",
")",
":",
"video",
".",
"write",
"(",
"cv2",
".",
"cvtColor",
"(",
"frames",
"[",
"i",
"]",
",",
"cv2",
".",
"COLOR_RGB2BGR",
")",
")",
"video",
".",
"release",
"(",
")",
"print",
"(",
"\"Written {}\"",
".",
"format",
"(",
"takename",
")",
")"
] | Record a single movie and store it on hard drive | [
"Record",
"a",
"single",
"movie",
"and",
"store",
"it",
"on",
"hard",
"drive"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/commands/record_movie_command.py#L47-L91 |
251,355 | MillionIntegrals/vel | vel/rl/modules/noise/ou_noise.py | OuNoise.reset_training_state | def reset_training_state(self, dones, batch_info):
""" A hook for a model to react when during training episode is finished """
for idx, done in enumerate(dones):
if done > 0.5:
self.processes[idx].reset() | python | def reset_training_state(self, dones, batch_info):
for idx, done in enumerate(dones):
if done > 0.5:
self.processes[idx].reset() | [
"def",
"reset_training_state",
"(",
"self",
",",
"dones",
",",
"batch_info",
")",
":",
"for",
"idx",
",",
"done",
"in",
"enumerate",
"(",
"dones",
")",
":",
"if",
"done",
">",
"0.5",
":",
"self",
".",
"processes",
"[",
"idx",
"]",
".",
"reset",
"(",
")"
] | A hook for a model to react when during training episode is finished | [
"A",
"hook",
"for",
"a",
"model",
"to",
"react",
"when",
"during",
"training",
"episode",
"is",
"finished"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/modules/noise/ou_noise.py#L22-L26 |
251,356 | MillionIntegrals/vel | vel/rl/modules/noise/ou_noise.py | OuNoise.forward | def forward(self, actions, batch_info):
""" Return model step after applying noise """
while len(self.processes) < actions.shape[0]:
len_action_space = self.action_space.shape[-1]
self.processes.append(
OrnsteinUhlenbeckNoiseProcess(
np.zeros(len_action_space), float(self.std_dev) * np.ones(len_action_space)
)
)
noise = torch.from_numpy(np.stack([x() for x in self.processes])).float().to(actions.device)
return torch.min(torch.max(actions + noise, self.low_tensor), self.high_tensor) | python | def forward(self, actions, batch_info):
while len(self.processes) < actions.shape[0]:
len_action_space = self.action_space.shape[-1]
self.processes.append(
OrnsteinUhlenbeckNoiseProcess(
np.zeros(len_action_space), float(self.std_dev) * np.ones(len_action_space)
)
)
noise = torch.from_numpy(np.stack([x() for x in self.processes])).float().to(actions.device)
return torch.min(torch.max(actions + noise, self.low_tensor), self.high_tensor) | [
"def",
"forward",
"(",
"self",
",",
"actions",
",",
"batch_info",
")",
":",
"while",
"len",
"(",
"self",
".",
"processes",
")",
"<",
"actions",
".",
"shape",
"[",
"0",
"]",
":",
"len_action_space",
"=",
"self",
".",
"action_space",
".",
"shape",
"[",
"-",
"1",
"]",
"self",
".",
"processes",
".",
"append",
"(",
"OrnsteinUhlenbeckNoiseProcess",
"(",
"np",
".",
"zeros",
"(",
"len_action_space",
")",
",",
"float",
"(",
"self",
".",
"std_dev",
")",
"*",
"np",
".",
"ones",
"(",
"len_action_space",
")",
")",
")",
"noise",
"=",
"torch",
".",
"from_numpy",
"(",
"np",
".",
"stack",
"(",
"[",
"x",
"(",
")",
"for",
"x",
"in",
"self",
".",
"processes",
"]",
")",
")",
".",
"float",
"(",
")",
".",
"to",
"(",
"actions",
".",
"device",
")",
"return",
"torch",
".",
"min",
"(",
"torch",
".",
"max",
"(",
"actions",
"+",
"noise",
",",
"self",
".",
"low_tensor",
")",
",",
"self",
".",
"high_tensor",
")"
] | Return model step after applying noise | [
"Return",
"model",
"step",
"after",
"applying",
"noise"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/modules/noise/ou_noise.py#L28-L41 |
251,357 | MillionIntegrals/vel | vel/util/intepolate.py | interpolate_logscale | def interpolate_logscale(start, end, steps):
""" Interpolate series between start and end in given number of steps - logscale interpolation """
if start <= 0.0:
warnings.warn("Start of logscale interpolation must be positive!")
start = 1e-5
return np.logspace(np.log10(float(start)), np.log10(float(end)), steps) | python | def interpolate_logscale(start, end, steps):
if start <= 0.0:
warnings.warn("Start of logscale interpolation must be positive!")
start = 1e-5
return np.logspace(np.log10(float(start)), np.log10(float(end)), steps) | [
"def",
"interpolate_logscale",
"(",
"start",
",",
"end",
",",
"steps",
")",
":",
"if",
"start",
"<=",
"0.0",
":",
"warnings",
".",
"warn",
"(",
"\"Start of logscale interpolation must be positive!\"",
")",
"start",
"=",
"1e-5",
"return",
"np",
".",
"logspace",
"(",
"np",
".",
"log10",
"(",
"float",
"(",
"start",
")",
")",
",",
"np",
".",
"log10",
"(",
"float",
"(",
"end",
")",
")",
",",
"steps",
")"
] | Interpolate series between start and end in given number of steps - logscale interpolation | [
"Interpolate",
"series",
"between",
"start",
"and",
"end",
"in",
"given",
"number",
"of",
"steps",
"-",
"logscale",
"interpolation"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/intepolate.py#L10-L16 |
251,358 | MillionIntegrals/vel | vel/util/intepolate.py | interpolate_series | def interpolate_series(start, end, steps, how='linear'):
""" Interpolate series between start and end in given number of steps """
return INTERP_DICT[how](start, end, steps) | python | def interpolate_series(start, end, steps, how='linear'):
return INTERP_DICT[how](start, end, steps) | [
"def",
"interpolate_series",
"(",
"start",
",",
"end",
",",
"steps",
",",
"how",
"=",
"'linear'",
")",
":",
"return",
"INTERP_DICT",
"[",
"how",
"]",
"(",
"start",
",",
"end",
",",
"steps",
")"
] | Interpolate series between start and end in given number of steps | [
"Interpolate",
"series",
"between",
"start",
"and",
"end",
"in",
"given",
"number",
"of",
"steps"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/intepolate.py#L48-L50 |
251,359 | MillionIntegrals/vel | vel/util/intepolate.py | interpolate_single | def interpolate_single(start, end, coefficient, how='linear'):
""" Interpolate single value between start and end in given number of steps """
return INTERP_SINGLE_DICT[how](start, end, coefficient) | python | def interpolate_single(start, end, coefficient, how='linear'):
return INTERP_SINGLE_DICT[how](start, end, coefficient) | [
"def",
"interpolate_single",
"(",
"start",
",",
"end",
",",
"coefficient",
",",
"how",
"=",
"'linear'",
")",
":",
"return",
"INTERP_SINGLE_DICT",
"[",
"how",
"]",
"(",
"start",
",",
"end",
",",
"coefficient",
")"
] | Interpolate single value between start and end in given number of steps | [
"Interpolate",
"single",
"value",
"between",
"start",
"and",
"end",
"in",
"given",
"number",
"of",
"steps"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/intepolate.py#L53-L55 |
251,360 | MillionIntegrals/vel | vel/commands/summary_command.py | ModelSummary.run | def run(self, *args):
""" Print model summary """
if self.source is None:
self.model.summary()
else:
x_data, y_data = next(iter(self.source.train_loader()))
self.model.summary(input_size=x_data.shape[1:]) | python | def run(self, *args):
if self.source is None:
self.model.summary()
else:
x_data, y_data = next(iter(self.source.train_loader()))
self.model.summary(input_size=x_data.shape[1:]) | [
"def",
"run",
"(",
"self",
",",
"*",
"args",
")",
":",
"if",
"self",
".",
"source",
"is",
"None",
":",
"self",
".",
"model",
".",
"summary",
"(",
")",
"else",
":",
"x_data",
",",
"y_data",
"=",
"next",
"(",
"iter",
"(",
"self",
".",
"source",
".",
"train_loader",
"(",
")",
")",
")",
"self",
".",
"model",
".",
"summary",
"(",
"input_size",
"=",
"x_data",
".",
"shape",
"[",
"1",
":",
"]",
")"
] | Print model summary | [
"Print",
"model",
"summary"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/commands/summary_command.py#L10-L16 |
251,361 | MillionIntegrals/vel | vel/rl/reinforcers/on_policy_iteration_reinforcer.py | OnPolicyIterationReinforcer.initialize_training | def initialize_training(self, training_info: TrainingInfo, model_state=None, hidden_state=None):
""" Prepare models for training """
if model_state is not None:
self.model.load_state_dict(model_state)
else:
self.model.reset_weights()
self.algo.initialize(
training_info=training_info, model=self.model, environment=self.env_roller.environment, device=self.device
) | python | def initialize_training(self, training_info: TrainingInfo, model_state=None, hidden_state=None):
if model_state is not None:
self.model.load_state_dict(model_state)
else:
self.model.reset_weights()
self.algo.initialize(
training_info=training_info, model=self.model, environment=self.env_roller.environment, device=self.device
) | [
"def",
"initialize_training",
"(",
"self",
",",
"training_info",
":",
"TrainingInfo",
",",
"model_state",
"=",
"None",
",",
"hidden_state",
"=",
"None",
")",
":",
"if",
"model_state",
"is",
"not",
"None",
":",
"self",
".",
"model",
".",
"load_state_dict",
"(",
"model_state",
")",
"else",
":",
"self",
".",
"model",
".",
"reset_weights",
"(",
")",
"self",
".",
"algo",
".",
"initialize",
"(",
"training_info",
"=",
"training_info",
",",
"model",
"=",
"self",
".",
"model",
",",
"environment",
"=",
"self",
".",
"env_roller",
".",
"environment",
",",
"device",
"=",
"self",
".",
"device",
")"
] | Prepare models for training | [
"Prepare",
"models",
"for",
"training"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/on_policy_iteration_reinforcer.py#L63-L72 |
251,362 | MillionIntegrals/vel | vel/util/network.py | convolutional_layer_series | def convolutional_layer_series(initial_size, layer_sequence):
""" Execute a series of convolutional layer transformations to the size number """
size = initial_size
for filter_size, padding, stride in layer_sequence:
size = convolution_size_equation(size, filter_size, padding, stride)
return size | python | def convolutional_layer_series(initial_size, layer_sequence):
size = initial_size
for filter_size, padding, stride in layer_sequence:
size = convolution_size_equation(size, filter_size, padding, stride)
return size | [
"def",
"convolutional_layer_series",
"(",
"initial_size",
",",
"layer_sequence",
")",
":",
"size",
"=",
"initial_size",
"for",
"filter_size",
",",
"padding",
",",
"stride",
"in",
"layer_sequence",
":",
"size",
"=",
"convolution_size_equation",
"(",
"size",
",",
"filter_size",
",",
"padding",
",",
"stride",
")",
"return",
"size"
] | Execute a series of convolutional layer transformations to the size number | [
"Execute",
"a",
"series",
"of",
"convolutional",
"layer",
"transformations",
"to",
"the",
"size",
"number"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/network.py#L34-L41 |
251,363 | MillionIntegrals/vel | vel/api/model.py | Model.train | def train(self, mode=True):
r"""
Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Returns:
Module: self
"""
super().train(mode)
if mode:
mu.apply_leaf(self, mu.set_train_mode)
return self | python | def train(self, mode=True):
r"""
Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Returns:
Module: self
"""
super().train(mode)
if mode:
mu.apply_leaf(self, mu.set_train_mode)
return self | [
"def",
"train",
"(",
"self",
",",
"mode",
"=",
"True",
")",
":",
"super",
"(",
")",
".",
"train",
"(",
"mode",
")",
"if",
"mode",
":",
"mu",
".",
"apply_leaf",
"(",
"self",
",",
"mu",
".",
"set_train_mode",
")",
"return",
"self"
] | r"""
Sets the module in training mode.
This has any effect only on certain modules. See documentations of
particular modules for details of their behaviors in training/evaluation
mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
etc.
Returns:
Module: self | [
"r",
"Sets",
"the",
"module",
"in",
"training",
"mode",
"."
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/model.py#L18-L35 |
251,364 | MillionIntegrals/vel | vel/api/model.py | Model.summary | def summary(self, input_size=None, hashsummary=False):
""" Print a model summary """
if input_size is None:
print(self)
print("-" * 120)
number = sum(p.numel() for p in self.model.parameters())
print("Number of model parameters: {:,}".format(number))
print("-" * 120)
else:
summary(self, input_size)
if hashsummary:
for idx, hashvalue in enumerate(self.hashsummary()):
print(f"{idx}: {hashvalue}") | python | def summary(self, input_size=None, hashsummary=False):
if input_size is None:
print(self)
print("-" * 120)
number = sum(p.numel() for p in self.model.parameters())
print("Number of model parameters: {:,}".format(number))
print("-" * 120)
else:
summary(self, input_size)
if hashsummary:
for idx, hashvalue in enumerate(self.hashsummary()):
print(f"{idx}: {hashvalue}") | [
"def",
"summary",
"(",
"self",
",",
"input_size",
"=",
"None",
",",
"hashsummary",
"=",
"False",
")",
":",
"if",
"input_size",
"is",
"None",
":",
"print",
"(",
"self",
")",
"print",
"(",
"\"-\"",
"*",
"120",
")",
"number",
"=",
"sum",
"(",
"p",
".",
"numel",
"(",
")",
"for",
"p",
"in",
"self",
".",
"model",
".",
"parameters",
"(",
")",
")",
"print",
"(",
"\"Number of model parameters: {:,}\"",
".",
"format",
"(",
"number",
")",
")",
"print",
"(",
"\"-\"",
"*",
"120",
")",
"else",
":",
"summary",
"(",
"self",
",",
"input_size",
")",
"if",
"hashsummary",
":",
"for",
"idx",
",",
"hashvalue",
"in",
"enumerate",
"(",
"self",
".",
"hashsummary",
"(",
")",
")",
":",
"print",
"(",
"f\"{idx}: {hashvalue}\"",
")"
] | Print a model summary | [
"Print",
"a",
"model",
"summary"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/model.py#L37-L51 |
251,365 | MillionIntegrals/vel | vel/api/model.py | Model.hashsummary | def hashsummary(self):
""" Print a model summary - checksums of each layer parameters """
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()).hexdigest() for x in child.parameters())
return result | python | def hashsummary(self):
children = list(self.children())
result = []
for child in children:
result.extend(hashlib.sha256(x.detach().cpu().numpy().tobytes()).hexdigest() for x in child.parameters())
return result | [
"def",
"hashsummary",
"(",
"self",
")",
":",
"children",
"=",
"list",
"(",
"self",
".",
"children",
"(",
")",
")",
"result",
"=",
"[",
"]",
"for",
"child",
"in",
"children",
":",
"result",
".",
"extend",
"(",
"hashlib",
".",
"sha256",
"(",
"x",
".",
"detach",
"(",
")",
".",
"cpu",
"(",
")",
".",
"numpy",
"(",
")",
".",
"tobytes",
"(",
")",
")",
".",
"hexdigest",
"(",
")",
"for",
"x",
"in",
"child",
".",
"parameters",
"(",
")",
")",
"return",
"result"
] | Print a model summary - checksums of each layer parameters | [
"Print",
"a",
"model",
"summary",
"-",
"checksums",
"of",
"each",
"layer",
"parameters"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/model.py#L53-L62 |
251,366 | MillionIntegrals/vel | vel/api/model.py | RnnLinearBackboneModel.zero_state | def zero_state(self, batch_size):
""" Initial state of the network """
return torch.zeros(batch_size, self.state_dim, dtype=torch.float32) | python | def zero_state(self, batch_size):
return torch.zeros(batch_size, self.state_dim, dtype=torch.float32) | [
"def",
"zero_state",
"(",
"self",
",",
"batch_size",
")",
":",
"return",
"torch",
".",
"zeros",
"(",
"batch_size",
",",
"self",
".",
"state_dim",
",",
"dtype",
"=",
"torch",
".",
"float32",
")"
] | Initial state of the network | [
"Initial",
"state",
"of",
"the",
"network"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/model.py#L121-L123 |
251,367 | MillionIntegrals/vel | vel/api/model.py | SupervisedModel.loss | def loss(self, x_data, y_true):
""" Forward propagate network and return a value of loss function """
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred) | python | def loss(self, x_data, y_true):
y_pred = self(x_data)
return y_pred, self.loss_value(x_data, y_true, y_pred) | [
"def",
"loss",
"(",
"self",
",",
"x_data",
",",
"y_true",
")",
":",
"y_pred",
"=",
"self",
"(",
"x_data",
")",
"return",
"y_pred",
",",
"self",
".",
"loss_value",
"(",
"x_data",
",",
"y_true",
",",
"y_pred",
")"
] | Forward propagate network and return a value of loss function | [
"Forward",
"propagate",
"network",
"and",
"return",
"a",
"value",
"of",
"loss",
"function"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/api/model.py#L139-L142 |
251,368 | MillionIntegrals/vel | vel/models/vision/cifar_resnet_v2.py | ResNetV2.metrics | def metrics(self):
""" Set of metrics for this model """
from vel.metrics.loss_metric import Loss
from vel.metrics.accuracy import Accuracy
return [Loss(), Accuracy()] | python | def metrics(self):
from vel.metrics.loss_metric import Loss
from vel.metrics.accuracy import Accuracy
return [Loss(), Accuracy()] | [
"def",
"metrics",
"(",
"self",
")",
":",
"from",
"vel",
".",
"metrics",
".",
"loss_metric",
"import",
"Loss",
"from",
"vel",
".",
"metrics",
".",
"accuracy",
"import",
"Accuracy",
"return",
"[",
"Loss",
"(",
")",
",",
"Accuracy",
"(",
")",
"]"
] | Set of metrics for this model | [
"Set",
"of",
"metrics",
"for",
"this",
"model"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/models/vision/cifar_resnet_v2.py#L77-L81 |
251,369 | MillionIntegrals/vel | vel/util/tensor_util.py | one_hot_encoding | def one_hot_encoding(input_tensor, num_labels):
""" One-hot encode labels from input """
xview = input_tensor.view(-1, 1).to(torch.long)
onehot = torch.zeros(xview.size(0), num_labels, device=input_tensor.device, dtype=torch.float)
onehot.scatter_(1, xview, 1)
return onehot.view(list(input_tensor.shape) + [-1]) | python | def one_hot_encoding(input_tensor, num_labels):
xview = input_tensor.view(-1, 1).to(torch.long)
onehot = torch.zeros(xview.size(0), num_labels, device=input_tensor.device, dtype=torch.float)
onehot.scatter_(1, xview, 1)
return onehot.view(list(input_tensor.shape) + [-1]) | [
"def",
"one_hot_encoding",
"(",
"input_tensor",
",",
"num_labels",
")",
":",
"xview",
"=",
"input_tensor",
".",
"view",
"(",
"-",
"1",
",",
"1",
")",
".",
"to",
"(",
"torch",
".",
"long",
")",
"onehot",
"=",
"torch",
".",
"zeros",
"(",
"xview",
".",
"size",
"(",
"0",
")",
",",
"num_labels",
",",
"device",
"=",
"input_tensor",
".",
"device",
",",
"dtype",
"=",
"torch",
".",
"float",
")",
"onehot",
".",
"scatter_",
"(",
"1",
",",
"xview",
",",
"1",
")",
"return",
"onehot",
".",
"view",
"(",
"list",
"(",
"input_tensor",
".",
"shape",
")",
"+",
"[",
"-",
"1",
"]",
")"
] | One-hot encode labels from input | [
"One",
"-",
"hot",
"encode",
"labels",
"from",
"input"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/tensor_util.py#L4-L10 |
251,370 | MillionIntegrals/vel | vel/util/tensor_util.py | merge_first_two_dims | def merge_first_two_dims(tensor):
""" Reshape tensor to merge first two dimensions """
shape = tensor.shape
batch_size = shape[0] * shape[1]
new_shape = tuple([batch_size] + list(shape[2:]))
return tensor.view(new_shape) | python | def merge_first_two_dims(tensor):
shape = tensor.shape
batch_size = shape[0] * shape[1]
new_shape = tuple([batch_size] + list(shape[2:]))
return tensor.view(new_shape) | [
"def",
"merge_first_two_dims",
"(",
"tensor",
")",
":",
"shape",
"=",
"tensor",
".",
"shape",
"batch_size",
"=",
"shape",
"[",
"0",
"]",
"*",
"shape",
"[",
"1",
"]",
"new_shape",
"=",
"tuple",
"(",
"[",
"batch_size",
"]",
"+",
"list",
"(",
"shape",
"[",
"2",
":",
"]",
")",
")",
"return",
"tensor",
".",
"view",
"(",
"new_shape",
")"
] | Reshape tensor to merge first two dimensions | [
"Reshape",
"tensor",
"to",
"merge",
"first",
"two",
"dimensions"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/util/tensor_util.py#L13-L18 |
251,371 | MillionIntegrals/vel | vel/rl/vecenv/dummy.py | DummyVecEnvWrapper.instantiate | def instantiate(self, parallel_envs, seed=0, preset='default') -> VecEnv:
""" Create vectorized environments """
envs = DummyVecEnv([self._creation_function(i, seed, preset) for i in range(parallel_envs)])
if self.frame_history is not None:
envs = VecFrameStack(envs, self.frame_history)
return envs | python | def instantiate(self, parallel_envs, seed=0, preset='default') -> VecEnv:
envs = DummyVecEnv([self._creation_function(i, seed, preset) for i in range(parallel_envs)])
if self.frame_history is not None:
envs = VecFrameStack(envs, self.frame_history)
return envs | [
"def",
"instantiate",
"(",
"self",
",",
"parallel_envs",
",",
"seed",
"=",
"0",
",",
"preset",
"=",
"'default'",
")",
"->",
"VecEnv",
":",
"envs",
"=",
"DummyVecEnv",
"(",
"[",
"self",
".",
"_creation_function",
"(",
"i",
",",
"seed",
",",
"preset",
")",
"for",
"i",
"in",
"range",
"(",
"parallel_envs",
")",
"]",
")",
"if",
"self",
".",
"frame_history",
"is",
"not",
"None",
":",
"envs",
"=",
"VecFrameStack",
"(",
"envs",
",",
"self",
".",
"frame_history",
")",
"return",
"envs"
] | Create vectorized environments | [
"Create",
"vectorized",
"environments"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/vecenv/dummy.py#L16-L23 |
251,372 | MillionIntegrals/vel | vel/rl/vecenv/dummy.py | DummyVecEnvWrapper.instantiate_single | def instantiate_single(self, seed=0, preset='default'):
""" Create a new Env instance - single """
env = self.env.instantiate(seed=seed, serial_id=0, preset=preset)
if self.frame_history is not None:
env = FrameStack(env, self.frame_history)
return env | python | def instantiate_single(self, seed=0, preset='default'):
env = self.env.instantiate(seed=seed, serial_id=0, preset=preset)
if self.frame_history is not None:
env = FrameStack(env, self.frame_history)
return env | [
"def",
"instantiate_single",
"(",
"self",
",",
"seed",
"=",
"0",
",",
"preset",
"=",
"'default'",
")",
":",
"env",
"=",
"self",
".",
"env",
".",
"instantiate",
"(",
"seed",
"=",
"seed",
",",
"serial_id",
"=",
"0",
",",
"preset",
"=",
"preset",
")",
"if",
"self",
".",
"frame_history",
"is",
"not",
"None",
":",
"env",
"=",
"FrameStack",
"(",
"env",
",",
"self",
".",
"frame_history",
")",
"return",
"env"
] | Create a new Env instance - single | [
"Create",
"a",
"new",
"Env",
"instance",
"-",
"single"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/vecenv/dummy.py#L25-L32 |
251,373 | MillionIntegrals/vel | vel/rl/vecenv/dummy.py | DummyVecEnvWrapper._creation_function | def _creation_function(self, idx, seed, preset):
""" Helper function to create a proper closure around supplied values """
return lambda: self.env.instantiate(seed=seed, serial_id=idx, preset=preset) | python | def _creation_function(self, idx, seed, preset):
return lambda: self.env.instantiate(seed=seed, serial_id=idx, preset=preset) | [
"def",
"_creation_function",
"(",
"self",
",",
"idx",
",",
"seed",
",",
"preset",
")",
":",
"return",
"lambda",
":",
"self",
".",
"env",
".",
"instantiate",
"(",
"seed",
"=",
"seed",
",",
"serial_id",
"=",
"idx",
",",
"preset",
"=",
"preset",
")"
] | Helper function to create a proper closure around supplied values | [
"Helper",
"function",
"to",
"create",
"a",
"proper",
"closure",
"around",
"supplied",
"values"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/vecenv/dummy.py#L34-L36 |
251,374 | MillionIntegrals/vel | vel/rl/models/stochastic_policy_model_separate.py | StochasticPolicyModelSeparate.policy | def policy(self, observations):
""" Calculate only action head for given state """
input_data = self.input_block(observations)
policy_base_output = self.policy_backbone(input_data)
policy_params = self.action_head(policy_base_output)
return policy_params | python | def policy(self, observations):
input_data = self.input_block(observations)
policy_base_output = self.policy_backbone(input_data)
policy_params = self.action_head(policy_base_output)
return policy_params | [
"def",
"policy",
"(",
"self",
",",
"observations",
")",
":",
"input_data",
"=",
"self",
".",
"input_block",
"(",
"observations",
")",
"policy_base_output",
"=",
"self",
".",
"policy_backbone",
"(",
"input_data",
")",
"policy_params",
"=",
"self",
".",
"action_head",
"(",
"policy_base_output",
")",
"return",
"policy_params"
] | Calculate only action head for given state | [
"Calculate",
"only",
"action",
"head",
"for",
"given",
"state"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/models/stochastic_policy_model_separate.py#L85-L90 |
251,375 | MillionIntegrals/vel | vel/phase/cycle.py | CycleCallback._init_cycle_dict | def _init_cycle_dict(self):
""" Populate a cycle dict """
dict_arr = np.zeros(self.epochs, dtype=int)
length_arr = np.zeros(self.epochs, dtype=int)
start_arr = np.zeros(self.epochs, dtype=int)
c_len = self.cycle_len
idx = 0
for i in range(self.cycles):
current_start = idx
for j in range(c_len):
dict_arr[idx] = i
length_arr[idx] = c_len
start_arr[idx] = current_start
idx += 1
c_len *= self.cycle_mult
return dict_arr, length_arr, start_arr | python | def _init_cycle_dict(self):
dict_arr = np.zeros(self.epochs, dtype=int)
length_arr = np.zeros(self.epochs, dtype=int)
start_arr = np.zeros(self.epochs, dtype=int)
c_len = self.cycle_len
idx = 0
for i in range(self.cycles):
current_start = idx
for j in range(c_len):
dict_arr[idx] = i
length_arr[idx] = c_len
start_arr[idx] = current_start
idx += 1
c_len *= self.cycle_mult
return dict_arr, length_arr, start_arr | [
"def",
"_init_cycle_dict",
"(",
"self",
")",
":",
"dict_arr",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"epochs",
",",
"dtype",
"=",
"int",
")",
"length_arr",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"epochs",
",",
"dtype",
"=",
"int",
")",
"start_arr",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"epochs",
",",
"dtype",
"=",
"int",
")",
"c_len",
"=",
"self",
".",
"cycle_len",
"idx",
"=",
"0",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"cycles",
")",
":",
"current_start",
"=",
"idx",
"for",
"j",
"in",
"range",
"(",
"c_len",
")",
":",
"dict_arr",
"[",
"idx",
"]",
"=",
"i",
"length_arr",
"[",
"idx",
"]",
"=",
"c_len",
"start_arr",
"[",
"idx",
"]",
"=",
"current_start",
"idx",
"+=",
"1",
"c_len",
"*=",
"self",
".",
"cycle_mult",
"return",
"dict_arr",
",",
"length_arr",
",",
"start_arr"
] | Populate a cycle dict | [
"Populate",
"a",
"cycle",
"dict"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/phase/cycle.py#L34-L53 |
251,376 | MillionIntegrals/vel | vel/phase/cycle.py | CycleCallback.on_batch_begin | def on_batch_begin(self, batch_info: BatchInfo):
""" Set proper learning rate """
cycle_length = self.cycle_lengths[batch_info.local_epoch_number - 1]
cycle_start = self.cycle_starts[batch_info.local_epoch_number - 1]
numerator = (batch_info.local_epoch_number - cycle_start - 1) * batch_info.batches_per_epoch + batch_info.batch_number
denominator = cycle_length * batch_info.batches_per_epoch
interpolation_number = numerator / denominator
if cycle_start == 0 and numerator < self.init_iter:
lr = self.init_lr
else:
if isinstance(self.max_lr, list):
lr = [interp.interpolate_single(max_lr, min_lr, interpolation_number, how=self.interpolate) for max_lr, min_lr in zip(self.max_lr, self.min_lr)]
else:
lr = interp.interpolate_single(self.max_lr, self.min_lr, interpolation_number, how=self.interpolate)
self.set_lr(lr) | python | def on_batch_begin(self, batch_info: BatchInfo):
cycle_length = self.cycle_lengths[batch_info.local_epoch_number - 1]
cycle_start = self.cycle_starts[batch_info.local_epoch_number - 1]
numerator = (batch_info.local_epoch_number - cycle_start - 1) * batch_info.batches_per_epoch + batch_info.batch_number
denominator = cycle_length * batch_info.batches_per_epoch
interpolation_number = numerator / denominator
if cycle_start == 0 and numerator < self.init_iter:
lr = self.init_lr
else:
if isinstance(self.max_lr, list):
lr = [interp.interpolate_single(max_lr, min_lr, interpolation_number, how=self.interpolate) for max_lr, min_lr in zip(self.max_lr, self.min_lr)]
else:
lr = interp.interpolate_single(self.max_lr, self.min_lr, interpolation_number, how=self.interpolate)
self.set_lr(lr) | [
"def",
"on_batch_begin",
"(",
"self",
",",
"batch_info",
":",
"BatchInfo",
")",
":",
"cycle_length",
"=",
"self",
".",
"cycle_lengths",
"[",
"batch_info",
".",
"local_epoch_number",
"-",
"1",
"]",
"cycle_start",
"=",
"self",
".",
"cycle_starts",
"[",
"batch_info",
".",
"local_epoch_number",
"-",
"1",
"]",
"numerator",
"=",
"(",
"batch_info",
".",
"local_epoch_number",
"-",
"cycle_start",
"-",
"1",
")",
"*",
"batch_info",
".",
"batches_per_epoch",
"+",
"batch_info",
".",
"batch_number",
"denominator",
"=",
"cycle_length",
"*",
"batch_info",
".",
"batches_per_epoch",
"interpolation_number",
"=",
"numerator",
"/",
"denominator",
"if",
"cycle_start",
"==",
"0",
"and",
"numerator",
"<",
"self",
".",
"init_iter",
":",
"lr",
"=",
"self",
".",
"init_lr",
"else",
":",
"if",
"isinstance",
"(",
"self",
".",
"max_lr",
",",
"list",
")",
":",
"lr",
"=",
"[",
"interp",
".",
"interpolate_single",
"(",
"max_lr",
",",
"min_lr",
",",
"interpolation_number",
",",
"how",
"=",
"self",
".",
"interpolate",
")",
"for",
"max_lr",
",",
"min_lr",
"in",
"zip",
"(",
"self",
".",
"max_lr",
",",
"self",
".",
"min_lr",
")",
"]",
"else",
":",
"lr",
"=",
"interp",
".",
"interpolate_single",
"(",
"self",
".",
"max_lr",
",",
"self",
".",
"min_lr",
",",
"interpolation_number",
",",
"how",
"=",
"self",
".",
"interpolate",
")",
"self",
".",
"set_lr",
"(",
"lr",
")"
] | Set proper learning rate | [
"Set",
"proper",
"learning",
"rate"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/phase/cycle.py#L55-L73 |
251,377 | MillionIntegrals/vel | vel/phase/cycle.py | CycleCallback.set_lr | def set_lr(self, lr):
""" Set a learning rate for the optimizer """
if isinstance(lr, list):
for group_lr, param_group in zip(lr, self.optimizer.param_groups):
param_group['lr'] = group_lr
else:
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr | python | def set_lr(self, lr):
if isinstance(lr, list):
for group_lr, param_group in zip(lr, self.optimizer.param_groups):
param_group['lr'] = group_lr
else:
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr | [
"def",
"set_lr",
"(",
"self",
",",
"lr",
")",
":",
"if",
"isinstance",
"(",
"lr",
",",
"list",
")",
":",
"for",
"group_lr",
",",
"param_group",
"in",
"zip",
"(",
"lr",
",",
"self",
".",
"optimizer",
".",
"param_groups",
")",
":",
"param_group",
"[",
"'lr'",
"]",
"=",
"group_lr",
"else",
":",
"for",
"param_group",
"in",
"self",
".",
"optimizer",
".",
"param_groups",
":",
"param_group",
"[",
"'lr'",
"]",
"=",
"lr"
] | Set a learning rate for the optimizer | [
"Set",
"a",
"learning",
"rate",
"for",
"the",
"optimizer"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/phase/cycle.py#L75-L82 |
251,378 | MillionIntegrals/vel | vel/internals/parser.py | Variable.parameter_constructor | def parameter_constructor(cls, loader, node):
""" Construct variable instance from yaml node """
value = loader.construct_scalar(node)
if isinstance(value, str):
if '=' in value:
(varname, varvalue) = Parser.parse_equality(value)
return cls(varname, varvalue)
else:
return cls(value)
else:
return cls(value) | python | def parameter_constructor(cls, loader, node):
value = loader.construct_scalar(node)
if isinstance(value, str):
if '=' in value:
(varname, varvalue) = Parser.parse_equality(value)
return cls(varname, varvalue)
else:
return cls(value)
else:
return cls(value) | [
"def",
"parameter_constructor",
"(",
"cls",
",",
"loader",
",",
"node",
")",
":",
"value",
"=",
"loader",
".",
"construct_scalar",
"(",
"node",
")",
"if",
"isinstance",
"(",
"value",
",",
"str",
")",
":",
"if",
"'='",
"in",
"value",
":",
"(",
"varname",
",",
"varvalue",
")",
"=",
"Parser",
".",
"parse_equality",
"(",
"value",
")",
"return",
"cls",
"(",
"varname",
",",
"varvalue",
")",
"else",
":",
"return",
"cls",
"(",
"value",
")",
"else",
":",
"return",
"cls",
"(",
"value",
")"
] | Construct variable instance from yaml node | [
"Construct",
"variable",
"instance",
"from",
"yaml",
"node"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/internals/parser.py#L18-L29 |
251,379 | MillionIntegrals/vel | vel/internals/parser.py | Parser.register | def register(cls):
""" Register variable handling in YAML """
if not cls.IS_LOADED:
cls.IS_LOADED = True
yaml.add_constructor('!param', Parameter.parameter_constructor, Loader=yaml.SafeLoader)
yaml.add_constructor('!env', EnvironmentVariable.parameter_constructor, Loader=yaml.SafeLoader) | python | def register(cls):
if not cls.IS_LOADED:
cls.IS_LOADED = True
yaml.add_constructor('!param', Parameter.parameter_constructor, Loader=yaml.SafeLoader)
yaml.add_constructor('!env', EnvironmentVariable.parameter_constructor, Loader=yaml.SafeLoader) | [
"def",
"register",
"(",
"cls",
")",
":",
"if",
"not",
"cls",
".",
"IS_LOADED",
":",
"cls",
".",
"IS_LOADED",
"=",
"True",
"yaml",
".",
"add_constructor",
"(",
"'!param'",
",",
"Parameter",
".",
"parameter_constructor",
",",
"Loader",
"=",
"yaml",
".",
"SafeLoader",
")",
"yaml",
".",
"add_constructor",
"(",
"'!env'",
",",
"EnvironmentVariable",
".",
"parameter_constructor",
",",
"Loader",
"=",
"yaml",
".",
"SafeLoader",
")"
] | Register variable handling in YAML | [
"Register",
"variable",
"handling",
"in",
"YAML"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/internals/parser.py#L74-L80 |
251,380 | MillionIntegrals/vel | vel/internals/parser.py | Parser.parse_equality | def parse_equality(cls, equality_string):
""" Parse some simple equality statements """
cls.register()
assert '=' in equality_string, "There must be an '=' sign in the equality"
[left_side, right_side] = equality_string.split('=', 1)
left_side_value = yaml.safe_load(left_side.strip())
right_side_value = yaml.safe_load(right_side.strip())
assert isinstance(left_side_value, str), "Left side of equality must be a string"
return left_side_value, right_side_value | python | def parse_equality(cls, equality_string):
cls.register()
assert '=' in equality_string, "There must be an '=' sign in the equality"
[left_side, right_side] = equality_string.split('=', 1)
left_side_value = yaml.safe_load(left_side.strip())
right_side_value = yaml.safe_load(right_side.strip())
assert isinstance(left_side_value, str), "Left side of equality must be a string"
return left_side_value, right_side_value | [
"def",
"parse_equality",
"(",
"cls",
",",
"equality_string",
")",
":",
"cls",
".",
"register",
"(",
")",
"assert",
"'='",
"in",
"equality_string",
",",
"\"There must be an '=' sign in the equality\"",
"[",
"left_side",
",",
"right_side",
"]",
"=",
"equality_string",
".",
"split",
"(",
"'='",
",",
"1",
")",
"left_side_value",
"=",
"yaml",
".",
"safe_load",
"(",
"left_side",
".",
"strip",
"(",
")",
")",
"right_side_value",
"=",
"yaml",
".",
"safe_load",
"(",
"right_side",
".",
"strip",
"(",
")",
")",
"assert",
"isinstance",
"(",
"left_side_value",
",",
"str",
")",
",",
"\"Left side of equality must be a string\"",
"return",
"left_side_value",
",",
"right_side_value"
] | Parse some simple equality statements | [
"Parse",
"some",
"simple",
"equality",
"statements"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/internals/parser.py#L89-L100 |
251,381 | MillionIntegrals/vel | vel/storage/backend/mongodb.py | MongoDbBackend.clean | def clean(self, initial_epoch):
""" Remove entries from database that would get overwritten """
self.db.metrics.delete_many({'run_name': self.model_config.run_name, 'epoch_idx': {'$gt': initial_epoch}}) | python | def clean(self, initial_epoch):
self.db.metrics.delete_many({'run_name': self.model_config.run_name, 'epoch_idx': {'$gt': initial_epoch}}) | [
"def",
"clean",
"(",
"self",
",",
"initial_epoch",
")",
":",
"self",
".",
"db",
".",
"metrics",
".",
"delete_many",
"(",
"{",
"'run_name'",
":",
"self",
".",
"model_config",
".",
"run_name",
",",
"'epoch_idx'",
":",
"{",
"'$gt'",
":",
"initial_epoch",
"}",
"}",
")"
] | Remove entries from database that would get overwritten | [
"Remove",
"entries",
"from",
"database",
"that",
"would",
"get",
"overwritten"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/backend/mongodb.py#L13-L15 |
251,382 | MillionIntegrals/vel | vel/storage/backend/mongodb.py | MongoDbBackend.store_config | def store_config(self, configuration):
""" Store model parameters in the database """
run_name = self.model_config.run_name
self.db.configs.delete_many({'run_name': self.model_config.run_name})
configuration = configuration.copy()
configuration['run_name'] = run_name
self.db.configs.insert_one(configuration) | python | def store_config(self, configuration):
run_name = self.model_config.run_name
self.db.configs.delete_many({'run_name': self.model_config.run_name})
configuration = configuration.copy()
configuration['run_name'] = run_name
self.db.configs.insert_one(configuration) | [
"def",
"store_config",
"(",
"self",
",",
"configuration",
")",
":",
"run_name",
"=",
"self",
".",
"model_config",
".",
"run_name",
"self",
".",
"db",
".",
"configs",
".",
"delete_many",
"(",
"{",
"'run_name'",
":",
"self",
".",
"model_config",
".",
"run_name",
"}",
")",
"configuration",
"=",
"configuration",
".",
"copy",
"(",
")",
"configuration",
"[",
"'run_name'",
"]",
"=",
"run_name",
"self",
".",
"db",
".",
"configs",
".",
"insert_one",
"(",
"configuration",
")"
] | Store model parameters in the database | [
"Store",
"model",
"parameters",
"in",
"the",
"database"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/backend/mongodb.py#L17-L26 |
251,383 | MillionIntegrals/vel | vel/storage/backend/mongodb.py | MongoDbBackend.get_frame | def get_frame(self):
""" Get a dataframe of metrics from this storage """
metric_items = list(self.db.metrics.find({'run_name': self.model_config.run_name}).sort('epoch_idx'))
if len(metric_items) == 0:
return pd.DataFrame(columns=['run_name'])
else:
return pd.DataFrame(metric_items).drop(['_id', 'model_name'], axis=1).set_index('epoch_idx') | python | def get_frame(self):
metric_items = list(self.db.metrics.find({'run_name': self.model_config.run_name}).sort('epoch_idx'))
if len(metric_items) == 0:
return pd.DataFrame(columns=['run_name'])
else:
return pd.DataFrame(metric_items).drop(['_id', 'model_name'], axis=1).set_index('epoch_idx') | [
"def",
"get_frame",
"(",
"self",
")",
":",
"metric_items",
"=",
"list",
"(",
"self",
".",
"db",
".",
"metrics",
".",
"find",
"(",
"{",
"'run_name'",
":",
"self",
".",
"model_config",
".",
"run_name",
"}",
")",
".",
"sort",
"(",
"'epoch_idx'",
")",
")",
"if",
"len",
"(",
"metric_items",
")",
"==",
"0",
":",
"return",
"pd",
".",
"DataFrame",
"(",
"columns",
"=",
"[",
"'run_name'",
"]",
")",
"else",
":",
"return",
"pd",
".",
"DataFrame",
"(",
"metric_items",
")",
".",
"drop",
"(",
"[",
"'_id'",
",",
"'model_name'",
"]",
",",
"axis",
"=",
"1",
")",
".",
"set_index",
"(",
"'epoch_idx'",
")"
] | Get a dataframe of metrics from this storage | [
"Get",
"a",
"dataframe",
"of",
"metrics",
"from",
"this",
"storage"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/backend/mongodb.py#L28-L34 |
251,384 | MillionIntegrals/vel | vel/rl/buffers/prioritized_circular_replay_buffer.py | PrioritizedCircularReplayBuffer._get_transitions | def _get_transitions(self, probs, indexes, tree_idxs, batch_info, forward_steps=1, discount_factor=1.0):
""" Return batch of frames for given indexes """
if forward_steps > 1:
transition_arrays = self.backend.get_transitions_forward_steps(indexes, forward_steps, discount_factor)
else:
transition_arrays = self.backend.get_transitions(indexes)
priority_weight = self.priority_weight.value(batch_info['progress'])
# Normalize by sum of all probs
probs = probs / np.array([s.total() for s in self.backend.segment_trees], dtype=float).reshape(1, -1)
capacity = self.backend.current_size
weights = (capacity * probs) ** (-priority_weight)
weights = weights / weights.max(axis=0, keepdims=True)
transition_arrays['weights'] = weights
transition_tensors = {k: torch.from_numpy(v) for k, v in transition_arrays.items()}
transitions = Trajectories(
num_steps=indexes.shape[0],
num_envs=indexes.shape[1],
environment_information=None,
transition_tensors=transition_tensors,
rollout_tensors={},
extra_data={
'tree_idxs': tree_idxs
}
)
return transitions.to_transitions() | python | def _get_transitions(self, probs, indexes, tree_idxs, batch_info, forward_steps=1, discount_factor=1.0):
if forward_steps > 1:
transition_arrays = self.backend.get_transitions_forward_steps(indexes, forward_steps, discount_factor)
else:
transition_arrays = self.backend.get_transitions(indexes)
priority_weight = self.priority_weight.value(batch_info['progress'])
# Normalize by sum of all probs
probs = probs / np.array([s.total() for s in self.backend.segment_trees], dtype=float).reshape(1, -1)
capacity = self.backend.current_size
weights = (capacity * probs) ** (-priority_weight)
weights = weights / weights.max(axis=0, keepdims=True)
transition_arrays['weights'] = weights
transition_tensors = {k: torch.from_numpy(v) for k, v in transition_arrays.items()}
transitions = Trajectories(
num_steps=indexes.shape[0],
num_envs=indexes.shape[1],
environment_information=None,
transition_tensors=transition_tensors,
rollout_tensors={},
extra_data={
'tree_idxs': tree_idxs
}
)
return transitions.to_transitions() | [
"def",
"_get_transitions",
"(",
"self",
",",
"probs",
",",
"indexes",
",",
"tree_idxs",
",",
"batch_info",
",",
"forward_steps",
"=",
"1",
",",
"discount_factor",
"=",
"1.0",
")",
":",
"if",
"forward_steps",
">",
"1",
":",
"transition_arrays",
"=",
"self",
".",
"backend",
".",
"get_transitions_forward_steps",
"(",
"indexes",
",",
"forward_steps",
",",
"discount_factor",
")",
"else",
":",
"transition_arrays",
"=",
"self",
".",
"backend",
".",
"get_transitions",
"(",
"indexes",
")",
"priority_weight",
"=",
"self",
".",
"priority_weight",
".",
"value",
"(",
"batch_info",
"[",
"'progress'",
"]",
")",
"# Normalize by sum of all probs",
"probs",
"=",
"probs",
"/",
"np",
".",
"array",
"(",
"[",
"s",
".",
"total",
"(",
")",
"for",
"s",
"in",
"self",
".",
"backend",
".",
"segment_trees",
"]",
",",
"dtype",
"=",
"float",
")",
".",
"reshape",
"(",
"1",
",",
"-",
"1",
")",
"capacity",
"=",
"self",
".",
"backend",
".",
"current_size",
"weights",
"=",
"(",
"capacity",
"*",
"probs",
")",
"**",
"(",
"-",
"priority_weight",
")",
"weights",
"=",
"weights",
"/",
"weights",
".",
"max",
"(",
"axis",
"=",
"0",
",",
"keepdims",
"=",
"True",
")",
"transition_arrays",
"[",
"'weights'",
"]",
"=",
"weights",
"transition_tensors",
"=",
"{",
"k",
":",
"torch",
".",
"from_numpy",
"(",
"v",
")",
"for",
"k",
",",
"v",
"in",
"transition_arrays",
".",
"items",
"(",
")",
"}",
"transitions",
"=",
"Trajectories",
"(",
"num_steps",
"=",
"indexes",
".",
"shape",
"[",
"0",
"]",
",",
"num_envs",
"=",
"indexes",
".",
"shape",
"[",
"1",
"]",
",",
"environment_information",
"=",
"None",
",",
"transition_tensors",
"=",
"transition_tensors",
",",
"rollout_tensors",
"=",
"{",
"}",
",",
"extra_data",
"=",
"{",
"'tree_idxs'",
":",
"tree_idxs",
"}",
")",
"return",
"transitions",
".",
"to_transitions",
"(",
")"
] | Return batch of frames for given indexes | [
"Return",
"batch",
"of",
"frames",
"for",
"given",
"indexes"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/buffers/prioritized_circular_replay_buffer.py#L46-L75 |
251,385 | MillionIntegrals/vel | vel/rl/api/env_roller.py | EnvRollerBase.rollout | def rollout(self, batch_info: BatchInfo, model: Model, number_of_steps: int) -> Rollout:
""" Roll-out the environment and return it """
raise NotImplementedError | python | def rollout(self, batch_info: BatchInfo, model: Model, number_of_steps: int) -> Rollout:
raise NotImplementedError | [
"def",
"rollout",
"(",
"self",
",",
"batch_info",
":",
"BatchInfo",
",",
"model",
":",
"Model",
",",
"number_of_steps",
":",
"int",
")",
"->",
"Rollout",
":",
"raise",
"NotImplementedError"
] | Roll-out the environment and return it | [
"Roll",
"-",
"out",
"the",
"environment",
"and",
"return",
"it"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/api/env_roller.py#L17-L19 |
251,386 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py | BufferedMixedPolicyIterationReinforcer.train_epoch | def train_epoch(self, epoch_info: EpochInfo, interactive=True):
""" Train model on an epoch of a fixed number of batch updates """
epoch_info.on_epoch_begin()
if interactive:
iterator = tqdm.trange(epoch_info.batches_per_epoch, file=sys.stdout, desc="Training", unit="batch")
else:
iterator = range(epoch_info.batches_per_epoch)
for batch_idx in iterator:
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_batch_begin()
self.train_batch(batch_info)
batch_info.on_batch_end()
epoch_info.result_accumulator.freeze_results()
epoch_info.on_epoch_end() | python | def train_epoch(self, epoch_info: EpochInfo, interactive=True):
epoch_info.on_epoch_begin()
if interactive:
iterator = tqdm.trange(epoch_info.batches_per_epoch, file=sys.stdout, desc="Training", unit="batch")
else:
iterator = range(epoch_info.batches_per_epoch)
for batch_idx in iterator:
batch_info = BatchInfo(epoch_info, batch_idx)
batch_info.on_batch_begin()
self.train_batch(batch_info)
batch_info.on_batch_end()
epoch_info.result_accumulator.freeze_results()
epoch_info.on_epoch_end() | [
"def",
"train_epoch",
"(",
"self",
",",
"epoch_info",
":",
"EpochInfo",
",",
"interactive",
"=",
"True",
")",
":",
"epoch_info",
".",
"on_epoch_begin",
"(",
")",
"if",
"interactive",
":",
"iterator",
"=",
"tqdm",
".",
"trange",
"(",
"epoch_info",
".",
"batches_per_epoch",
",",
"file",
"=",
"sys",
".",
"stdout",
",",
"desc",
"=",
"\"Training\"",
",",
"unit",
"=",
"\"batch\"",
")",
"else",
":",
"iterator",
"=",
"range",
"(",
"epoch_info",
".",
"batches_per_epoch",
")",
"for",
"batch_idx",
"in",
"iterator",
":",
"batch_info",
"=",
"BatchInfo",
"(",
"epoch_info",
",",
"batch_idx",
")",
"batch_info",
".",
"on_batch_begin",
"(",
")",
"self",
".",
"train_batch",
"(",
"batch_info",
")",
"batch_info",
".",
"on_batch_end",
"(",
")",
"epoch_info",
".",
"result_accumulator",
".",
"freeze_results",
"(",
")",
"epoch_info",
".",
"on_epoch_end",
"(",
")"
] | Train model on an epoch of a fixed number of batch updates | [
"Train",
"model",
"on",
"an",
"epoch",
"of",
"a",
"fixed",
"number",
"of",
"batch",
"updates"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py#L75-L92 |
251,387 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py | BufferedMixedPolicyIterationReinforcer.train_batch | def train_batch(self, batch_info: BatchInfo):
""" Single, most atomic 'step' of learning this reinforcer can perform """
batch_info['sub_batch_data'] = []
self.on_policy_train_batch(batch_info)
if self.settings.experience_replay > 0 and self.env_roller.is_ready_for_sampling():
if self.settings.stochastic_experience_replay:
experience_replay_count = np.random.poisson(self.settings.experience_replay)
else:
experience_replay_count = self.settings.experience_replay
for i in range(experience_replay_count):
self.off_policy_train_batch(batch_info)
# Even with all the experience replay, we count the single rollout as a single batch
batch_info.aggregate_key('sub_batch_data') | python | def train_batch(self, batch_info: BatchInfo):
batch_info['sub_batch_data'] = []
self.on_policy_train_batch(batch_info)
if self.settings.experience_replay > 0 and self.env_roller.is_ready_for_sampling():
if self.settings.stochastic_experience_replay:
experience_replay_count = np.random.poisson(self.settings.experience_replay)
else:
experience_replay_count = self.settings.experience_replay
for i in range(experience_replay_count):
self.off_policy_train_batch(batch_info)
# Even with all the experience replay, we count the single rollout as a single batch
batch_info.aggregate_key('sub_batch_data') | [
"def",
"train_batch",
"(",
"self",
",",
"batch_info",
":",
"BatchInfo",
")",
":",
"batch_info",
"[",
"'sub_batch_data'",
"]",
"=",
"[",
"]",
"self",
".",
"on_policy_train_batch",
"(",
"batch_info",
")",
"if",
"self",
".",
"settings",
".",
"experience_replay",
">",
"0",
"and",
"self",
".",
"env_roller",
".",
"is_ready_for_sampling",
"(",
")",
":",
"if",
"self",
".",
"settings",
".",
"stochastic_experience_replay",
":",
"experience_replay_count",
"=",
"np",
".",
"random",
".",
"poisson",
"(",
"self",
".",
"settings",
".",
"experience_replay",
")",
"else",
":",
"experience_replay_count",
"=",
"self",
".",
"settings",
".",
"experience_replay",
"for",
"i",
"in",
"range",
"(",
"experience_replay_count",
")",
":",
"self",
".",
"off_policy_train_batch",
"(",
"batch_info",
")",
"# Even with all the experience replay, we count the single rollout as a single batch",
"batch_info",
".",
"aggregate_key",
"(",
"'sub_batch_data'",
")"
] | Single, most atomic 'step' of learning this reinforcer can perform | [
"Single",
"most",
"atomic",
"step",
"of",
"learning",
"this",
"reinforcer",
"can",
"perform"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py#L94-L110 |
251,388 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py | BufferedMixedPolicyIterationReinforcer.on_policy_train_batch | def on_policy_train_batch(self, batch_info: BatchInfo):
""" Perform an 'on-policy' training step of evaluating an env and a single backpropagation step """
self.model.train()
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.number_of_steps).to_device(self.device)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=rollout
)
batch_info['sub_batch_data'].append(batch_result)
batch_info['frames'] = rollout.frames()
batch_info['episode_infos'] = rollout.episode_information() | python | def on_policy_train_batch(self, batch_info: BatchInfo):
self.model.train()
rollout = self.env_roller.rollout(batch_info, self.model, self.settings.number_of_steps).to_device(self.device)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=rollout
)
batch_info['sub_batch_data'].append(batch_result)
batch_info['frames'] = rollout.frames()
batch_info['episode_infos'] = rollout.episode_information() | [
"def",
"on_policy_train_batch",
"(",
"self",
",",
"batch_info",
":",
"BatchInfo",
")",
":",
"self",
".",
"model",
".",
"train",
"(",
")",
"rollout",
"=",
"self",
".",
"env_roller",
".",
"rollout",
"(",
"batch_info",
",",
"self",
".",
"model",
",",
"self",
".",
"settings",
".",
"number_of_steps",
")",
".",
"to_device",
"(",
"self",
".",
"device",
")",
"batch_result",
"=",
"self",
".",
"algo",
".",
"optimizer_step",
"(",
"batch_info",
"=",
"batch_info",
",",
"device",
"=",
"self",
".",
"device",
",",
"model",
"=",
"self",
".",
"model",
",",
"rollout",
"=",
"rollout",
")",
"batch_info",
"[",
"'sub_batch_data'",
"]",
".",
"append",
"(",
"batch_result",
")",
"batch_info",
"[",
"'frames'",
"]",
"=",
"rollout",
".",
"frames",
"(",
")",
"batch_info",
"[",
"'episode_infos'",
"]",
"=",
"rollout",
".",
"episode_information",
"(",
")"
] | Perform an 'on-policy' training step of evaluating an env and a single backpropagation step | [
"Perform",
"an",
"on",
"-",
"policy",
"training",
"step",
"of",
"evaluating",
"an",
"env",
"and",
"a",
"single",
"backpropagation",
"step"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py#L112-L127 |
251,389 | MillionIntegrals/vel | vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py | BufferedMixedPolicyIterationReinforcer.off_policy_train_batch | def off_policy_train_batch(self, batch_info: BatchInfo):
""" Perform an 'off-policy' training step of sampling the replay buffer and gradient descent """
self.model.train()
rollout = self.env_roller.sample(batch_info, self.model, self.settings.number_of_steps).to_device(self.device)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=rollout
)
batch_info['sub_batch_data'].append(batch_result) | python | def off_policy_train_batch(self, batch_info: BatchInfo):
self.model.train()
rollout = self.env_roller.sample(batch_info, self.model, self.settings.number_of_steps).to_device(self.device)
batch_result = self.algo.optimizer_step(
batch_info=batch_info,
device=self.device,
model=self.model,
rollout=rollout
)
batch_info['sub_batch_data'].append(batch_result) | [
"def",
"off_policy_train_batch",
"(",
"self",
",",
"batch_info",
":",
"BatchInfo",
")",
":",
"self",
".",
"model",
".",
"train",
"(",
")",
"rollout",
"=",
"self",
".",
"env_roller",
".",
"sample",
"(",
"batch_info",
",",
"self",
".",
"model",
",",
"self",
".",
"settings",
".",
"number_of_steps",
")",
".",
"to_device",
"(",
"self",
".",
"device",
")",
"batch_result",
"=",
"self",
".",
"algo",
".",
"optimizer_step",
"(",
"batch_info",
"=",
"batch_info",
",",
"device",
"=",
"self",
".",
"device",
",",
"model",
"=",
"self",
".",
"model",
",",
"rollout",
"=",
"rollout",
")",
"batch_info",
"[",
"'sub_batch_data'",
"]",
".",
"append",
"(",
"batch_result",
")"
] | Perform an 'off-policy' training step of sampling the replay buffer and gradient descent | [
"Perform",
"an",
"off",
"-",
"policy",
"training",
"step",
"of",
"sampling",
"the",
"replay",
"buffer",
"and",
"gradient",
"descent"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/reinforcers/buffered_mixed_policy_iteration_reinforcer.py#L129-L142 |
251,390 | MillionIntegrals/vel | vel/storage/strategy/classic_checkpoint_strategy.py | ClassicCheckpointStrategy.should_store_best_checkpoint | def should_store_best_checkpoint(self, epoch_idx, metrics) -> bool:
""" Should we store current checkpoint as the best """
if not self.store_best:
return False
metric = metrics[self.metric]
if better(self._current_best_metric_value, metric, self.metric_mode):
self._current_best_metric_value = metric
return True
return False | python | def should_store_best_checkpoint(self, epoch_idx, metrics) -> bool:
if not self.store_best:
return False
metric = metrics[self.metric]
if better(self._current_best_metric_value, metric, self.metric_mode):
self._current_best_metric_value = metric
return True
return False | [
"def",
"should_store_best_checkpoint",
"(",
"self",
",",
"epoch_idx",
",",
"metrics",
")",
"->",
"bool",
":",
"if",
"not",
"self",
".",
"store_best",
":",
"return",
"False",
"metric",
"=",
"metrics",
"[",
"self",
".",
"metric",
"]",
"if",
"better",
"(",
"self",
".",
"_current_best_metric_value",
",",
"metric",
",",
"self",
".",
"metric_mode",
")",
":",
"self",
".",
"_current_best_metric_value",
"=",
"metric",
"return",
"True",
"return",
"False"
] | Should we store current checkpoint as the best | [
"Should",
"we",
"store",
"current",
"checkpoint",
"as",
"the",
"best"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/storage/strategy/classic_checkpoint_strategy.py#L27-L38 |
251,391 | MillionIntegrals/vel | vel/sources/nlp/imdb.py | create | def create(model_config, batch_size, vectors=None):
""" Create an IMDB dataset """
path = model_config.data_dir('imdb')
text_field = data.Field(lower=True, tokenize='spacy', batch_first=True)
label_field = data.LabelField(is_target=True)
train_source, test_source = IMDBCached.splits(
root=path,
text_field=text_field,
label_field=label_field
)
text_field.build_vocab(train_source, max_size=25_000, vectors=vectors)
label_field.build_vocab(train_source)
train_iterator, test_iterator = data.BucketIterator.splits(
(train_source, test_source),
batch_size=batch_size,
device=model_config.torch_device(),
shuffle=True
)
return TextData(
train_source, test_source, train_iterator, test_iterator, text_field, label_field
) | python | def create(model_config, batch_size, vectors=None):
path = model_config.data_dir('imdb')
text_field = data.Field(lower=True, tokenize='spacy', batch_first=True)
label_field = data.LabelField(is_target=True)
train_source, test_source = IMDBCached.splits(
root=path,
text_field=text_field,
label_field=label_field
)
text_field.build_vocab(train_source, max_size=25_000, vectors=vectors)
label_field.build_vocab(train_source)
train_iterator, test_iterator = data.BucketIterator.splits(
(train_source, test_source),
batch_size=batch_size,
device=model_config.torch_device(),
shuffle=True
)
return TextData(
train_source, test_source, train_iterator, test_iterator, text_field, label_field
) | [
"def",
"create",
"(",
"model_config",
",",
"batch_size",
",",
"vectors",
"=",
"None",
")",
":",
"path",
"=",
"model_config",
".",
"data_dir",
"(",
"'imdb'",
")",
"text_field",
"=",
"data",
".",
"Field",
"(",
"lower",
"=",
"True",
",",
"tokenize",
"=",
"'spacy'",
",",
"batch_first",
"=",
"True",
")",
"label_field",
"=",
"data",
".",
"LabelField",
"(",
"is_target",
"=",
"True",
")",
"train_source",
",",
"test_source",
"=",
"IMDBCached",
".",
"splits",
"(",
"root",
"=",
"path",
",",
"text_field",
"=",
"text_field",
",",
"label_field",
"=",
"label_field",
")",
"text_field",
".",
"build_vocab",
"(",
"train_source",
",",
"max_size",
"=",
"25_000",
",",
"vectors",
"=",
"vectors",
")",
"label_field",
".",
"build_vocab",
"(",
"train_source",
")",
"train_iterator",
",",
"test_iterator",
"=",
"data",
".",
"BucketIterator",
".",
"splits",
"(",
"(",
"train_source",
",",
"test_source",
")",
",",
"batch_size",
"=",
"batch_size",
",",
"device",
"=",
"model_config",
".",
"torch_device",
"(",
")",
",",
"shuffle",
"=",
"True",
")",
"return",
"TextData",
"(",
"train_source",
",",
"test_source",
",",
"train_iterator",
",",
"test_iterator",
",",
"text_field",
",",
"label_field",
")"
] | Create an IMDB dataset | [
"Create",
"an",
"IMDB",
"dataset"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/sources/nlp/imdb.py#L48-L73 |
251,392 | MillionIntegrals/vel | vel/commands/augvis_command.py | AugmentationVisualizationCommand.run | def run(self):
""" Run the visualization """
dataset = self.source.train_dataset()
num_samples = len(dataset)
fig, ax = plt.subplots(self.cases, self.samples+1)
selected_sample = np.sort(np.random.choice(num_samples, self.cases, replace=False))
for i in range(self.cases):
raw_image, _ = dataset.get_raw(selected_sample[i])
ax[i, 0].imshow(raw_image)
ax[i, 0].set_title("Original image")
for j in range(self.samples):
augmented_image, _ = dataset[selected_sample[i]]
augmented_image = dataset.denormalize(augmented_image)
ax[i, j+1].imshow(augmented_image)
plt.show() | python | def run(self):
dataset = self.source.train_dataset()
num_samples = len(dataset)
fig, ax = plt.subplots(self.cases, self.samples+1)
selected_sample = np.sort(np.random.choice(num_samples, self.cases, replace=False))
for i in range(self.cases):
raw_image, _ = dataset.get_raw(selected_sample[i])
ax[i, 0].imshow(raw_image)
ax[i, 0].set_title("Original image")
for j in range(self.samples):
augmented_image, _ = dataset[selected_sample[i]]
augmented_image = dataset.denormalize(augmented_image)
ax[i, j+1].imshow(augmented_image)
plt.show() | [
"def",
"run",
"(",
"self",
")",
":",
"dataset",
"=",
"self",
".",
"source",
".",
"train_dataset",
"(",
")",
"num_samples",
"=",
"len",
"(",
"dataset",
")",
"fig",
",",
"ax",
"=",
"plt",
".",
"subplots",
"(",
"self",
".",
"cases",
",",
"self",
".",
"samples",
"+",
"1",
")",
"selected_sample",
"=",
"np",
".",
"sort",
"(",
"np",
".",
"random",
".",
"choice",
"(",
"num_samples",
",",
"self",
".",
"cases",
",",
"replace",
"=",
"False",
")",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"cases",
")",
":",
"raw_image",
",",
"_",
"=",
"dataset",
".",
"get_raw",
"(",
"selected_sample",
"[",
"i",
"]",
")",
"ax",
"[",
"i",
",",
"0",
"]",
".",
"imshow",
"(",
"raw_image",
")",
"ax",
"[",
"i",
",",
"0",
"]",
".",
"set_title",
"(",
"\"Original image\"",
")",
"for",
"j",
"in",
"range",
"(",
"self",
".",
"samples",
")",
":",
"augmented_image",
",",
"_",
"=",
"dataset",
"[",
"selected_sample",
"[",
"i",
"]",
"]",
"augmented_image",
"=",
"dataset",
".",
"denormalize",
"(",
"augmented_image",
")",
"ax",
"[",
"i",
",",
"j",
"+",
"1",
"]",
".",
"imshow",
"(",
"augmented_image",
")",
"plt",
".",
"show",
"(",
")"
] | Run the visualization | [
"Run",
"the",
"visualization"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/commands/augvis_command.py#L14-L34 |
251,393 | MillionIntegrals/vel | vel/rl/env/classic_control.py | env_maker | def env_maker(environment_id, seed, serial_id, monitor=False, allow_early_resets=False):
""" Create a classic control environment with basic set of wrappers """
env = gym.make(environment_id)
env.seed(seed + serial_id)
# Monitoring the env
if monitor:
logdir = logger.get_dir() and os.path.join(logger.get_dir(), str(serial_id))
else:
logdir = None
env = Monitor(env, logdir, allow_early_resets=allow_early_resets)
return env | python | def env_maker(environment_id, seed, serial_id, monitor=False, allow_early_resets=False):
env = gym.make(environment_id)
env.seed(seed + serial_id)
# Monitoring the env
if monitor:
logdir = logger.get_dir() and os.path.join(logger.get_dir(), str(serial_id))
else:
logdir = None
env = Monitor(env, logdir, allow_early_resets=allow_early_resets)
return env | [
"def",
"env_maker",
"(",
"environment_id",
",",
"seed",
",",
"serial_id",
",",
"monitor",
"=",
"False",
",",
"allow_early_resets",
"=",
"False",
")",
":",
"env",
"=",
"gym",
".",
"make",
"(",
"environment_id",
")",
"env",
".",
"seed",
"(",
"seed",
"+",
"serial_id",
")",
"# Monitoring the env",
"if",
"monitor",
":",
"logdir",
"=",
"logger",
".",
"get_dir",
"(",
")",
"and",
"os",
".",
"path",
".",
"join",
"(",
"logger",
".",
"get_dir",
"(",
")",
",",
"str",
"(",
"serial_id",
")",
")",
"else",
":",
"logdir",
"=",
"None",
"env",
"=",
"Monitor",
"(",
"env",
",",
"logdir",
",",
"allow_early_resets",
"=",
"allow_early_resets",
")",
"return",
"env"
] | Create a classic control environment with basic set of wrappers | [
"Create",
"a",
"classic",
"control",
"environment",
"with",
"basic",
"set",
"of",
"wrappers"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/env/classic_control.py#L25-L38 |
251,394 | MillionIntegrals/vel | vel/models/imagenet/resnet34.py | Resnet34.freeze | def freeze(self, number=None):
""" Freeze given number of layers in the model """
if number is None:
number = self.head_layers
for idx, child in enumerate(self.model.children()):
if idx < number:
mu.freeze_layer(child) | python | def freeze(self, number=None):
if number is None:
number = self.head_layers
for idx, child in enumerate(self.model.children()):
if idx < number:
mu.freeze_layer(child) | [
"def",
"freeze",
"(",
"self",
",",
"number",
"=",
"None",
")",
":",
"if",
"number",
"is",
"None",
":",
"number",
"=",
"self",
".",
"head_layers",
"for",
"idx",
",",
"child",
"in",
"enumerate",
"(",
"self",
".",
"model",
".",
"children",
"(",
")",
")",
":",
"if",
"idx",
"<",
"number",
":",
"mu",
".",
"freeze_layer",
"(",
"child",
")"
] | Freeze given number of layers in the model | [
"Freeze",
"given",
"number",
"of",
"layers",
"in",
"the",
"model"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/models/imagenet/resnet34.py#L66-L73 |
251,395 | MillionIntegrals/vel | vel/models/imagenet/resnet34.py | Resnet34.unfreeze | def unfreeze(self):
""" Unfreeze model layers """
for idx, child in enumerate(self.model.children()):
mu.unfreeze_layer(child) | python | def unfreeze(self):
for idx, child in enumerate(self.model.children()):
mu.unfreeze_layer(child) | [
"def",
"unfreeze",
"(",
"self",
")",
":",
"for",
"idx",
",",
"child",
"in",
"enumerate",
"(",
"self",
".",
"model",
".",
"children",
"(",
")",
")",
":",
"mu",
".",
"unfreeze_layer",
"(",
"child",
")"
] | Unfreeze model layers | [
"Unfreeze",
"model",
"layers"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/models/imagenet/resnet34.py#L75-L78 |
251,396 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/acer.py | AcerPolicyGradient.update_average_model | def update_average_model(self, model):
""" Update weights of the average model with new model observation """
for model_param, average_param in zip(model.parameters(), self.average_model.parameters()):
# EWMA average model update
average_param.data.mul_(self.average_model_alpha).add_(model_param.data * (1 - self.average_model_alpha)) | python | def update_average_model(self, model):
for model_param, average_param in zip(model.parameters(), self.average_model.parameters()):
# EWMA average model update
average_param.data.mul_(self.average_model_alpha).add_(model_param.data * (1 - self.average_model_alpha)) | [
"def",
"update_average_model",
"(",
"self",
",",
"model",
")",
":",
"for",
"model_param",
",",
"average_param",
"in",
"zip",
"(",
"model",
".",
"parameters",
"(",
")",
",",
"self",
".",
"average_model",
".",
"parameters",
"(",
")",
")",
":",
"# EWMA average model update",
"average_param",
".",
"data",
".",
"mul_",
"(",
"self",
".",
"average_model_alpha",
")",
".",
"add_",
"(",
"model_param",
".",
"data",
"*",
"(",
"1",
"-",
"self",
".",
"average_model_alpha",
")",
")"
] | Update weights of the average model with new model observation | [
"Update",
"weights",
"of",
"the",
"average",
"model",
"with",
"new",
"model",
"observation"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/acer.py#L43-L47 |
251,397 | MillionIntegrals/vel | vel/rl/algo/policy_gradient/acer.py | AcerPolicyGradient.retrace | def retrace(self, rewards, dones, q_values, state_values, rho, final_values):
""" Calculate Q retraced targets """
rho_bar = torch.min(torch.ones_like(rho) * self.retrace_rho_cap, rho)
q_retraced_buffer = torch.zeros_like(rewards)
next_value = final_values
for i in reversed(range(rewards.size(0))):
q_retraced = rewards[i] + self.discount_factor * next_value * (1.0 - dones[i])
# Next iteration
next_value = rho_bar[i] * (q_retraced - q_values[i]) + state_values[i]
q_retraced_buffer[i] = q_retraced
return q_retraced_buffer | python | def retrace(self, rewards, dones, q_values, state_values, rho, final_values):
rho_bar = torch.min(torch.ones_like(rho) * self.retrace_rho_cap, rho)
q_retraced_buffer = torch.zeros_like(rewards)
next_value = final_values
for i in reversed(range(rewards.size(0))):
q_retraced = rewards[i] + self.discount_factor * next_value * (1.0 - dones[i])
# Next iteration
next_value = rho_bar[i] * (q_retraced - q_values[i]) + state_values[i]
q_retraced_buffer[i] = q_retraced
return q_retraced_buffer | [
"def",
"retrace",
"(",
"self",
",",
"rewards",
",",
"dones",
",",
"q_values",
",",
"state_values",
",",
"rho",
",",
"final_values",
")",
":",
"rho_bar",
"=",
"torch",
".",
"min",
"(",
"torch",
".",
"ones_like",
"(",
"rho",
")",
"*",
"self",
".",
"retrace_rho_cap",
",",
"rho",
")",
"q_retraced_buffer",
"=",
"torch",
".",
"zeros_like",
"(",
"rewards",
")",
"next_value",
"=",
"final_values",
"for",
"i",
"in",
"reversed",
"(",
"range",
"(",
"rewards",
".",
"size",
"(",
"0",
")",
")",
")",
":",
"q_retraced",
"=",
"rewards",
"[",
"i",
"]",
"+",
"self",
".",
"discount_factor",
"*",
"next_value",
"*",
"(",
"1.0",
"-",
"dones",
"[",
"i",
"]",
")",
"# Next iteration",
"next_value",
"=",
"rho_bar",
"[",
"i",
"]",
"*",
"(",
"q_retraced",
"-",
"q_values",
"[",
"i",
"]",
")",
"+",
"state_values",
"[",
"i",
"]",
"q_retraced_buffer",
"[",
"i",
"]",
"=",
"q_retraced",
"return",
"q_retraced_buffer"
] | Calculate Q retraced targets | [
"Calculate",
"Q",
"retraced",
"targets"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/algo/policy_gradient/acer.py#L170-L186 |
251,398 | MillionIntegrals/vel | vel/rl/modules/action_head.py | DiagGaussianActionHead.logprob | def logprob(self, action_sample, pd_params):
""" Log-likelihood """
means = pd_params[:, :, 0]
log_std = pd_params[:, :, 1]
std = torch.exp(log_std)
z_score = (action_sample - means) / std
return - (0.5 * ((z_score**2 + self.LOG2PI).sum(dim=-1)) + log_std.sum(dim=-1)) | python | def logprob(self, action_sample, pd_params):
means = pd_params[:, :, 0]
log_std = pd_params[:, :, 1]
std = torch.exp(log_std)
z_score = (action_sample - means) / std
return - (0.5 * ((z_score**2 + self.LOG2PI).sum(dim=-1)) + log_std.sum(dim=-1)) | [
"def",
"logprob",
"(",
"self",
",",
"action_sample",
",",
"pd_params",
")",
":",
"means",
"=",
"pd_params",
"[",
":",
",",
":",
",",
"0",
"]",
"log_std",
"=",
"pd_params",
"[",
":",
",",
":",
",",
"1",
"]",
"std",
"=",
"torch",
".",
"exp",
"(",
"log_std",
")",
"z_score",
"=",
"(",
"action_sample",
"-",
"means",
")",
"/",
"std",
"return",
"-",
"(",
"0.5",
"*",
"(",
"(",
"z_score",
"**",
"2",
"+",
"self",
".",
"LOG2PI",
")",
".",
"sum",
"(",
"dim",
"=",
"-",
"1",
")",
")",
"+",
"log_std",
".",
"sum",
"(",
"dim",
"=",
"-",
"1",
")",
")"
] | Log-likelihood | [
"Log",
"-",
"likelihood"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/modules/action_head.py#L45-L54 |
251,399 | MillionIntegrals/vel | vel/rl/modules/action_head.py | CategoricalActionHead.logprob | def logprob(self, actions, action_logits):
""" Logarithm of probability of given sample """
neg_log_prob = F.nll_loss(action_logits, actions, reduction='none')
return -neg_log_prob | python | def logprob(self, actions, action_logits):
neg_log_prob = F.nll_loss(action_logits, actions, reduction='none')
return -neg_log_prob | [
"def",
"logprob",
"(",
"self",
",",
"actions",
",",
"action_logits",
")",
":",
"neg_log_prob",
"=",
"F",
".",
"nll_loss",
"(",
"action_logits",
",",
"actions",
",",
"reduction",
"=",
"'none'",
")",
"return",
"-",
"neg_log_prob"
] | Logarithm of probability of given sample | [
"Logarithm",
"of",
"probability",
"of",
"given",
"sample"
] | e0726e1f63742b728966ccae0c8b825ea0ba491a | https://github.com/MillionIntegrals/vel/blob/e0726e1f63742b728966ccae0c8b825ea0ba491a/vel/rl/modules/action_head.py#L103-L106 |
Subsets and Splits