id
int32 0
252k
| repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 51
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
|
---|---|---|---|---|---|---|---|---|---|---|---|
3,600 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.clip | def clip(self, lower=None, upper=None):
'''
Trim values at input thresholds using pandas function
'''
df = self.export_df()
df = df.clip(lower=lower, upper=upper)
self.load_df(df) | python | def clip(self, lower=None, upper=None):
'''
Trim values at input thresholds using pandas function
'''
df = self.export_df()
df = df.clip(lower=lower, upper=upper)
self.load_df(df) | [
"def",
"clip",
"(",
"self",
",",
"lower",
"=",
"None",
",",
"upper",
"=",
"None",
")",
":",
"df",
"=",
"self",
".",
"export_df",
"(",
")",
"df",
"=",
"df",
".",
"clip",
"(",
"lower",
"=",
"lower",
",",
"upper",
"=",
"upper",
")",
"self",
".",
"load_df",
"(",
"df",
")"
] | Trim values at input thresholds using pandas function | [
"Trim",
"values",
"at",
"input",
"thresholds",
"using",
"pandas",
"function"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L321-L327 |
3,601 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.random_sample | def random_sample(self, num_samples, df=None, replace=False, weights=None, random_state=100, axis='row'):
'''
Return random sample of matrix.
'''
if df is None:
df = self.dat_to_df()
if axis == 'row':
axis = 0
if axis == 'col':
axis = 1
df = self.export_df()
df = df.sample(n=num_samples, replace=replace, weights=weights, random_state=random_state, axis=axis)
self.load_df(df) | python | def random_sample(self, num_samples, df=None, replace=False, weights=None, random_state=100, axis='row'):
'''
Return random sample of matrix.
'''
if df is None:
df = self.dat_to_df()
if axis == 'row':
axis = 0
if axis == 'col':
axis = 1
df = self.export_df()
df = df.sample(n=num_samples, replace=replace, weights=weights, random_state=random_state, axis=axis)
self.load_df(df) | [
"def",
"random_sample",
"(",
"self",
",",
"num_samples",
",",
"df",
"=",
"None",
",",
"replace",
"=",
"False",
",",
"weights",
"=",
"None",
",",
"random_state",
"=",
"100",
",",
"axis",
"=",
"'row'",
")",
":",
"if",
"df",
"is",
"None",
":",
"df",
"=",
"self",
".",
"dat_to_df",
"(",
")",
"if",
"axis",
"==",
"'row'",
":",
"axis",
"=",
"0",
"if",
"axis",
"==",
"'col'",
":",
"axis",
"=",
"1",
"df",
"=",
"self",
".",
"export_df",
"(",
")",
"df",
"=",
"df",
".",
"sample",
"(",
"n",
"=",
"num_samples",
",",
"replace",
"=",
"replace",
",",
"weights",
"=",
"weights",
",",
"random_state",
"=",
"random_state",
",",
"axis",
"=",
"axis",
")",
"self",
".",
"load_df",
"(",
"df",
")"
] | Return random sample of matrix. | [
"Return",
"random",
"sample",
"of",
"matrix",
"."
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L342-L358 |
3,602 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.load_gene_exp_to_df | def load_gene_exp_to_df(inst_path):
'''
Loads gene expression data from 10x in sparse matrix format and returns a
Pandas dataframe
'''
import pandas as pd
from scipy import io
from scipy import sparse
from ast import literal_eval as make_tuple
# matrix
Matrix = io.mmread( inst_path + 'matrix.mtx')
mat = Matrix.todense()
# genes
filename = inst_path + 'genes.tsv'
f = open(filename, 'r')
lines = f.readlines()
f.close()
# # add unique id to all genes
# genes = []
# unique_id = 0
# for inst_line in lines:
# inst_line = inst_line.strip().split()
# if len(inst_line) > 1:
# inst_gene = inst_line[1]
# else:
# inst_gene = inst_line[0]
# genes.append(inst_gene + '_' + str(unique_id))
# unique_id = unique_id + 1
# add unique id only to duplicate genes
ini_genes = []
for inst_line in lines:
inst_line = inst_line.strip().split()
if len(inst_line) > 1:
inst_gene = inst_line[1]
else:
inst_gene = inst_line[0]
ini_genes.append(inst_gene)
gene_name_count = pd.Series(ini_genes).value_counts()
duplicate_genes = gene_name_count[gene_name_count > 1].index.tolist()
dup_index = {}
genes = []
for inst_row in ini_genes:
# add index to non-unique genes
if inst_row in duplicate_genes:
# calc_non-unque index
if inst_row not in dup_index:
dup_index[inst_row] = 1
else:
dup_index[inst_row] = dup_index[inst_row] + 1
new_row = inst_row + '_' + str(dup_index[inst_row])
else:
new_row = inst_row
genes.append(new_row)
# barcodes
filename = inst_path + 'barcodes.tsv'
f = open(filename, 'r')
lines = f.readlines()
f.close()
cell_barcodes = []
for inst_bc in lines:
inst_bc = inst_bc.strip().split('\t')
# remove dash from barcodes if necessary
if '-' in inst_bc[0]:
inst_bc[0] = inst_bc[0].split('-')[0]
cell_barcodes.append(inst_bc[0])
# parse tuples if necessary
try:
cell_barcodes = [make_tuple(x) for x in cell_barcodes]
except:
pass
try:
genes = [make_tuple(x) for x in genes]
except:
pass
# make dataframe
df = pd.DataFrame(mat, index=genes, columns=cell_barcodes)
return df | python | def load_gene_exp_to_df(inst_path):
'''
Loads gene expression data from 10x in sparse matrix format and returns a
Pandas dataframe
'''
import pandas as pd
from scipy import io
from scipy import sparse
from ast import literal_eval as make_tuple
# matrix
Matrix = io.mmread( inst_path + 'matrix.mtx')
mat = Matrix.todense()
# genes
filename = inst_path + 'genes.tsv'
f = open(filename, 'r')
lines = f.readlines()
f.close()
# # add unique id to all genes
# genes = []
# unique_id = 0
# for inst_line in lines:
# inst_line = inst_line.strip().split()
# if len(inst_line) > 1:
# inst_gene = inst_line[1]
# else:
# inst_gene = inst_line[0]
# genes.append(inst_gene + '_' + str(unique_id))
# unique_id = unique_id + 1
# add unique id only to duplicate genes
ini_genes = []
for inst_line in lines:
inst_line = inst_line.strip().split()
if len(inst_line) > 1:
inst_gene = inst_line[1]
else:
inst_gene = inst_line[0]
ini_genes.append(inst_gene)
gene_name_count = pd.Series(ini_genes).value_counts()
duplicate_genes = gene_name_count[gene_name_count > 1].index.tolist()
dup_index = {}
genes = []
for inst_row in ini_genes:
# add index to non-unique genes
if inst_row in duplicate_genes:
# calc_non-unque index
if inst_row not in dup_index:
dup_index[inst_row] = 1
else:
dup_index[inst_row] = dup_index[inst_row] + 1
new_row = inst_row + '_' + str(dup_index[inst_row])
else:
new_row = inst_row
genes.append(new_row)
# barcodes
filename = inst_path + 'barcodes.tsv'
f = open(filename, 'r')
lines = f.readlines()
f.close()
cell_barcodes = []
for inst_bc in lines:
inst_bc = inst_bc.strip().split('\t')
# remove dash from barcodes if necessary
if '-' in inst_bc[0]:
inst_bc[0] = inst_bc[0].split('-')[0]
cell_barcodes.append(inst_bc[0])
# parse tuples if necessary
try:
cell_barcodes = [make_tuple(x) for x in cell_barcodes]
except:
pass
try:
genes = [make_tuple(x) for x in genes]
except:
pass
# make dataframe
df = pd.DataFrame(mat, index=genes, columns=cell_barcodes)
return df | [
"def",
"load_gene_exp_to_df",
"(",
"inst_path",
")",
":",
"import",
"pandas",
"as",
"pd",
"from",
"scipy",
"import",
"io",
"from",
"scipy",
"import",
"sparse",
"from",
"ast",
"import",
"literal_eval",
"as",
"make_tuple",
"# matrix",
"Matrix",
"=",
"io",
".",
"mmread",
"(",
"inst_path",
"+",
"'matrix.mtx'",
")",
"mat",
"=",
"Matrix",
".",
"todense",
"(",
")",
"# genes",
"filename",
"=",
"inst_path",
"+",
"'genes.tsv'",
"f",
"=",
"open",
"(",
"filename",
",",
"'r'",
")",
"lines",
"=",
"f",
".",
"readlines",
"(",
")",
"f",
".",
"close",
"(",
")",
"# # add unique id to all genes",
"# genes = []",
"# unique_id = 0",
"# for inst_line in lines:",
"# inst_line = inst_line.strip().split()",
"# if len(inst_line) > 1:",
"# inst_gene = inst_line[1]",
"# else:",
"# inst_gene = inst_line[0]",
"# genes.append(inst_gene + '_' + str(unique_id))",
"# unique_id = unique_id + 1",
"# add unique id only to duplicate genes",
"ini_genes",
"=",
"[",
"]",
"for",
"inst_line",
"in",
"lines",
":",
"inst_line",
"=",
"inst_line",
".",
"strip",
"(",
")",
".",
"split",
"(",
")",
"if",
"len",
"(",
"inst_line",
")",
">",
"1",
":",
"inst_gene",
"=",
"inst_line",
"[",
"1",
"]",
"else",
":",
"inst_gene",
"=",
"inst_line",
"[",
"0",
"]",
"ini_genes",
".",
"append",
"(",
"inst_gene",
")",
"gene_name_count",
"=",
"pd",
".",
"Series",
"(",
"ini_genes",
")",
".",
"value_counts",
"(",
")",
"duplicate_genes",
"=",
"gene_name_count",
"[",
"gene_name_count",
">",
"1",
"]",
".",
"index",
".",
"tolist",
"(",
")",
"dup_index",
"=",
"{",
"}",
"genes",
"=",
"[",
"]",
"for",
"inst_row",
"in",
"ini_genes",
":",
"# add index to non-unique genes",
"if",
"inst_row",
"in",
"duplicate_genes",
":",
"# calc_non-unque index",
"if",
"inst_row",
"not",
"in",
"dup_index",
":",
"dup_index",
"[",
"inst_row",
"]",
"=",
"1",
"else",
":",
"dup_index",
"[",
"inst_row",
"]",
"=",
"dup_index",
"[",
"inst_row",
"]",
"+",
"1",
"new_row",
"=",
"inst_row",
"+",
"'_'",
"+",
"str",
"(",
"dup_index",
"[",
"inst_row",
"]",
")",
"else",
":",
"new_row",
"=",
"inst_row",
"genes",
".",
"append",
"(",
"new_row",
")",
"# barcodes",
"filename",
"=",
"inst_path",
"+",
"'barcodes.tsv'",
"f",
"=",
"open",
"(",
"filename",
",",
"'r'",
")",
"lines",
"=",
"f",
".",
"readlines",
"(",
")",
"f",
".",
"close",
"(",
")",
"cell_barcodes",
"=",
"[",
"]",
"for",
"inst_bc",
"in",
"lines",
":",
"inst_bc",
"=",
"inst_bc",
".",
"strip",
"(",
")",
".",
"split",
"(",
"'\\t'",
")",
"# remove dash from barcodes if necessary",
"if",
"'-'",
"in",
"inst_bc",
"[",
"0",
"]",
":",
"inst_bc",
"[",
"0",
"]",
"=",
"inst_bc",
"[",
"0",
"]",
".",
"split",
"(",
"'-'",
")",
"[",
"0",
"]",
"cell_barcodes",
".",
"append",
"(",
"inst_bc",
"[",
"0",
"]",
")",
"# parse tuples if necessary",
"try",
":",
"cell_barcodes",
"=",
"[",
"make_tuple",
"(",
"x",
")",
"for",
"x",
"in",
"cell_barcodes",
"]",
"except",
":",
"pass",
"try",
":",
"genes",
"=",
"[",
"make_tuple",
"(",
"x",
")",
"for",
"x",
"in",
"genes",
"]",
"except",
":",
"pass",
"# make dataframe",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
"mat",
",",
"index",
"=",
"genes",
",",
"columns",
"=",
"cell_barcodes",
")",
"return",
"df"
] | Loads gene expression data from 10x in sparse matrix format and returns a
Pandas dataframe | [
"Loads",
"gene",
"expression",
"data",
"from",
"10x",
"in",
"sparse",
"matrix",
"format",
"and",
"returns",
"a",
"Pandas",
"dataframe"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L453-L551 |
3,603 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.sim_same_and_diff_category_samples | def sim_same_and_diff_category_samples(self, df, cat_index=1, dist_type='cosine',
equal_var=False, plot_roc=True,
precalc_dist=False, calc_roc=True):
'''
Calculate the similarity of samples from the same and different categories. The
cat_index gives the index of the category, where 1 in the first category
'''
cols = df.columns.tolist()
if type(precalc_dist) == bool:
# compute distnace between rows (transpose to get cols as rows)
dist_arr = 1 - pdist(df.transpose(), metric=dist_type)
else:
dist_arr = precalc_dist
# generate sample names with categories
sample_combos = list(combinations(range(df.shape[1]),2))
sample_names = [str(ind) + '_same' if cols[x[0]][cat_index] == cols[x[1]][cat_index] else str(ind) + '_different' for ind, x in enumerate(sample_combos)]
ser_dist = pd.Series(data=dist_arr, index=sample_names)
# find same-cat sample comparisons
same_cat = [x for x in sample_names if x.split('_')[1] == 'same']
# find diff-cat sample comparisons
diff_cat = [x for x in sample_names if x.split('_')[1] == 'different']
# make series of same and diff category sample comparisons
ser_same = ser_dist[same_cat]
ser_same.name = 'Same Category'
ser_diff = ser_dist[diff_cat]
ser_diff.name = 'Different Category'
sim_dict = {}
roc_data = {}
sim_data = {}
sim_dict['same'] = ser_same
sim_dict['diff'] = ser_diff
pval_dict = {}
ttest_stat, pval_dict['ttest'] = ttest_ind(ser_diff, ser_same, equal_var=equal_var)
ttest_stat, pval_dict['mannwhitney'] = mannwhitneyu(ser_diff, ser_same)
if calc_roc:
# calc AUC
true_index = list(np.ones(sim_dict['same'].shape[0]))
false_index = list(np.zeros(sim_dict['diff'].shape[0]))
y_true = true_index + false_index
true_val = list(sim_dict['same'].get_values())
false_val = list(sim_dict['diff'].get_values())
y_score = true_val + false_val
fpr, tpr, thresholds = roc_curve(y_true, y_score)
inst_auc = auc(fpr, tpr)
if plot_roc:
plt.figure()
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
plt.figure(figsize=(10,10))
print('AUC', inst_auc)
roc_data['true'] = y_true
roc_data['score'] = y_score
roc_data['fpr'] = fpr
roc_data['tpr'] = tpr
roc_data['thresholds'] = thresholds
roc_data['auc'] = inst_auc
sim_data['sim_dict'] = sim_dict
sim_data['pval_dict'] = pval_dict
sim_data['roc_data'] = roc_data
return sim_data | python | def sim_same_and_diff_category_samples(self, df, cat_index=1, dist_type='cosine',
equal_var=False, plot_roc=True,
precalc_dist=False, calc_roc=True):
'''
Calculate the similarity of samples from the same and different categories. The
cat_index gives the index of the category, where 1 in the first category
'''
cols = df.columns.tolist()
if type(precalc_dist) == bool:
# compute distnace between rows (transpose to get cols as rows)
dist_arr = 1 - pdist(df.transpose(), metric=dist_type)
else:
dist_arr = precalc_dist
# generate sample names with categories
sample_combos = list(combinations(range(df.shape[1]),2))
sample_names = [str(ind) + '_same' if cols[x[0]][cat_index] == cols[x[1]][cat_index] else str(ind) + '_different' for ind, x in enumerate(sample_combos)]
ser_dist = pd.Series(data=dist_arr, index=sample_names)
# find same-cat sample comparisons
same_cat = [x for x in sample_names if x.split('_')[1] == 'same']
# find diff-cat sample comparisons
diff_cat = [x for x in sample_names if x.split('_')[1] == 'different']
# make series of same and diff category sample comparisons
ser_same = ser_dist[same_cat]
ser_same.name = 'Same Category'
ser_diff = ser_dist[diff_cat]
ser_diff.name = 'Different Category'
sim_dict = {}
roc_data = {}
sim_data = {}
sim_dict['same'] = ser_same
sim_dict['diff'] = ser_diff
pval_dict = {}
ttest_stat, pval_dict['ttest'] = ttest_ind(ser_diff, ser_same, equal_var=equal_var)
ttest_stat, pval_dict['mannwhitney'] = mannwhitneyu(ser_diff, ser_same)
if calc_roc:
# calc AUC
true_index = list(np.ones(sim_dict['same'].shape[0]))
false_index = list(np.zeros(sim_dict['diff'].shape[0]))
y_true = true_index + false_index
true_val = list(sim_dict['same'].get_values())
false_val = list(sim_dict['diff'].get_values())
y_score = true_val + false_val
fpr, tpr, thresholds = roc_curve(y_true, y_score)
inst_auc = auc(fpr, tpr)
if plot_roc:
plt.figure()
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], color='navy', linestyle='--')
plt.figure(figsize=(10,10))
print('AUC', inst_auc)
roc_data['true'] = y_true
roc_data['score'] = y_score
roc_data['fpr'] = fpr
roc_data['tpr'] = tpr
roc_data['thresholds'] = thresholds
roc_data['auc'] = inst_auc
sim_data['sim_dict'] = sim_dict
sim_data['pval_dict'] = pval_dict
sim_data['roc_data'] = roc_data
return sim_data | [
"def",
"sim_same_and_diff_category_samples",
"(",
"self",
",",
"df",
",",
"cat_index",
"=",
"1",
",",
"dist_type",
"=",
"'cosine'",
",",
"equal_var",
"=",
"False",
",",
"plot_roc",
"=",
"True",
",",
"precalc_dist",
"=",
"False",
",",
"calc_roc",
"=",
"True",
")",
":",
"cols",
"=",
"df",
".",
"columns",
".",
"tolist",
"(",
")",
"if",
"type",
"(",
"precalc_dist",
")",
"==",
"bool",
":",
"# compute distnace between rows (transpose to get cols as rows)",
"dist_arr",
"=",
"1",
"-",
"pdist",
"(",
"df",
".",
"transpose",
"(",
")",
",",
"metric",
"=",
"dist_type",
")",
"else",
":",
"dist_arr",
"=",
"precalc_dist",
"# generate sample names with categories",
"sample_combos",
"=",
"list",
"(",
"combinations",
"(",
"range",
"(",
"df",
".",
"shape",
"[",
"1",
"]",
")",
",",
"2",
")",
")",
"sample_names",
"=",
"[",
"str",
"(",
"ind",
")",
"+",
"'_same'",
"if",
"cols",
"[",
"x",
"[",
"0",
"]",
"]",
"[",
"cat_index",
"]",
"==",
"cols",
"[",
"x",
"[",
"1",
"]",
"]",
"[",
"cat_index",
"]",
"else",
"str",
"(",
"ind",
")",
"+",
"'_different'",
"for",
"ind",
",",
"x",
"in",
"enumerate",
"(",
"sample_combos",
")",
"]",
"ser_dist",
"=",
"pd",
".",
"Series",
"(",
"data",
"=",
"dist_arr",
",",
"index",
"=",
"sample_names",
")",
"# find same-cat sample comparisons",
"same_cat",
"=",
"[",
"x",
"for",
"x",
"in",
"sample_names",
"if",
"x",
".",
"split",
"(",
"'_'",
")",
"[",
"1",
"]",
"==",
"'same'",
"]",
"# find diff-cat sample comparisons",
"diff_cat",
"=",
"[",
"x",
"for",
"x",
"in",
"sample_names",
"if",
"x",
".",
"split",
"(",
"'_'",
")",
"[",
"1",
"]",
"==",
"'different'",
"]",
"# make series of same and diff category sample comparisons",
"ser_same",
"=",
"ser_dist",
"[",
"same_cat",
"]",
"ser_same",
".",
"name",
"=",
"'Same Category'",
"ser_diff",
"=",
"ser_dist",
"[",
"diff_cat",
"]",
"ser_diff",
".",
"name",
"=",
"'Different Category'",
"sim_dict",
"=",
"{",
"}",
"roc_data",
"=",
"{",
"}",
"sim_data",
"=",
"{",
"}",
"sim_dict",
"[",
"'same'",
"]",
"=",
"ser_same",
"sim_dict",
"[",
"'diff'",
"]",
"=",
"ser_diff",
"pval_dict",
"=",
"{",
"}",
"ttest_stat",
",",
"pval_dict",
"[",
"'ttest'",
"]",
"=",
"ttest_ind",
"(",
"ser_diff",
",",
"ser_same",
",",
"equal_var",
"=",
"equal_var",
")",
"ttest_stat",
",",
"pval_dict",
"[",
"'mannwhitney'",
"]",
"=",
"mannwhitneyu",
"(",
"ser_diff",
",",
"ser_same",
")",
"if",
"calc_roc",
":",
"# calc AUC",
"true_index",
"=",
"list",
"(",
"np",
".",
"ones",
"(",
"sim_dict",
"[",
"'same'",
"]",
".",
"shape",
"[",
"0",
"]",
")",
")",
"false_index",
"=",
"list",
"(",
"np",
".",
"zeros",
"(",
"sim_dict",
"[",
"'diff'",
"]",
".",
"shape",
"[",
"0",
"]",
")",
")",
"y_true",
"=",
"true_index",
"+",
"false_index",
"true_val",
"=",
"list",
"(",
"sim_dict",
"[",
"'same'",
"]",
".",
"get_values",
"(",
")",
")",
"false_val",
"=",
"list",
"(",
"sim_dict",
"[",
"'diff'",
"]",
".",
"get_values",
"(",
")",
")",
"y_score",
"=",
"true_val",
"+",
"false_val",
"fpr",
",",
"tpr",
",",
"thresholds",
"=",
"roc_curve",
"(",
"y_true",
",",
"y_score",
")",
"inst_auc",
"=",
"auc",
"(",
"fpr",
",",
"tpr",
")",
"if",
"plot_roc",
":",
"plt",
".",
"figure",
"(",
")",
"plt",
".",
"plot",
"(",
"fpr",
",",
"tpr",
")",
"plt",
".",
"plot",
"(",
"[",
"0",
",",
"1",
"]",
",",
"[",
"0",
",",
"1",
"]",
",",
"color",
"=",
"'navy'",
",",
"linestyle",
"=",
"'--'",
")",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"10",
")",
")",
"print",
"(",
"'AUC'",
",",
"inst_auc",
")",
"roc_data",
"[",
"'true'",
"]",
"=",
"y_true",
"roc_data",
"[",
"'score'",
"]",
"=",
"y_score",
"roc_data",
"[",
"'fpr'",
"]",
"=",
"fpr",
"roc_data",
"[",
"'tpr'",
"]",
"=",
"tpr",
"roc_data",
"[",
"'thresholds'",
"]",
"=",
"thresholds",
"roc_data",
"[",
"'auc'",
"]",
"=",
"inst_auc",
"sim_data",
"[",
"'sim_dict'",
"]",
"=",
"sim_dict",
"sim_data",
"[",
"'pval_dict'",
"]",
"=",
"pval_dict",
"sim_data",
"[",
"'roc_data'",
"]",
"=",
"roc_data",
"return",
"sim_data"
] | Calculate the similarity of samples from the same and different categories. The
cat_index gives the index of the category, where 1 in the first category | [
"Calculate",
"the",
"similarity",
"of",
"samples",
"from",
"the",
"same",
"and",
"different",
"categories",
".",
"The",
"cat_index",
"gives",
"the",
"index",
"of",
"the",
"category",
"where",
"1",
"in",
"the",
"first",
"category"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L583-L663 |
3,604 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.generate_signatures | def generate_signatures(self, df_ini, category_level, pval_cutoff=0.05,
num_top_dims=False, verbose=True, equal_var=False):
''' Generate signatures for column categories '''
df_t = df_ini.transpose()
# remove columns with constant values
df_t = df_t.loc[:, (df_t != df_t.iloc[0]).any()]
df = self.row_tuple_to_multiindex(df_t)
cell_types = sorted(list(set(df.index.get_level_values(category_level).tolist())))
keep_genes = []
keep_genes_dict = {}
gene_pval_dict = {}
all_fold_info = {}
for inst_ct in cell_types:
inst_ct_mat = df.xs(key=inst_ct, level=category_level)
inst_other_mat = df.drop(inst_ct, level=category_level)
# save mean values and fold change
fold_info = {}
fold_info['cluster_mean'] = inst_ct_mat.mean()
fold_info['other_mean'] = inst_other_mat.mean()
fold_info['log2_fold'] = fold_info['cluster_mean']/fold_info['other_mean']
fold_info['log2_fold'] = fold_info['log2_fold'].apply(np.log2)
all_fold_info[inst_ct] = fold_info
inst_stats, inst_pvals = ttest_ind(inst_ct_mat, inst_other_mat, axis=0, equal_var=equal_var)
ser_pval = pd.Series(data=inst_pvals, index=df.columns.tolist()).sort_values()
if num_top_dims == False:
ser_pval_keep = ser_pval[ser_pval < pval_cutoff]
else:
ser_pval_keep = ser_pval[:num_top_dims]
gene_pval_dict[inst_ct] = ser_pval_keep
inst_keep = ser_pval_keep.index.tolist()
keep_genes.extend(inst_keep)
keep_genes_dict[inst_ct] = inst_keep
keep_genes = sorted(list(set(keep_genes)))
df_gbm = df.groupby(level=category_level).mean().transpose()
cols = df_gbm.columns.tolist()
new_cols = []
for inst_col in cols:
new_col = (inst_col, category_level + ': ' + inst_col)
new_cols.append(new_col)
df_gbm.columns = new_cols
df_sig = df_gbm.ix[keep_genes]
if len(keep_genes) == 0 and verbose:
print('found no informative dimensions')
df_gene_pval = pd.concat(gene_pval_dict, axis=1, sort=False)
return df_sig, keep_genes_dict, df_gene_pval, all_fold_info | python | def generate_signatures(self, df_ini, category_level, pval_cutoff=0.05,
num_top_dims=False, verbose=True, equal_var=False):
''' Generate signatures for column categories '''
df_t = df_ini.transpose()
# remove columns with constant values
df_t = df_t.loc[:, (df_t != df_t.iloc[0]).any()]
df = self.row_tuple_to_multiindex(df_t)
cell_types = sorted(list(set(df.index.get_level_values(category_level).tolist())))
keep_genes = []
keep_genes_dict = {}
gene_pval_dict = {}
all_fold_info = {}
for inst_ct in cell_types:
inst_ct_mat = df.xs(key=inst_ct, level=category_level)
inst_other_mat = df.drop(inst_ct, level=category_level)
# save mean values and fold change
fold_info = {}
fold_info['cluster_mean'] = inst_ct_mat.mean()
fold_info['other_mean'] = inst_other_mat.mean()
fold_info['log2_fold'] = fold_info['cluster_mean']/fold_info['other_mean']
fold_info['log2_fold'] = fold_info['log2_fold'].apply(np.log2)
all_fold_info[inst_ct] = fold_info
inst_stats, inst_pvals = ttest_ind(inst_ct_mat, inst_other_mat, axis=0, equal_var=equal_var)
ser_pval = pd.Series(data=inst_pvals, index=df.columns.tolist()).sort_values()
if num_top_dims == False:
ser_pval_keep = ser_pval[ser_pval < pval_cutoff]
else:
ser_pval_keep = ser_pval[:num_top_dims]
gene_pval_dict[inst_ct] = ser_pval_keep
inst_keep = ser_pval_keep.index.tolist()
keep_genes.extend(inst_keep)
keep_genes_dict[inst_ct] = inst_keep
keep_genes = sorted(list(set(keep_genes)))
df_gbm = df.groupby(level=category_level).mean().transpose()
cols = df_gbm.columns.tolist()
new_cols = []
for inst_col in cols:
new_col = (inst_col, category_level + ': ' + inst_col)
new_cols.append(new_col)
df_gbm.columns = new_cols
df_sig = df_gbm.ix[keep_genes]
if len(keep_genes) == 0 and verbose:
print('found no informative dimensions')
df_gene_pval = pd.concat(gene_pval_dict, axis=1, sort=False)
return df_sig, keep_genes_dict, df_gene_pval, all_fold_info | [
"def",
"generate_signatures",
"(",
"self",
",",
"df_ini",
",",
"category_level",
",",
"pval_cutoff",
"=",
"0.05",
",",
"num_top_dims",
"=",
"False",
",",
"verbose",
"=",
"True",
",",
"equal_var",
"=",
"False",
")",
":",
"df_t",
"=",
"df_ini",
".",
"transpose",
"(",
")",
"# remove columns with constant values",
"df_t",
"=",
"df_t",
".",
"loc",
"[",
":",
",",
"(",
"df_t",
"!=",
"df_t",
".",
"iloc",
"[",
"0",
"]",
")",
".",
"any",
"(",
")",
"]",
"df",
"=",
"self",
".",
"row_tuple_to_multiindex",
"(",
"df_t",
")",
"cell_types",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"df",
".",
"index",
".",
"get_level_values",
"(",
"category_level",
")",
".",
"tolist",
"(",
")",
")",
")",
")",
"keep_genes",
"=",
"[",
"]",
"keep_genes_dict",
"=",
"{",
"}",
"gene_pval_dict",
"=",
"{",
"}",
"all_fold_info",
"=",
"{",
"}",
"for",
"inst_ct",
"in",
"cell_types",
":",
"inst_ct_mat",
"=",
"df",
".",
"xs",
"(",
"key",
"=",
"inst_ct",
",",
"level",
"=",
"category_level",
")",
"inst_other_mat",
"=",
"df",
".",
"drop",
"(",
"inst_ct",
",",
"level",
"=",
"category_level",
")",
"# save mean values and fold change",
"fold_info",
"=",
"{",
"}",
"fold_info",
"[",
"'cluster_mean'",
"]",
"=",
"inst_ct_mat",
".",
"mean",
"(",
")",
"fold_info",
"[",
"'other_mean'",
"]",
"=",
"inst_other_mat",
".",
"mean",
"(",
")",
"fold_info",
"[",
"'log2_fold'",
"]",
"=",
"fold_info",
"[",
"'cluster_mean'",
"]",
"/",
"fold_info",
"[",
"'other_mean'",
"]",
"fold_info",
"[",
"'log2_fold'",
"]",
"=",
"fold_info",
"[",
"'log2_fold'",
"]",
".",
"apply",
"(",
"np",
".",
"log2",
")",
"all_fold_info",
"[",
"inst_ct",
"]",
"=",
"fold_info",
"inst_stats",
",",
"inst_pvals",
"=",
"ttest_ind",
"(",
"inst_ct_mat",
",",
"inst_other_mat",
",",
"axis",
"=",
"0",
",",
"equal_var",
"=",
"equal_var",
")",
"ser_pval",
"=",
"pd",
".",
"Series",
"(",
"data",
"=",
"inst_pvals",
",",
"index",
"=",
"df",
".",
"columns",
".",
"tolist",
"(",
")",
")",
".",
"sort_values",
"(",
")",
"if",
"num_top_dims",
"==",
"False",
":",
"ser_pval_keep",
"=",
"ser_pval",
"[",
"ser_pval",
"<",
"pval_cutoff",
"]",
"else",
":",
"ser_pval_keep",
"=",
"ser_pval",
"[",
":",
"num_top_dims",
"]",
"gene_pval_dict",
"[",
"inst_ct",
"]",
"=",
"ser_pval_keep",
"inst_keep",
"=",
"ser_pval_keep",
".",
"index",
".",
"tolist",
"(",
")",
"keep_genes",
".",
"extend",
"(",
"inst_keep",
")",
"keep_genes_dict",
"[",
"inst_ct",
"]",
"=",
"inst_keep",
"keep_genes",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"keep_genes",
")",
")",
")",
"df_gbm",
"=",
"df",
".",
"groupby",
"(",
"level",
"=",
"category_level",
")",
".",
"mean",
"(",
")",
".",
"transpose",
"(",
")",
"cols",
"=",
"df_gbm",
".",
"columns",
".",
"tolist",
"(",
")",
"new_cols",
"=",
"[",
"]",
"for",
"inst_col",
"in",
"cols",
":",
"new_col",
"=",
"(",
"inst_col",
",",
"category_level",
"+",
"': '",
"+",
"inst_col",
")",
"new_cols",
".",
"append",
"(",
"new_col",
")",
"df_gbm",
".",
"columns",
"=",
"new_cols",
"df_sig",
"=",
"df_gbm",
".",
"ix",
"[",
"keep_genes",
"]",
"if",
"len",
"(",
"keep_genes",
")",
"==",
"0",
"and",
"verbose",
":",
"print",
"(",
"'found no informative dimensions'",
")",
"df_gene_pval",
"=",
"pd",
".",
"concat",
"(",
"gene_pval_dict",
",",
"axis",
"=",
"1",
",",
"sort",
"=",
"False",
")",
"return",
"df_sig",
",",
"keep_genes_dict",
",",
"df_gene_pval",
",",
"all_fold_info"
] | Generate signatures for column categories | [
"Generate",
"signatures",
"for",
"column",
"categories"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L665-L729 |
3,605 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.predict_cats_from_sigs | def predict_cats_from_sigs(self, df_data_ini, df_sig_ini, dist_type='cosine', predict_level='Predict Category',
truth_level=1, unknown_thresh=-1):
''' Predict category using signature '''
keep_rows = df_sig_ini.index.tolist()
data_rows = df_data_ini.index.tolist()
common_rows = list(set(data_rows).intersection(keep_rows))
df_data = deepcopy(df_data_ini.ix[common_rows])
df_sig = deepcopy(df_sig_ini.ix[common_rows])
# calculate sim_mat of df_data and df_sig
cell_types = df_sig.columns.tolist()
barcodes = df_data.columns.tolist()
sim_mat = 1 - pairwise_distances(df_sig.transpose(), df_data.transpose(), metric=dist_type)
df_sim = pd.DataFrame(data=sim_mat, index=cell_types, columns=barcodes).transpose()
# get the top column value (most similar signature)
df_sim_top = df_sim.idxmax(axis=1)
# get the maximum similarity of a cell to a cell type definition
max_sim = df_sim.max(axis=1)
unknown_cells = max_sim[max_sim < unknown_thresh].index.tolist()
# assign unknown cells (need category of same name)
df_sim_top[unknown_cells] = 'Unknown'
# add predicted category name to top list
top_list = df_sim_top.get_values()
top_list = [ predict_level + ': ' + x[0] if type(x) is tuple else predict_level + ': ' + x for x in top_list]
# add cell type category to input data
df_cat = deepcopy(df_data)
cols = df_cat.columns.tolist()
new_cols = []
# check whether the columns have the true category available
has_truth = False
if type(cols[0]) is tuple:
has_truth = True
if has_truth:
new_cols = [tuple(list(a) + [b]) for a,b in zip(cols, top_list)]
else:
new_cols = [tuple([a] + [b]) for a,b in zip(cols, top_list)]
# transfer new categories
df_cat.columns = new_cols
# keep track of true and predicted labels
y_info = {}
y_info['true'] = []
y_info['pred'] = []
if has_truth:
y_info['true'] = [x[truth_level].split(': ')[1] for x in cols]
y_info['pred'] = [x.split(': ')[1] for x in top_list]
return df_cat, df_sim.transpose(), y_info | python | def predict_cats_from_sigs(self, df_data_ini, df_sig_ini, dist_type='cosine', predict_level='Predict Category',
truth_level=1, unknown_thresh=-1):
''' Predict category using signature '''
keep_rows = df_sig_ini.index.tolist()
data_rows = df_data_ini.index.tolist()
common_rows = list(set(data_rows).intersection(keep_rows))
df_data = deepcopy(df_data_ini.ix[common_rows])
df_sig = deepcopy(df_sig_ini.ix[common_rows])
# calculate sim_mat of df_data and df_sig
cell_types = df_sig.columns.tolist()
barcodes = df_data.columns.tolist()
sim_mat = 1 - pairwise_distances(df_sig.transpose(), df_data.transpose(), metric=dist_type)
df_sim = pd.DataFrame(data=sim_mat, index=cell_types, columns=barcodes).transpose()
# get the top column value (most similar signature)
df_sim_top = df_sim.idxmax(axis=1)
# get the maximum similarity of a cell to a cell type definition
max_sim = df_sim.max(axis=1)
unknown_cells = max_sim[max_sim < unknown_thresh].index.tolist()
# assign unknown cells (need category of same name)
df_sim_top[unknown_cells] = 'Unknown'
# add predicted category name to top list
top_list = df_sim_top.get_values()
top_list = [ predict_level + ': ' + x[0] if type(x) is tuple else predict_level + ': ' + x for x in top_list]
# add cell type category to input data
df_cat = deepcopy(df_data)
cols = df_cat.columns.tolist()
new_cols = []
# check whether the columns have the true category available
has_truth = False
if type(cols[0]) is tuple:
has_truth = True
if has_truth:
new_cols = [tuple(list(a) + [b]) for a,b in zip(cols, top_list)]
else:
new_cols = [tuple([a] + [b]) for a,b in zip(cols, top_list)]
# transfer new categories
df_cat.columns = new_cols
# keep track of true and predicted labels
y_info = {}
y_info['true'] = []
y_info['pred'] = []
if has_truth:
y_info['true'] = [x[truth_level].split(': ')[1] for x in cols]
y_info['pred'] = [x.split(': ')[1] for x in top_list]
return df_cat, df_sim.transpose(), y_info | [
"def",
"predict_cats_from_sigs",
"(",
"self",
",",
"df_data_ini",
",",
"df_sig_ini",
",",
"dist_type",
"=",
"'cosine'",
",",
"predict_level",
"=",
"'Predict Category'",
",",
"truth_level",
"=",
"1",
",",
"unknown_thresh",
"=",
"-",
"1",
")",
":",
"keep_rows",
"=",
"df_sig_ini",
".",
"index",
".",
"tolist",
"(",
")",
"data_rows",
"=",
"df_data_ini",
".",
"index",
".",
"tolist",
"(",
")",
"common_rows",
"=",
"list",
"(",
"set",
"(",
"data_rows",
")",
".",
"intersection",
"(",
"keep_rows",
")",
")",
"df_data",
"=",
"deepcopy",
"(",
"df_data_ini",
".",
"ix",
"[",
"common_rows",
"]",
")",
"df_sig",
"=",
"deepcopy",
"(",
"df_sig_ini",
".",
"ix",
"[",
"common_rows",
"]",
")",
"# calculate sim_mat of df_data and df_sig",
"cell_types",
"=",
"df_sig",
".",
"columns",
".",
"tolist",
"(",
")",
"barcodes",
"=",
"df_data",
".",
"columns",
".",
"tolist",
"(",
")",
"sim_mat",
"=",
"1",
"-",
"pairwise_distances",
"(",
"df_sig",
".",
"transpose",
"(",
")",
",",
"df_data",
".",
"transpose",
"(",
")",
",",
"metric",
"=",
"dist_type",
")",
"df_sim",
"=",
"pd",
".",
"DataFrame",
"(",
"data",
"=",
"sim_mat",
",",
"index",
"=",
"cell_types",
",",
"columns",
"=",
"barcodes",
")",
".",
"transpose",
"(",
")",
"# get the top column value (most similar signature)",
"df_sim_top",
"=",
"df_sim",
".",
"idxmax",
"(",
"axis",
"=",
"1",
")",
"# get the maximum similarity of a cell to a cell type definition",
"max_sim",
"=",
"df_sim",
".",
"max",
"(",
"axis",
"=",
"1",
")",
"unknown_cells",
"=",
"max_sim",
"[",
"max_sim",
"<",
"unknown_thresh",
"]",
".",
"index",
".",
"tolist",
"(",
")",
"# assign unknown cells (need category of same name)",
"df_sim_top",
"[",
"unknown_cells",
"]",
"=",
"'Unknown'",
"# add predicted category name to top list",
"top_list",
"=",
"df_sim_top",
".",
"get_values",
"(",
")",
"top_list",
"=",
"[",
"predict_level",
"+",
"': '",
"+",
"x",
"[",
"0",
"]",
"if",
"type",
"(",
"x",
")",
"is",
"tuple",
"else",
"predict_level",
"+",
"': '",
"+",
"x",
"for",
"x",
"in",
"top_list",
"]",
"# add cell type category to input data",
"df_cat",
"=",
"deepcopy",
"(",
"df_data",
")",
"cols",
"=",
"df_cat",
".",
"columns",
".",
"tolist",
"(",
")",
"new_cols",
"=",
"[",
"]",
"# check whether the columns have the true category available",
"has_truth",
"=",
"False",
"if",
"type",
"(",
"cols",
"[",
"0",
"]",
")",
"is",
"tuple",
":",
"has_truth",
"=",
"True",
"if",
"has_truth",
":",
"new_cols",
"=",
"[",
"tuple",
"(",
"list",
"(",
"a",
")",
"+",
"[",
"b",
"]",
")",
"for",
"a",
",",
"b",
"in",
"zip",
"(",
"cols",
",",
"top_list",
")",
"]",
"else",
":",
"new_cols",
"=",
"[",
"tuple",
"(",
"[",
"a",
"]",
"+",
"[",
"b",
"]",
")",
"for",
"a",
",",
"b",
"in",
"zip",
"(",
"cols",
",",
"top_list",
")",
"]",
"# transfer new categories",
"df_cat",
".",
"columns",
"=",
"new_cols",
"# keep track of true and predicted labels",
"y_info",
"=",
"{",
"}",
"y_info",
"[",
"'true'",
"]",
"=",
"[",
"]",
"y_info",
"[",
"'pred'",
"]",
"=",
"[",
"]",
"if",
"has_truth",
":",
"y_info",
"[",
"'true'",
"]",
"=",
"[",
"x",
"[",
"truth_level",
"]",
".",
"split",
"(",
"': '",
")",
"[",
"1",
"]",
"for",
"x",
"in",
"cols",
"]",
"y_info",
"[",
"'pred'",
"]",
"=",
"[",
"x",
".",
"split",
"(",
"': '",
")",
"[",
"1",
"]",
"for",
"x",
"in",
"top_list",
"]",
"return",
"df_cat",
",",
"df_sim",
".",
"transpose",
"(",
")",
",",
"y_info"
] | Predict category using signature | [
"Predict",
"category",
"using",
"signature"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L731-L791 |
3,606 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/__init__.py | Network.confusion_matrix_and_correct_series | def confusion_matrix_and_correct_series(self, y_info):
''' Generate confusion matrix from y_info '''
a = deepcopy(y_info['true'])
true_count = dict((i, a.count(i)) for i in set(a))
a = deepcopy(y_info['pred'])
pred_count = dict((i, a.count(i)) for i in set(a))
sorted_cats = sorted(list(set(y_info['true'] + y_info['pred'])))
conf_mat = confusion_matrix(y_info['true'], y_info['pred'], sorted_cats)
df_conf = pd.DataFrame(conf_mat, index=sorted_cats, columns=sorted_cats)
total_correct = np.trace(df_conf)
total_pred = df_conf.sum().sum()
fraction_correct = total_correct/float(total_pred)
# calculate ser_correct
correct_list = []
cat_counts = df_conf.sum(axis=1)
all_cols = df_conf.columns.tolist()
for inst_cat in all_cols:
inst_correct = df_conf[inst_cat].loc[inst_cat] / cat_counts[inst_cat]
correct_list.append(inst_correct)
ser_correct = pd.Series(data=correct_list, index=all_cols)
populations = {}
populations['true'] = true_count
populations['pred'] = pred_count
return df_conf, populations, ser_correct, fraction_correct | python | def confusion_matrix_and_correct_series(self, y_info):
''' Generate confusion matrix from y_info '''
a = deepcopy(y_info['true'])
true_count = dict((i, a.count(i)) for i in set(a))
a = deepcopy(y_info['pred'])
pred_count = dict((i, a.count(i)) for i in set(a))
sorted_cats = sorted(list(set(y_info['true'] + y_info['pred'])))
conf_mat = confusion_matrix(y_info['true'], y_info['pred'], sorted_cats)
df_conf = pd.DataFrame(conf_mat, index=sorted_cats, columns=sorted_cats)
total_correct = np.trace(df_conf)
total_pred = df_conf.sum().sum()
fraction_correct = total_correct/float(total_pred)
# calculate ser_correct
correct_list = []
cat_counts = df_conf.sum(axis=1)
all_cols = df_conf.columns.tolist()
for inst_cat in all_cols:
inst_correct = df_conf[inst_cat].loc[inst_cat] / cat_counts[inst_cat]
correct_list.append(inst_correct)
ser_correct = pd.Series(data=correct_list, index=all_cols)
populations = {}
populations['true'] = true_count
populations['pred'] = pred_count
return df_conf, populations, ser_correct, fraction_correct | [
"def",
"confusion_matrix_and_correct_series",
"(",
"self",
",",
"y_info",
")",
":",
"a",
"=",
"deepcopy",
"(",
"y_info",
"[",
"'true'",
"]",
")",
"true_count",
"=",
"dict",
"(",
"(",
"i",
",",
"a",
".",
"count",
"(",
"i",
")",
")",
"for",
"i",
"in",
"set",
"(",
"a",
")",
")",
"a",
"=",
"deepcopy",
"(",
"y_info",
"[",
"'pred'",
"]",
")",
"pred_count",
"=",
"dict",
"(",
"(",
"i",
",",
"a",
".",
"count",
"(",
"i",
")",
")",
"for",
"i",
"in",
"set",
"(",
"a",
")",
")",
"sorted_cats",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"y_info",
"[",
"'true'",
"]",
"+",
"y_info",
"[",
"'pred'",
"]",
")",
")",
")",
"conf_mat",
"=",
"confusion_matrix",
"(",
"y_info",
"[",
"'true'",
"]",
",",
"y_info",
"[",
"'pred'",
"]",
",",
"sorted_cats",
")",
"df_conf",
"=",
"pd",
".",
"DataFrame",
"(",
"conf_mat",
",",
"index",
"=",
"sorted_cats",
",",
"columns",
"=",
"sorted_cats",
")",
"total_correct",
"=",
"np",
".",
"trace",
"(",
"df_conf",
")",
"total_pred",
"=",
"df_conf",
".",
"sum",
"(",
")",
".",
"sum",
"(",
")",
"fraction_correct",
"=",
"total_correct",
"/",
"float",
"(",
"total_pred",
")",
"# calculate ser_correct",
"correct_list",
"=",
"[",
"]",
"cat_counts",
"=",
"df_conf",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
"all_cols",
"=",
"df_conf",
".",
"columns",
".",
"tolist",
"(",
")",
"for",
"inst_cat",
"in",
"all_cols",
":",
"inst_correct",
"=",
"df_conf",
"[",
"inst_cat",
"]",
".",
"loc",
"[",
"inst_cat",
"]",
"/",
"cat_counts",
"[",
"inst_cat",
"]",
"correct_list",
".",
"append",
"(",
"inst_correct",
")",
"ser_correct",
"=",
"pd",
".",
"Series",
"(",
"data",
"=",
"correct_list",
",",
"index",
"=",
"all_cols",
")",
"populations",
"=",
"{",
"}",
"populations",
"[",
"'true'",
"]",
"=",
"true_count",
"populations",
"[",
"'pred'",
"]",
"=",
"pred_count",
"return",
"df_conf",
",",
"populations",
",",
"ser_correct",
",",
"fraction_correct"
] | Generate confusion matrix from y_info | [
"Generate",
"confusion",
"matrix",
"from",
"y_info"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/__init__.py#L793-L825 |
3,607 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/load_data.py | load_data_to_net | def load_data_to_net(net, inst_net):
''' load data into nodes and mat, also convert mat to numpy array'''
net.dat['nodes'] = inst_net['nodes']
net.dat['mat'] = inst_net['mat']
data_formats.mat_to_numpy_arr(net) | python | def load_data_to_net(net, inst_net):
''' load data into nodes and mat, also convert mat to numpy array'''
net.dat['nodes'] = inst_net['nodes']
net.dat['mat'] = inst_net['mat']
data_formats.mat_to_numpy_arr(net) | [
"def",
"load_data_to_net",
"(",
"net",
",",
"inst_net",
")",
":",
"net",
".",
"dat",
"[",
"'nodes'",
"]",
"=",
"inst_net",
"[",
"'nodes'",
"]",
"net",
".",
"dat",
"[",
"'mat'",
"]",
"=",
"inst_net",
"[",
"'mat'",
"]",
"data_formats",
".",
"mat_to_numpy_arr",
"(",
"net",
")"
] | load data into nodes and mat, also convert mat to numpy array | [
"load",
"data",
"into",
"nodes",
"and",
"mat",
"also",
"convert",
"mat",
"to",
"numpy",
"array"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/load_data.py#L96-L100 |
3,608 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/export_data.py | export_net_json | def export_net_json(net, net_type, indent='no-indent'):
''' export json string of dat '''
import json
from copy import deepcopy
if net_type == 'dat':
exp_dict = deepcopy(net.dat)
if type(exp_dict['mat']) is not list:
exp_dict['mat'] = exp_dict['mat'].tolist()
if 'mat_orig' in exp_dict:
exp_dict['mat_orig'] = exp_dict['mat_orig'].tolist()
elif net_type == 'viz':
exp_dict = net.viz
elif net_type == 'sim_row':
exp_dict = net.sim['row']
elif net_type == 'sim_col':
exp_dict = net.sim['col']
# make json
if indent == 'indent':
exp_json = json.dumps(exp_dict, indent=2)
else:
exp_json = json.dumps(exp_dict)
return exp_json | python | def export_net_json(net, net_type, indent='no-indent'):
''' export json string of dat '''
import json
from copy import deepcopy
if net_type == 'dat':
exp_dict = deepcopy(net.dat)
if type(exp_dict['mat']) is not list:
exp_dict['mat'] = exp_dict['mat'].tolist()
if 'mat_orig' in exp_dict:
exp_dict['mat_orig'] = exp_dict['mat_orig'].tolist()
elif net_type == 'viz':
exp_dict = net.viz
elif net_type == 'sim_row':
exp_dict = net.sim['row']
elif net_type == 'sim_col':
exp_dict = net.sim['col']
# make json
if indent == 'indent':
exp_json = json.dumps(exp_dict, indent=2)
else:
exp_json = json.dumps(exp_dict)
return exp_json | [
"def",
"export_net_json",
"(",
"net",
",",
"net_type",
",",
"indent",
"=",
"'no-indent'",
")",
":",
"import",
"json",
"from",
"copy",
"import",
"deepcopy",
"if",
"net_type",
"==",
"'dat'",
":",
"exp_dict",
"=",
"deepcopy",
"(",
"net",
".",
"dat",
")",
"if",
"type",
"(",
"exp_dict",
"[",
"'mat'",
"]",
")",
"is",
"not",
"list",
":",
"exp_dict",
"[",
"'mat'",
"]",
"=",
"exp_dict",
"[",
"'mat'",
"]",
".",
"tolist",
"(",
")",
"if",
"'mat_orig'",
"in",
"exp_dict",
":",
"exp_dict",
"[",
"'mat_orig'",
"]",
"=",
"exp_dict",
"[",
"'mat_orig'",
"]",
".",
"tolist",
"(",
")",
"elif",
"net_type",
"==",
"'viz'",
":",
"exp_dict",
"=",
"net",
".",
"viz",
"elif",
"net_type",
"==",
"'sim_row'",
":",
"exp_dict",
"=",
"net",
".",
"sim",
"[",
"'row'",
"]",
"elif",
"net_type",
"==",
"'sim_col'",
":",
"exp_dict",
"=",
"net",
".",
"sim",
"[",
"'col'",
"]",
"# make json",
"if",
"indent",
"==",
"'indent'",
":",
"exp_json",
"=",
"json",
".",
"dumps",
"(",
"exp_dict",
",",
"indent",
"=",
"2",
")",
"else",
":",
"exp_json",
"=",
"json",
".",
"dumps",
"(",
"exp_dict",
")",
"return",
"exp_json"
] | export json string of dat | [
"export",
"json",
"string",
"of",
"dat"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/export_data.py#L1-L29 |
3,609 | ismms-himc/clustergrammer2 | setupbase.py | install_npm | def install_npm(path=None, build_dir=None, source_dir=None, build_cmd='build', force=False, npm=None):
"""Return a Command for managing an npm installation.
Note: The command is skipped if the `--skip-npm` flag is used.
Parameters
----------
path: str, optional
The base path of the node package. Defaults to the repo root.
build_dir: str, optional
The target build directory. If this and source_dir are given,
the JavaScript will only be build if necessary.
source_dir: str, optional
The source code directory.
build_cmd: str, optional
The npm command to build assets to the build_dir.
npm: str or list, optional.
The npm executable name, or a tuple of ['node', executable].
"""
class NPM(BaseCommand):
description = 'install package.json dependencies using npm'
def run(self):
if skip_npm:
log.info('Skipping npm-installation')
return
node_package = path or HERE
node_modules = pjoin(node_package, 'node_modules')
is_yarn = os.path.exists(pjoin(node_package, 'yarn.lock'))
npm_cmd = npm
if npm is None:
if is_yarn:
npm_cmd = ['yarn']
else:
npm_cmd = ['npm']
if not which(npm_cmd[0]):
log.error("`{0}` unavailable. If you're running this command "
"using sudo, make sure `{0}` is availble to sudo"
.format(npm_cmd[0]))
return
if force or is_stale(node_modules, pjoin(node_package, 'package.json')):
log.info('Installing build dependencies with npm. This may '
'take a while...')
run(npm_cmd + ['install'], cwd=node_package)
if build_dir and source_dir and not force:
should_build = is_stale(build_dir, source_dir)
else:
should_build = True
if should_build:
run(npm_cmd + ['run', build_cmd], cwd=node_package)
return NPM | python | def install_npm(path=None, build_dir=None, source_dir=None, build_cmd='build', force=False, npm=None):
class NPM(BaseCommand):
description = 'install package.json dependencies using npm'
def run(self):
if skip_npm:
log.info('Skipping npm-installation')
return
node_package = path or HERE
node_modules = pjoin(node_package, 'node_modules')
is_yarn = os.path.exists(pjoin(node_package, 'yarn.lock'))
npm_cmd = npm
if npm is None:
if is_yarn:
npm_cmd = ['yarn']
else:
npm_cmd = ['npm']
if not which(npm_cmd[0]):
log.error("`{0}` unavailable. If you're running this command "
"using sudo, make sure `{0}` is availble to sudo"
.format(npm_cmd[0]))
return
if force or is_stale(node_modules, pjoin(node_package, 'package.json')):
log.info('Installing build dependencies with npm. This may '
'take a while...')
run(npm_cmd + ['install'], cwd=node_package)
if build_dir and source_dir and not force:
should_build = is_stale(build_dir, source_dir)
else:
should_build = True
if should_build:
run(npm_cmd + ['run', build_cmd], cwd=node_package)
return NPM | [
"def",
"install_npm",
"(",
"path",
"=",
"None",
",",
"build_dir",
"=",
"None",
",",
"source_dir",
"=",
"None",
",",
"build_cmd",
"=",
"'build'",
",",
"force",
"=",
"False",
",",
"npm",
"=",
"None",
")",
":",
"class",
"NPM",
"(",
"BaseCommand",
")",
":",
"description",
"=",
"'install package.json dependencies using npm'",
"def",
"run",
"(",
"self",
")",
":",
"if",
"skip_npm",
":",
"log",
".",
"info",
"(",
"'Skipping npm-installation'",
")",
"return",
"node_package",
"=",
"path",
"or",
"HERE",
"node_modules",
"=",
"pjoin",
"(",
"node_package",
",",
"'node_modules'",
")",
"is_yarn",
"=",
"os",
".",
"path",
".",
"exists",
"(",
"pjoin",
"(",
"node_package",
",",
"'yarn.lock'",
")",
")",
"npm_cmd",
"=",
"npm",
"if",
"npm",
"is",
"None",
":",
"if",
"is_yarn",
":",
"npm_cmd",
"=",
"[",
"'yarn'",
"]",
"else",
":",
"npm_cmd",
"=",
"[",
"'npm'",
"]",
"if",
"not",
"which",
"(",
"npm_cmd",
"[",
"0",
"]",
")",
":",
"log",
".",
"error",
"(",
"\"`{0}` unavailable. If you're running this command \"",
"\"using sudo, make sure `{0}` is availble to sudo\"",
".",
"format",
"(",
"npm_cmd",
"[",
"0",
"]",
")",
")",
"return",
"if",
"force",
"or",
"is_stale",
"(",
"node_modules",
",",
"pjoin",
"(",
"node_package",
",",
"'package.json'",
")",
")",
":",
"log",
".",
"info",
"(",
"'Installing build dependencies with npm. This may '",
"'take a while...'",
")",
"run",
"(",
"npm_cmd",
"+",
"[",
"'install'",
"]",
",",
"cwd",
"=",
"node_package",
")",
"if",
"build_dir",
"and",
"source_dir",
"and",
"not",
"force",
":",
"should_build",
"=",
"is_stale",
"(",
"build_dir",
",",
"source_dir",
")",
"else",
":",
"should_build",
"=",
"True",
"if",
"should_build",
":",
"run",
"(",
"npm_cmd",
"+",
"[",
"'run'",
",",
"build_cmd",
"]",
",",
"cwd",
"=",
"node_package",
")",
"return",
"NPM"
] | Return a Command for managing an npm installation.
Note: The command is skipped if the `--skip-npm` flag is used.
Parameters
----------
path: str, optional
The base path of the node package. Defaults to the repo root.
build_dir: str, optional
The target build directory. If this and source_dir are given,
the JavaScript will only be build if necessary.
source_dir: str, optional
The source code directory.
build_cmd: str, optional
The npm command to build assets to the build_dir.
npm: str or list, optional.
The npm executable name, or a tuple of ['node', executable]. | [
"Return",
"a",
"Command",
"for",
"managing",
"an",
"npm",
"installation",
"."
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L321-L377 |
3,610 | ismms-himc/clustergrammer2 | setupbase.py | _glob_pjoin | def _glob_pjoin(*parts):
"""Join paths for glob processing"""
if parts[0] in ('.', ''):
parts = parts[1:]
return pjoin(*parts).replace(os.sep, '/') | python | def _glob_pjoin(*parts):
if parts[0] in ('.', ''):
parts = parts[1:]
return pjoin(*parts).replace(os.sep, '/') | [
"def",
"_glob_pjoin",
"(",
"*",
"parts",
")",
":",
"if",
"parts",
"[",
"0",
"]",
"in",
"(",
"'.'",
",",
"''",
")",
":",
"parts",
"=",
"parts",
"[",
"1",
":",
"]",
"return",
"pjoin",
"(",
"*",
"parts",
")",
".",
"replace",
"(",
"os",
".",
"sep",
",",
"'/'",
")"
] | Join paths for glob processing | [
"Join",
"paths",
"for",
"glob",
"processing"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L507-L511 |
3,611 | ismms-himc/clustergrammer2 | setupbase.py | _get_data_files | def _get_data_files(data_specs, existing, top=HERE):
"""Expand data file specs into valid data files metadata.
Parameters
----------
data_specs: list of tuples
See [create_cmdclass] for description.
existing: list of tuples
The existing distrubution data_files metadata.
Returns
-------
A valid list of data_files items.
"""
# Extract the existing data files into a staging object.
file_data = defaultdict(list)
for (path, files) in existing or []:
file_data[path] = files
# Extract the files and assign them to the proper data
# files path.
for (path, dname, pattern) in data_specs or []:
if os.path.isabs(dname):
dname = os.path.relpath(dname, top)
dname = dname.replace(os.sep, '/')
offset = 0 if dname in ('.', '') else len(dname) + 1
files = _get_files(_glob_pjoin(dname, pattern), top=top)
for fname in files:
# Normalize the path.
root = os.path.dirname(fname)
full_path = _glob_pjoin(path, root[offset:])
print(dname, root, full_path, offset)
if full_path.endswith('/'):
full_path = full_path[:-1]
file_data[full_path].append(fname)
# Construct the data files spec.
data_files = []
for (path, files) in file_data.items():
data_files.append((path, files))
return data_files | python | def _get_data_files(data_specs, existing, top=HERE):
# Extract the existing data files into a staging object.
file_data = defaultdict(list)
for (path, files) in existing or []:
file_data[path] = files
# Extract the files and assign them to the proper data
# files path.
for (path, dname, pattern) in data_specs or []:
if os.path.isabs(dname):
dname = os.path.relpath(dname, top)
dname = dname.replace(os.sep, '/')
offset = 0 if dname in ('.', '') else len(dname) + 1
files = _get_files(_glob_pjoin(dname, pattern), top=top)
for fname in files:
# Normalize the path.
root = os.path.dirname(fname)
full_path = _glob_pjoin(path, root[offset:])
print(dname, root, full_path, offset)
if full_path.endswith('/'):
full_path = full_path[:-1]
file_data[full_path].append(fname)
# Construct the data files spec.
data_files = []
for (path, files) in file_data.items():
data_files.append((path, files))
return data_files | [
"def",
"_get_data_files",
"(",
"data_specs",
",",
"existing",
",",
"top",
"=",
"HERE",
")",
":",
"# Extract the existing data files into a staging object.",
"file_data",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"(",
"path",
",",
"files",
")",
"in",
"existing",
"or",
"[",
"]",
":",
"file_data",
"[",
"path",
"]",
"=",
"files",
"# Extract the files and assign them to the proper data",
"# files path.",
"for",
"(",
"path",
",",
"dname",
",",
"pattern",
")",
"in",
"data_specs",
"or",
"[",
"]",
":",
"if",
"os",
".",
"path",
".",
"isabs",
"(",
"dname",
")",
":",
"dname",
"=",
"os",
".",
"path",
".",
"relpath",
"(",
"dname",
",",
"top",
")",
"dname",
"=",
"dname",
".",
"replace",
"(",
"os",
".",
"sep",
",",
"'/'",
")",
"offset",
"=",
"0",
"if",
"dname",
"in",
"(",
"'.'",
",",
"''",
")",
"else",
"len",
"(",
"dname",
")",
"+",
"1",
"files",
"=",
"_get_files",
"(",
"_glob_pjoin",
"(",
"dname",
",",
"pattern",
")",
",",
"top",
"=",
"top",
")",
"for",
"fname",
"in",
"files",
":",
"# Normalize the path.",
"root",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"fname",
")",
"full_path",
"=",
"_glob_pjoin",
"(",
"path",
",",
"root",
"[",
"offset",
":",
"]",
")",
"print",
"(",
"dname",
",",
"root",
",",
"full_path",
",",
"offset",
")",
"if",
"full_path",
".",
"endswith",
"(",
"'/'",
")",
":",
"full_path",
"=",
"full_path",
"[",
":",
"-",
"1",
"]",
"file_data",
"[",
"full_path",
"]",
".",
"append",
"(",
"fname",
")",
"# Construct the data files spec.",
"data_files",
"=",
"[",
"]",
"for",
"(",
"path",
",",
"files",
")",
"in",
"file_data",
".",
"items",
"(",
")",
":",
"data_files",
".",
"append",
"(",
"(",
"path",
",",
"files",
")",
")",
"return",
"data_files"
] | Expand data file specs into valid data files metadata.
Parameters
----------
data_specs: list of tuples
See [create_cmdclass] for description.
existing: list of tuples
The existing distrubution data_files metadata.
Returns
-------
A valid list of data_files items. | [
"Expand",
"data",
"file",
"specs",
"into",
"valid",
"data",
"files",
"metadata",
"."
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L514-L554 |
3,612 | ismms-himc/clustergrammer2 | setupbase.py | _get_files | def _get_files(file_patterns, top=HERE):
"""Expand file patterns to a list of paths.
Parameters
-----------
file_patterns: list or str
A list of glob patterns for the data file locations.
The globs can be recursive if they include a `**`.
They should be relative paths from the top directory or
absolute paths.
top: str
the directory to consider for data files
Note:
Files in `node_modules` are ignored.
"""
if not isinstance(file_patterns, (list, tuple)):
file_patterns = [file_patterns]
for i, p in enumerate(file_patterns):
if os.path.isabs(p):
file_patterns[i] = os.path.relpath(p, top)
matchers = [_compile_pattern(p) for p in file_patterns]
files = set()
for root, dirnames, filenames in os.walk(top):
# Don't recurse into node_modules
if 'node_modules' in dirnames:
dirnames.remove('node_modules')
for m in matchers:
for filename in filenames:
fn = os.path.relpath(_glob_pjoin(root, filename), top)
fn = fn.replace(os.sep, '/')
if m(fn):
files.add(fn.replace(os.sep, '/'))
return list(files) | python | def _get_files(file_patterns, top=HERE):
if not isinstance(file_patterns, (list, tuple)):
file_patterns = [file_patterns]
for i, p in enumerate(file_patterns):
if os.path.isabs(p):
file_patterns[i] = os.path.relpath(p, top)
matchers = [_compile_pattern(p) for p in file_patterns]
files = set()
for root, dirnames, filenames in os.walk(top):
# Don't recurse into node_modules
if 'node_modules' in dirnames:
dirnames.remove('node_modules')
for m in matchers:
for filename in filenames:
fn = os.path.relpath(_glob_pjoin(root, filename), top)
fn = fn.replace(os.sep, '/')
if m(fn):
files.add(fn.replace(os.sep, '/'))
return list(files) | [
"def",
"_get_files",
"(",
"file_patterns",
",",
"top",
"=",
"HERE",
")",
":",
"if",
"not",
"isinstance",
"(",
"file_patterns",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"file_patterns",
"=",
"[",
"file_patterns",
"]",
"for",
"i",
",",
"p",
"in",
"enumerate",
"(",
"file_patterns",
")",
":",
"if",
"os",
".",
"path",
".",
"isabs",
"(",
"p",
")",
":",
"file_patterns",
"[",
"i",
"]",
"=",
"os",
".",
"path",
".",
"relpath",
"(",
"p",
",",
"top",
")",
"matchers",
"=",
"[",
"_compile_pattern",
"(",
"p",
")",
"for",
"p",
"in",
"file_patterns",
"]",
"files",
"=",
"set",
"(",
")",
"for",
"root",
",",
"dirnames",
",",
"filenames",
"in",
"os",
".",
"walk",
"(",
"top",
")",
":",
"# Don't recurse into node_modules",
"if",
"'node_modules'",
"in",
"dirnames",
":",
"dirnames",
".",
"remove",
"(",
"'node_modules'",
")",
"for",
"m",
"in",
"matchers",
":",
"for",
"filename",
"in",
"filenames",
":",
"fn",
"=",
"os",
".",
"path",
".",
"relpath",
"(",
"_glob_pjoin",
"(",
"root",
",",
"filename",
")",
",",
"top",
")",
"fn",
"=",
"fn",
".",
"replace",
"(",
"os",
".",
"sep",
",",
"'/'",
")",
"if",
"m",
"(",
"fn",
")",
":",
"files",
".",
"add",
"(",
"fn",
".",
"replace",
"(",
"os",
".",
"sep",
",",
"'/'",
")",
")",
"return",
"list",
"(",
"files",
")"
] | Expand file patterns to a list of paths.
Parameters
-----------
file_patterns: list or str
A list of glob patterns for the data file locations.
The globs can be recursive if they include a `**`.
They should be relative paths from the top directory or
absolute paths.
top: str
the directory to consider for data files
Note:
Files in `node_modules` are ignored. | [
"Expand",
"file",
"patterns",
"to",
"a",
"list",
"of",
"paths",
"."
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L557-L595 |
3,613 | ismms-himc/clustergrammer2 | setupbase.py | _get_package_data | def _get_package_data(root, file_patterns=None):
"""Expand file patterns to a list of `package_data` paths.
Parameters
-----------
root: str
The relative path to the package root from `HERE`.
file_patterns: list or str, optional
A list of glob patterns for the data file locations.
The globs can be recursive if they include a `**`.
They should be relative paths from the root or
absolute paths. If not given, all files will be used.
Note:
Files in `node_modules` are ignored.
"""
if file_patterns is None:
file_patterns = ['*']
return _get_files(file_patterns, _glob_pjoin(HERE, root)) | python | def _get_package_data(root, file_patterns=None):
if file_patterns is None:
file_patterns = ['*']
return _get_files(file_patterns, _glob_pjoin(HERE, root)) | [
"def",
"_get_package_data",
"(",
"root",
",",
"file_patterns",
"=",
"None",
")",
":",
"if",
"file_patterns",
"is",
"None",
":",
"file_patterns",
"=",
"[",
"'*'",
"]",
"return",
"_get_files",
"(",
"file_patterns",
",",
"_glob_pjoin",
"(",
"HERE",
",",
"root",
")",
")"
] | Expand file patterns to a list of `package_data` paths.
Parameters
-----------
root: str
The relative path to the package root from `HERE`.
file_patterns: list or str, optional
A list of glob patterns for the data file locations.
The globs can be recursive if they include a `**`.
They should be relative paths from the root or
absolute paths. If not given, all files will be used.
Note:
Files in `node_modules` are ignored. | [
"Expand",
"file",
"patterns",
"to",
"a",
"list",
"of",
"package_data",
"paths",
"."
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/setupbase.py#L598-L616 |
3,614 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/run_filter.py | df_filter_row_sum | def df_filter_row_sum(df, threshold, take_abs=True):
''' filter rows in matrix at some threshold
and remove columns that have a sum below this threshold '''
from copy import deepcopy
from .__init__ import Network
net = Network()
if take_abs is True:
df_copy = deepcopy(df['mat'].abs())
else:
df_copy = deepcopy(df['mat'])
ini_rows = df_copy.index.values.tolist()
df_copy = df_copy.transpose()
tmp_sum = df_copy.sum(axis=0)
tmp_sum = tmp_sum.abs()
tmp_sum.sort_values(inplace=True, ascending=False)
tmp_sum = tmp_sum[tmp_sum > threshold]
keep_rows = sorted(tmp_sum.index.values.tolist())
if len(keep_rows) < len(ini_rows):
df['mat'] = grab_df_subset(df['mat'], keep_rows=keep_rows)
if 'mat_up' in df:
df['mat_up'] = grab_df_subset(df['mat_up'], keep_rows=keep_rows)
df['mat_dn'] = grab_df_subset(df['mat_dn'], keep_rows=keep_rows)
if 'mat_orig' in df:
df['mat_orig'] = grab_df_subset(df['mat_orig'], keep_rows=keep_rows)
return df | python | def df_filter_row_sum(df, threshold, take_abs=True):
''' filter rows in matrix at some threshold
and remove columns that have a sum below this threshold '''
from copy import deepcopy
from .__init__ import Network
net = Network()
if take_abs is True:
df_copy = deepcopy(df['mat'].abs())
else:
df_copy = deepcopy(df['mat'])
ini_rows = df_copy.index.values.tolist()
df_copy = df_copy.transpose()
tmp_sum = df_copy.sum(axis=0)
tmp_sum = tmp_sum.abs()
tmp_sum.sort_values(inplace=True, ascending=False)
tmp_sum = tmp_sum[tmp_sum > threshold]
keep_rows = sorted(tmp_sum.index.values.tolist())
if len(keep_rows) < len(ini_rows):
df['mat'] = grab_df_subset(df['mat'], keep_rows=keep_rows)
if 'mat_up' in df:
df['mat_up'] = grab_df_subset(df['mat_up'], keep_rows=keep_rows)
df['mat_dn'] = grab_df_subset(df['mat_dn'], keep_rows=keep_rows)
if 'mat_orig' in df:
df['mat_orig'] = grab_df_subset(df['mat_orig'], keep_rows=keep_rows)
return df | [
"def",
"df_filter_row_sum",
"(",
"df",
",",
"threshold",
",",
"take_abs",
"=",
"True",
")",
":",
"from",
"copy",
"import",
"deepcopy",
"from",
".",
"__init__",
"import",
"Network",
"net",
"=",
"Network",
"(",
")",
"if",
"take_abs",
"is",
"True",
":",
"df_copy",
"=",
"deepcopy",
"(",
"df",
"[",
"'mat'",
"]",
".",
"abs",
"(",
")",
")",
"else",
":",
"df_copy",
"=",
"deepcopy",
"(",
"df",
"[",
"'mat'",
"]",
")",
"ini_rows",
"=",
"df_copy",
".",
"index",
".",
"values",
".",
"tolist",
"(",
")",
"df_copy",
"=",
"df_copy",
".",
"transpose",
"(",
")",
"tmp_sum",
"=",
"df_copy",
".",
"sum",
"(",
"axis",
"=",
"0",
")",
"tmp_sum",
"=",
"tmp_sum",
".",
"abs",
"(",
")",
"tmp_sum",
".",
"sort_values",
"(",
"inplace",
"=",
"True",
",",
"ascending",
"=",
"False",
")",
"tmp_sum",
"=",
"tmp_sum",
"[",
"tmp_sum",
">",
"threshold",
"]",
"keep_rows",
"=",
"sorted",
"(",
"tmp_sum",
".",
"index",
".",
"values",
".",
"tolist",
"(",
")",
")",
"if",
"len",
"(",
"keep_rows",
")",
"<",
"len",
"(",
"ini_rows",
")",
":",
"df",
"[",
"'mat'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat'",
"]",
",",
"keep_rows",
"=",
"keep_rows",
")",
"if",
"'mat_up'",
"in",
"df",
":",
"df",
"[",
"'mat_up'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_up'",
"]",
",",
"keep_rows",
"=",
"keep_rows",
")",
"df",
"[",
"'mat_dn'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_dn'",
"]",
",",
"keep_rows",
"=",
"keep_rows",
")",
"if",
"'mat_orig'",
"in",
"df",
":",
"df",
"[",
"'mat_orig'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_orig'",
"]",
",",
"keep_rows",
"=",
"keep_rows",
")",
"return",
"df"
] | filter rows in matrix at some threshold
and remove columns that have a sum below this threshold | [
"filter",
"rows",
"in",
"matrix",
"at",
"some",
"threshold",
"and",
"remove",
"columns",
"that",
"have",
"a",
"sum",
"below",
"this",
"threshold"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/run_filter.py#L1-L33 |
3,615 | ismms-himc/clustergrammer2 | clustergrammer2/clustergrammer_fun/run_filter.py | df_filter_col_sum | def df_filter_col_sum(df, threshold, take_abs=True):
''' filter columns in matrix at some threshold
and remove rows that have all zero values '''
from copy import deepcopy
from .__init__ import Network
net = Network()
if take_abs is True:
df_copy = deepcopy(df['mat'].abs())
else:
df_copy = deepcopy(df['mat'])
df_copy = df_copy.transpose()
df_copy = df_copy[df_copy.sum(axis=1) > threshold]
df_copy = df_copy.transpose()
df_copy = df_copy[df_copy.sum(axis=1) > 0]
if take_abs is True:
inst_rows = df_copy.index.tolist()
inst_cols = df_copy.columns.tolist()
df['mat'] = grab_df_subset(df['mat'], inst_rows, inst_cols)
if 'mat_up' in df:
df['mat_up'] = grab_df_subset(df['mat_up'], inst_rows, inst_cols)
df['mat_dn'] = grab_df_subset(df['mat_dn'], inst_rows, inst_cols)
if 'mat_orig' in df:
df['mat_orig'] = grab_df_subset(df['mat_orig'], inst_rows, inst_cols)
else:
df['mat'] = df_copy
return df | python | def df_filter_col_sum(df, threshold, take_abs=True):
''' filter columns in matrix at some threshold
and remove rows that have all zero values '''
from copy import deepcopy
from .__init__ import Network
net = Network()
if take_abs is True:
df_copy = deepcopy(df['mat'].abs())
else:
df_copy = deepcopy(df['mat'])
df_copy = df_copy.transpose()
df_copy = df_copy[df_copy.sum(axis=1) > threshold]
df_copy = df_copy.transpose()
df_copy = df_copy[df_copy.sum(axis=1) > 0]
if take_abs is True:
inst_rows = df_copy.index.tolist()
inst_cols = df_copy.columns.tolist()
df['mat'] = grab_df_subset(df['mat'], inst_rows, inst_cols)
if 'mat_up' in df:
df['mat_up'] = grab_df_subset(df['mat_up'], inst_rows, inst_cols)
df['mat_dn'] = grab_df_subset(df['mat_dn'], inst_rows, inst_cols)
if 'mat_orig' in df:
df['mat_orig'] = grab_df_subset(df['mat_orig'], inst_rows, inst_cols)
else:
df['mat'] = df_copy
return df | [
"def",
"df_filter_col_sum",
"(",
"df",
",",
"threshold",
",",
"take_abs",
"=",
"True",
")",
":",
"from",
"copy",
"import",
"deepcopy",
"from",
".",
"__init__",
"import",
"Network",
"net",
"=",
"Network",
"(",
")",
"if",
"take_abs",
"is",
"True",
":",
"df_copy",
"=",
"deepcopy",
"(",
"df",
"[",
"'mat'",
"]",
".",
"abs",
"(",
")",
")",
"else",
":",
"df_copy",
"=",
"deepcopy",
"(",
"df",
"[",
"'mat'",
"]",
")",
"df_copy",
"=",
"df_copy",
".",
"transpose",
"(",
")",
"df_copy",
"=",
"df_copy",
"[",
"df_copy",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
">",
"threshold",
"]",
"df_copy",
"=",
"df_copy",
".",
"transpose",
"(",
")",
"df_copy",
"=",
"df_copy",
"[",
"df_copy",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
">",
"0",
"]",
"if",
"take_abs",
"is",
"True",
":",
"inst_rows",
"=",
"df_copy",
".",
"index",
".",
"tolist",
"(",
")",
"inst_cols",
"=",
"df_copy",
".",
"columns",
".",
"tolist",
"(",
")",
"df",
"[",
"'mat'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat'",
"]",
",",
"inst_rows",
",",
"inst_cols",
")",
"if",
"'mat_up'",
"in",
"df",
":",
"df",
"[",
"'mat_up'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_up'",
"]",
",",
"inst_rows",
",",
"inst_cols",
")",
"df",
"[",
"'mat_dn'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_dn'",
"]",
",",
"inst_rows",
",",
"inst_cols",
")",
"if",
"'mat_orig'",
"in",
"df",
":",
"df",
"[",
"'mat_orig'",
"]",
"=",
"grab_df_subset",
"(",
"df",
"[",
"'mat_orig'",
"]",
",",
"inst_rows",
",",
"inst_cols",
")",
"else",
":",
"df",
"[",
"'mat'",
"]",
"=",
"df_copy",
"return",
"df"
] | filter columns in matrix at some threshold
and remove rows that have all zero values | [
"filter",
"columns",
"in",
"matrix",
"at",
"some",
"threshold",
"and",
"remove",
"rows",
"that",
"have",
"all",
"zero",
"values"
] | 5acea9bff7eda546cf0647b9e3647f631eb6f5f5 | https://github.com/ismms-himc/clustergrammer2/blob/5acea9bff7eda546cf0647b9e3647f631eb6f5f5/clustergrammer2/clustergrammer_fun/run_filter.py#L35-L68 |
3,616 | vstinner/bytecode | bytecode/flags.py | infer_flags | def infer_flags(bytecode, is_async=False):
"""Infer the proper flags for a bytecode based on the instructions.
"""
flags = CompilerFlags(0)
if not isinstance(bytecode, (_bytecode.Bytecode,
_bytecode.ConcreteBytecode,
_bytecode.ControlFlowGraph)):
msg = ('Expected a Bytecode, ConcreteBytecode or ControlFlowGraph '
'instance not %s')
raise ValueError(msg % bytecode)
instructions = (bytecode.get_instructions()
if isinstance(bytecode, _bytecode.ControlFlowGraph) else
bytecode)
instr_names = {i.name for i in instructions
if not isinstance(i, (_bytecode.SetLineno,
_bytecode.Label))}
if not (instr_names & {'STORE_NAME', 'LOAD_NAME', 'DELETE_NAME'}):
flags |= CompilerFlags.OPTIMIZED
flags |= bytecode.flags & (CompilerFlags.NEWLOCALS |
CompilerFlags.VARARGS |
CompilerFlags.VARKEYWORDS |
CompilerFlags.NESTED)
if instr_names & {'YIELD_VALUE', 'YIELD_FROM'}:
if not is_async and not bytecode.flags & CompilerFlags.ASYNC_GENERATOR:
flags |= CompilerFlags.GENERATOR
else:
flags |= CompilerFlags.ASYNC_GENERATOR
if not (instr_names & {'LOAD_CLOSURE', 'LOAD_DEREF', 'STORE_DEREF',
'DELETE_DEREF', 'LOAD_CLASSDEREF'}):
flags |= CompilerFlags.NOFREE
if (not (bytecode.flags & CompilerFlags.ITERABLE_COROUTINE or
flags & CompilerFlags.ASYNC_GENERATOR) and
(instr_names & {'GET_AWAITABLE', 'GET_AITER', 'GET_ANEXT',
'BEFORE_ASYNC_WITH', 'SETUP_ASYNC_WITH'} or
bytecode.flags & CompilerFlags.COROUTINE)):
flags |= CompilerFlags.COROUTINE
flags |= bytecode.flags & CompilerFlags.ITERABLE_COROUTINE
flags |= bytecode.flags & CompilerFlags.FUTURE_GENERATOR_STOP
if ([bool(flags & getattr(CompilerFlags, k))
for k in ('COROUTINE', 'ITERABLE_COROUTINE', 'GENERATOR',
'ASYNC_GENERATOR')].count(True) > 1):
raise ValueError("Code should not have more than one of the "
"following flag set : generator, coroutine, "
"iterable coroutine and async generator, got:"
"%s" % flags)
return flags | python | def infer_flags(bytecode, is_async=False):
flags = CompilerFlags(0)
if not isinstance(bytecode, (_bytecode.Bytecode,
_bytecode.ConcreteBytecode,
_bytecode.ControlFlowGraph)):
msg = ('Expected a Bytecode, ConcreteBytecode or ControlFlowGraph '
'instance not %s')
raise ValueError(msg % bytecode)
instructions = (bytecode.get_instructions()
if isinstance(bytecode, _bytecode.ControlFlowGraph) else
bytecode)
instr_names = {i.name for i in instructions
if not isinstance(i, (_bytecode.SetLineno,
_bytecode.Label))}
if not (instr_names & {'STORE_NAME', 'LOAD_NAME', 'DELETE_NAME'}):
flags |= CompilerFlags.OPTIMIZED
flags |= bytecode.flags & (CompilerFlags.NEWLOCALS |
CompilerFlags.VARARGS |
CompilerFlags.VARKEYWORDS |
CompilerFlags.NESTED)
if instr_names & {'YIELD_VALUE', 'YIELD_FROM'}:
if not is_async and not bytecode.flags & CompilerFlags.ASYNC_GENERATOR:
flags |= CompilerFlags.GENERATOR
else:
flags |= CompilerFlags.ASYNC_GENERATOR
if not (instr_names & {'LOAD_CLOSURE', 'LOAD_DEREF', 'STORE_DEREF',
'DELETE_DEREF', 'LOAD_CLASSDEREF'}):
flags |= CompilerFlags.NOFREE
if (not (bytecode.flags & CompilerFlags.ITERABLE_COROUTINE or
flags & CompilerFlags.ASYNC_GENERATOR) and
(instr_names & {'GET_AWAITABLE', 'GET_AITER', 'GET_ANEXT',
'BEFORE_ASYNC_WITH', 'SETUP_ASYNC_WITH'} or
bytecode.flags & CompilerFlags.COROUTINE)):
flags |= CompilerFlags.COROUTINE
flags |= bytecode.flags & CompilerFlags.ITERABLE_COROUTINE
flags |= bytecode.flags & CompilerFlags.FUTURE_GENERATOR_STOP
if ([bool(flags & getattr(CompilerFlags, k))
for k in ('COROUTINE', 'ITERABLE_COROUTINE', 'GENERATOR',
'ASYNC_GENERATOR')].count(True) > 1):
raise ValueError("Code should not have more than one of the "
"following flag set : generator, coroutine, "
"iterable coroutine and async generator, got:"
"%s" % flags)
return flags | [
"def",
"infer_flags",
"(",
"bytecode",
",",
"is_async",
"=",
"False",
")",
":",
"flags",
"=",
"CompilerFlags",
"(",
"0",
")",
"if",
"not",
"isinstance",
"(",
"bytecode",
",",
"(",
"_bytecode",
".",
"Bytecode",
",",
"_bytecode",
".",
"ConcreteBytecode",
",",
"_bytecode",
".",
"ControlFlowGraph",
")",
")",
":",
"msg",
"=",
"(",
"'Expected a Bytecode, ConcreteBytecode or ControlFlowGraph '",
"'instance not %s'",
")",
"raise",
"ValueError",
"(",
"msg",
"%",
"bytecode",
")",
"instructions",
"=",
"(",
"bytecode",
".",
"get_instructions",
"(",
")",
"if",
"isinstance",
"(",
"bytecode",
",",
"_bytecode",
".",
"ControlFlowGraph",
")",
"else",
"bytecode",
")",
"instr_names",
"=",
"{",
"i",
".",
"name",
"for",
"i",
"in",
"instructions",
"if",
"not",
"isinstance",
"(",
"i",
",",
"(",
"_bytecode",
".",
"SetLineno",
",",
"_bytecode",
".",
"Label",
")",
")",
"}",
"if",
"not",
"(",
"instr_names",
"&",
"{",
"'STORE_NAME'",
",",
"'LOAD_NAME'",
",",
"'DELETE_NAME'",
"}",
")",
":",
"flags",
"|=",
"CompilerFlags",
".",
"OPTIMIZED",
"flags",
"|=",
"bytecode",
".",
"flags",
"&",
"(",
"CompilerFlags",
".",
"NEWLOCALS",
"|",
"CompilerFlags",
".",
"VARARGS",
"|",
"CompilerFlags",
".",
"VARKEYWORDS",
"|",
"CompilerFlags",
".",
"NESTED",
")",
"if",
"instr_names",
"&",
"{",
"'YIELD_VALUE'",
",",
"'YIELD_FROM'",
"}",
":",
"if",
"not",
"is_async",
"and",
"not",
"bytecode",
".",
"flags",
"&",
"CompilerFlags",
".",
"ASYNC_GENERATOR",
":",
"flags",
"|=",
"CompilerFlags",
".",
"GENERATOR",
"else",
":",
"flags",
"|=",
"CompilerFlags",
".",
"ASYNC_GENERATOR",
"if",
"not",
"(",
"instr_names",
"&",
"{",
"'LOAD_CLOSURE'",
",",
"'LOAD_DEREF'",
",",
"'STORE_DEREF'",
",",
"'DELETE_DEREF'",
",",
"'LOAD_CLASSDEREF'",
"}",
")",
":",
"flags",
"|=",
"CompilerFlags",
".",
"NOFREE",
"if",
"(",
"not",
"(",
"bytecode",
".",
"flags",
"&",
"CompilerFlags",
".",
"ITERABLE_COROUTINE",
"or",
"flags",
"&",
"CompilerFlags",
".",
"ASYNC_GENERATOR",
")",
"and",
"(",
"instr_names",
"&",
"{",
"'GET_AWAITABLE'",
",",
"'GET_AITER'",
",",
"'GET_ANEXT'",
",",
"'BEFORE_ASYNC_WITH'",
",",
"'SETUP_ASYNC_WITH'",
"}",
"or",
"bytecode",
".",
"flags",
"&",
"CompilerFlags",
".",
"COROUTINE",
")",
")",
":",
"flags",
"|=",
"CompilerFlags",
".",
"COROUTINE",
"flags",
"|=",
"bytecode",
".",
"flags",
"&",
"CompilerFlags",
".",
"ITERABLE_COROUTINE",
"flags",
"|=",
"bytecode",
".",
"flags",
"&",
"CompilerFlags",
".",
"FUTURE_GENERATOR_STOP",
"if",
"(",
"[",
"bool",
"(",
"flags",
"&",
"getattr",
"(",
"CompilerFlags",
",",
"k",
")",
")",
"for",
"k",
"in",
"(",
"'COROUTINE'",
",",
"'ITERABLE_COROUTINE'",
",",
"'GENERATOR'",
",",
"'ASYNC_GENERATOR'",
")",
"]",
".",
"count",
"(",
"True",
")",
">",
"1",
")",
":",
"raise",
"ValueError",
"(",
"\"Code should not have more than one of the \"",
"\"following flag set : generator, coroutine, \"",
"\"iterable coroutine and async generator, got:\"",
"\"%s\"",
"%",
"flags",
")",
"return",
"flags"
] | Infer the proper flags for a bytecode based on the instructions. | [
"Infer",
"the",
"proper",
"flags",
"for",
"a",
"bytecode",
"based",
"on",
"the",
"instructions",
"."
] | e2a27287a464a10557c89c7959f3c4c4ac3cb8bf | https://github.com/vstinner/bytecode/blob/e2a27287a464a10557c89c7959f3c4c4ac3cb8bf/bytecode/flags.py#L33-L89 |
3,617 | vstinner/bytecode | bytecode/cfg.py | ControlFlowGraph.to_bytecode | def to_bytecode(self):
"""Convert to Bytecode."""
used_blocks = set()
for block in self:
target_block = block.get_jump()
if target_block is not None:
used_blocks.add(id(target_block))
labels = {}
jumps = []
instructions = []
for block in self:
if id(block) in used_blocks:
new_label = Label()
labels[id(block)] = new_label
instructions.append(new_label)
for instr in block:
# don't copy SetLineno objects
if isinstance(instr, (Instr, ConcreteInstr)):
instr = instr.copy()
if isinstance(instr.arg, BasicBlock):
jumps.append(instr)
instructions.append(instr)
# Map to new labels
for instr in jumps:
instr.arg = labels[id(instr.arg)]
bytecode = _bytecode.Bytecode()
bytecode._copy_attr_from(self)
bytecode.argnames = list(self.argnames)
bytecode[:] = instructions
return bytecode | python | def to_bytecode(self):
used_blocks = set()
for block in self:
target_block = block.get_jump()
if target_block is not None:
used_blocks.add(id(target_block))
labels = {}
jumps = []
instructions = []
for block in self:
if id(block) in used_blocks:
new_label = Label()
labels[id(block)] = new_label
instructions.append(new_label)
for instr in block:
# don't copy SetLineno objects
if isinstance(instr, (Instr, ConcreteInstr)):
instr = instr.copy()
if isinstance(instr.arg, BasicBlock):
jumps.append(instr)
instructions.append(instr)
# Map to new labels
for instr in jumps:
instr.arg = labels[id(instr.arg)]
bytecode = _bytecode.Bytecode()
bytecode._copy_attr_from(self)
bytecode.argnames = list(self.argnames)
bytecode[:] = instructions
return bytecode | [
"def",
"to_bytecode",
"(",
"self",
")",
":",
"used_blocks",
"=",
"set",
"(",
")",
"for",
"block",
"in",
"self",
":",
"target_block",
"=",
"block",
".",
"get_jump",
"(",
")",
"if",
"target_block",
"is",
"not",
"None",
":",
"used_blocks",
".",
"add",
"(",
"id",
"(",
"target_block",
")",
")",
"labels",
"=",
"{",
"}",
"jumps",
"=",
"[",
"]",
"instructions",
"=",
"[",
"]",
"for",
"block",
"in",
"self",
":",
"if",
"id",
"(",
"block",
")",
"in",
"used_blocks",
":",
"new_label",
"=",
"Label",
"(",
")",
"labels",
"[",
"id",
"(",
"block",
")",
"]",
"=",
"new_label",
"instructions",
".",
"append",
"(",
"new_label",
")",
"for",
"instr",
"in",
"block",
":",
"# don't copy SetLineno objects",
"if",
"isinstance",
"(",
"instr",
",",
"(",
"Instr",
",",
"ConcreteInstr",
")",
")",
":",
"instr",
"=",
"instr",
".",
"copy",
"(",
")",
"if",
"isinstance",
"(",
"instr",
".",
"arg",
",",
"BasicBlock",
")",
":",
"jumps",
".",
"append",
"(",
"instr",
")",
"instructions",
".",
"append",
"(",
"instr",
")",
"# Map to new labels",
"for",
"instr",
"in",
"jumps",
":",
"instr",
".",
"arg",
"=",
"labels",
"[",
"id",
"(",
"instr",
".",
"arg",
")",
"]",
"bytecode",
"=",
"_bytecode",
".",
"Bytecode",
"(",
")",
"bytecode",
".",
"_copy_attr_from",
"(",
"self",
")",
"bytecode",
".",
"argnames",
"=",
"list",
"(",
"self",
".",
"argnames",
")",
"bytecode",
"[",
":",
"]",
"=",
"instructions",
"return",
"bytecode"
] | Convert to Bytecode. | [
"Convert",
"to",
"Bytecode",
"."
] | e2a27287a464a10557c89c7959f3c4c4ac3cb8bf | https://github.com/vstinner/bytecode/blob/e2a27287a464a10557c89c7959f3c4c4ac3cb8bf/bytecode/cfg.py#L279-L315 |
3,618 | vstinner/bytecode | bytecode/cfg.py | ControlFlowGraph.to_code | def to_code(self, stacksize=None):
"""Convert to code."""
if stacksize is None:
stacksize = self.compute_stacksize()
bc = self.to_bytecode()
return bc.to_code(stacksize=stacksize) | python | def to_code(self, stacksize=None):
if stacksize is None:
stacksize = self.compute_stacksize()
bc = self.to_bytecode()
return bc.to_code(stacksize=stacksize) | [
"def",
"to_code",
"(",
"self",
",",
"stacksize",
"=",
"None",
")",
":",
"if",
"stacksize",
"is",
"None",
":",
"stacksize",
"=",
"self",
".",
"compute_stacksize",
"(",
")",
"bc",
"=",
"self",
".",
"to_bytecode",
"(",
")",
"return",
"bc",
".",
"to_code",
"(",
"stacksize",
"=",
"stacksize",
")"
] | Convert to code. | [
"Convert",
"to",
"code",
"."
] | e2a27287a464a10557c89c7959f3c4c4ac3cb8bf | https://github.com/vstinner/bytecode/blob/e2a27287a464a10557c89c7959f3c4c4ac3cb8bf/bytecode/cfg.py#L317-L322 |
3,619 | vstinner/bytecode | bytecode/instr.py | Instr.set | def set(self, name, arg=UNSET):
"""Modify the instruction in-place.
Replace name and arg attributes. Don't modify lineno.
"""
self._set(name, arg, self._lineno) | python | def set(self, name, arg=UNSET):
self._set(name, arg, self._lineno) | [
"def",
"set",
"(",
"self",
",",
"name",
",",
"arg",
"=",
"UNSET",
")",
":",
"self",
".",
"_set",
"(",
"name",
",",
"arg",
",",
"self",
".",
"_lineno",
")"
] | Modify the instruction in-place.
Replace name and arg attributes. Don't modify lineno. | [
"Modify",
"the",
"instruction",
"in",
"-",
"place",
"."
] | e2a27287a464a10557c89c7959f3c4c4ac3cb8bf | https://github.com/vstinner/bytecode/blob/e2a27287a464a10557c89c7959f3c4c4ac3cb8bf/bytecode/instr.py#L248-L253 |
3,620 | riga/tfdeploy | tfdeploy.py | LinSpace | def LinSpace(start, stop, num):
"""
Linspace op.
"""
return np.linspace(start, stop, num=num, dtype=np.float32), | python | def LinSpace(start, stop, num):
return np.linspace(start, stop, num=num, dtype=np.float32), | [
"def",
"LinSpace",
"(",
"start",
",",
"stop",
",",
"num",
")",
":",
"return",
"np",
".",
"linspace",
"(",
"start",
",",
"stop",
",",
"num",
"=",
"num",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
","
] | Linspace op. | [
"Linspace",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1003-L1007 |
3,621 | riga/tfdeploy | tfdeploy.py | Range | def Range(start, limit, delta):
"""
Range op.
"""
return np.arange(start, limit, delta, dtype=np.int32), | python | def Range(start, limit, delta):
return np.arange(start, limit, delta, dtype=np.int32), | [
"def",
"Range",
"(",
"start",
",",
"limit",
",",
"delta",
")",
":",
"return",
"np",
".",
"arange",
"(",
"start",
",",
"limit",
",",
"delta",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
","
] | Range op. | [
"Range",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1011-L1015 |
3,622 | riga/tfdeploy | tfdeploy.py | RandomUniformInt | def RandomUniformInt(shape, minval, maxval, seed):
"""
Random uniform int op.
"""
if seed:
np.random.seed(seed)
return np.random.randint(minval, maxval, size=shape), | python | def RandomUniformInt(shape, minval, maxval, seed):
if seed:
np.random.seed(seed)
return np.random.randint(minval, maxval, size=shape), | [
"def",
"RandomUniformInt",
"(",
"shape",
",",
"minval",
",",
"maxval",
",",
"seed",
")",
":",
"if",
"seed",
":",
"np",
".",
"random",
".",
"seed",
"(",
"seed",
")",
"return",
"np",
".",
"random",
".",
"randint",
"(",
"minval",
",",
"maxval",
",",
"size",
"=",
"shape",
")",
","
] | Random uniform int op. | [
"Random",
"uniform",
"int",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1060-L1066 |
3,623 | riga/tfdeploy | tfdeploy.py | Rank | def Rank(a):
"""
Rank op.
"""
return np.array([len(a.shape)], dtype=np.int32), | python | def Rank(a):
return np.array([len(a.shape)], dtype=np.int32), | [
"def",
"Rank",
"(",
"a",
")",
":",
"return",
"np",
".",
"array",
"(",
"[",
"len",
"(",
"a",
".",
"shape",
")",
"]",
",",
"dtype",
"=",
"np",
".",
"int32",
")",
","
] | Rank op. | [
"Rank",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1114-L1118 |
3,624 | riga/tfdeploy | tfdeploy.py | Squeeze | def Squeeze(a, squeeze_dims):
"""
Squeeze op, i.e. removes singular axes.
"""
if not squeeze_dims:
squeeze_dims = list(range(len(a.shape)))
slices = [(0 if (dim == 1 and i in squeeze_dims) else slice(None)) \
for i, dim in enumerate(a.shape)]
return np.copy(a)[slices], | python | def Squeeze(a, squeeze_dims):
if not squeeze_dims:
squeeze_dims = list(range(len(a.shape)))
slices = [(0 if (dim == 1 and i in squeeze_dims) else slice(None)) \
for i, dim in enumerate(a.shape)]
return np.copy(a)[slices], | [
"def",
"Squeeze",
"(",
"a",
",",
"squeeze_dims",
")",
":",
"if",
"not",
"squeeze_dims",
":",
"squeeze_dims",
"=",
"list",
"(",
"range",
"(",
"len",
"(",
"a",
".",
"shape",
")",
")",
")",
"slices",
"=",
"[",
"(",
"0",
"if",
"(",
"dim",
"==",
"1",
"and",
"i",
"in",
"squeeze_dims",
")",
"else",
"slice",
"(",
"None",
")",
")",
"for",
"i",
",",
"dim",
"in",
"enumerate",
"(",
"a",
".",
"shape",
")",
"]",
"return",
"np",
".",
"copy",
"(",
"a",
")",
"[",
"slices",
"]",
","
] | Squeeze op, i.e. removes singular axes. | [
"Squeeze",
"op",
"i",
".",
"e",
".",
"removes",
"singular",
"axes",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1130-L1138 |
3,625 | riga/tfdeploy | tfdeploy.py | ExpandDims | def ExpandDims(a, dim):
"""
Expand dim op, i.e. add singular axis at dim.
"""
shape = list(a.shape)
if dim >= 0:
shape.insert(dim, 1)
else:
shape.insert(len(shape) + dim + 1, 1)
return np.copy(a).reshape(*shape), | python | def ExpandDims(a, dim):
shape = list(a.shape)
if dim >= 0:
shape.insert(dim, 1)
else:
shape.insert(len(shape) + dim + 1, 1)
return np.copy(a).reshape(*shape), | [
"def",
"ExpandDims",
"(",
"a",
",",
"dim",
")",
":",
"shape",
"=",
"list",
"(",
"a",
".",
"shape",
")",
"if",
"dim",
">=",
"0",
":",
"shape",
".",
"insert",
"(",
"dim",
",",
"1",
")",
"else",
":",
"shape",
".",
"insert",
"(",
"len",
"(",
"shape",
")",
"+",
"dim",
"+",
"1",
",",
"1",
")",
"return",
"np",
".",
"copy",
"(",
"a",
")",
".",
"reshape",
"(",
"*",
"shape",
")",
","
] | Expand dim op, i.e. add singular axis at dim. | [
"Expand",
"dim",
"op",
"i",
".",
"e",
".",
"add",
"singular",
"axis",
"at",
"dim",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1142-L1151 |
3,626 | riga/tfdeploy | tfdeploy.py | Slice | def Slice(a, begin, size):
"""
Slicing op.
"""
return np.copy(a)[[slice(*tpl) for tpl in zip(begin, begin+size)]], | python | def Slice(a, begin, size):
return np.copy(a)[[slice(*tpl) for tpl in zip(begin, begin+size)]], | [
"def",
"Slice",
"(",
"a",
",",
"begin",
",",
"size",
")",
":",
"return",
"np",
".",
"copy",
"(",
"a",
")",
"[",
"[",
"slice",
"(",
"*",
"tpl",
")",
"for",
"tpl",
"in",
"zip",
"(",
"begin",
",",
"begin",
"+",
"size",
")",
"]",
"]",
","
] | Slicing op. | [
"Slicing",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1159-L1163 |
3,627 | riga/tfdeploy | tfdeploy.py | Split | def Split(axis, a, n):
"""
Split op with n splits.
"""
return tuple(np.split(np.copy(a), n, axis=axis)) | python | def Split(axis, a, n):
return tuple(np.split(np.copy(a), n, axis=axis)) | [
"def",
"Split",
"(",
"axis",
",",
"a",
",",
"n",
")",
":",
"return",
"tuple",
"(",
"np",
".",
"split",
"(",
"np",
".",
"copy",
"(",
"a",
")",
",",
"n",
",",
"axis",
"=",
"axis",
")",
")"
] | Split op with n splits. | [
"Split",
"op",
"with",
"n",
"splits",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1167-L1171 |
3,628 | riga/tfdeploy | tfdeploy.py | SplitV | def SplitV(a, splits, axis):
"""
Split op with multiple split sizes.
"""
return tuple(np.split(np.copy(a), np.cumsum(splits), axis=axis)) | python | def SplitV(a, splits, axis):
return tuple(np.split(np.copy(a), np.cumsum(splits), axis=axis)) | [
"def",
"SplitV",
"(",
"a",
",",
"splits",
",",
"axis",
")",
":",
"return",
"tuple",
"(",
"np",
".",
"split",
"(",
"np",
".",
"copy",
"(",
"a",
")",
",",
"np",
".",
"cumsum",
"(",
"splits",
")",
",",
"axis",
"=",
"axis",
")",
")"
] | Split op with multiple split sizes. | [
"Split",
"op",
"with",
"multiple",
"split",
"sizes",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1175-L1179 |
3,629 | riga/tfdeploy | tfdeploy.py | ConcatV2 | def ConcatV2(inputs):
"""
Concat op.
"""
axis = inputs.pop()
return np.concatenate(inputs, axis=axis), | python | def ConcatV2(inputs):
axis = inputs.pop()
return np.concatenate(inputs, axis=axis), | [
"def",
"ConcatV2",
"(",
"inputs",
")",
":",
"axis",
"=",
"inputs",
".",
"pop",
"(",
")",
"return",
"np",
".",
"concatenate",
"(",
"inputs",
",",
"axis",
"=",
"axis",
")",
","
] | Concat op. | [
"Concat",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1199-L1204 |
3,630 | riga/tfdeploy | tfdeploy.py | Unpack | def Unpack(a, num, axis):
"""
Unpack op.
"""
return tuple(np.squeeze(b, axis=axis) for b in np.split(a, num, axis=axis)) | python | def Unpack(a, num, axis):
return tuple(np.squeeze(b, axis=axis) for b in np.split(a, num, axis=axis)) | [
"def",
"Unpack",
"(",
"a",
",",
"num",
",",
"axis",
")",
":",
"return",
"tuple",
"(",
"np",
".",
"squeeze",
"(",
"b",
",",
"axis",
"=",
"axis",
")",
"for",
"b",
"in",
"np",
".",
"split",
"(",
"a",
",",
"num",
",",
"axis",
"=",
"axis",
")",
")"
] | Unpack op. | [
"Unpack",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1216-L1220 |
3,631 | riga/tfdeploy | tfdeploy.py | ReverseSequence | def ReverseSequence(a, seq_lengths, seq_dim, batch_dim):
"""
Sequential reverse op.
"""
r = np.copy(a)
invidxs = (len(r.shape) - 1) * [slice(None)]
if seq_dim < batch_dim:
invidxs[seq_dim] = slice(None, None, -1)
else:
invidxs[seq_dim - 1] = slice(None, None, -1)
_invidxs = tuple(invidxs)
selidxs = len(r.shape) * [slice(None)]
for i, l in enumerate(seq_lengths):
if not l:
continue
selidxs[batch_dim] = i
selidxs[seq_dim] = slice(0, l)
_selidxs = tuple(selidxs)
r[_selidxs] = a[_selidxs][_invidxs]
return r, | python | def ReverseSequence(a, seq_lengths, seq_dim, batch_dim):
r = np.copy(a)
invidxs = (len(r.shape) - 1) * [slice(None)]
if seq_dim < batch_dim:
invidxs[seq_dim] = slice(None, None, -1)
else:
invidxs[seq_dim - 1] = slice(None, None, -1)
_invidxs = tuple(invidxs)
selidxs = len(r.shape) * [slice(None)]
for i, l in enumerate(seq_lengths):
if not l:
continue
selidxs[batch_dim] = i
selidxs[seq_dim] = slice(0, l)
_selidxs = tuple(selidxs)
r[_selidxs] = a[_selidxs][_invidxs]
return r, | [
"def",
"ReverseSequence",
"(",
"a",
",",
"seq_lengths",
",",
"seq_dim",
",",
"batch_dim",
")",
":",
"r",
"=",
"np",
".",
"copy",
"(",
"a",
")",
"invidxs",
"=",
"(",
"len",
"(",
"r",
".",
"shape",
")",
"-",
"1",
")",
"*",
"[",
"slice",
"(",
"None",
")",
"]",
"if",
"seq_dim",
"<",
"batch_dim",
":",
"invidxs",
"[",
"seq_dim",
"]",
"=",
"slice",
"(",
"None",
",",
"None",
",",
"-",
"1",
")",
"else",
":",
"invidxs",
"[",
"seq_dim",
"-",
"1",
"]",
"=",
"slice",
"(",
"None",
",",
"None",
",",
"-",
"1",
")",
"_invidxs",
"=",
"tuple",
"(",
"invidxs",
")",
"selidxs",
"=",
"len",
"(",
"r",
".",
"shape",
")",
"*",
"[",
"slice",
"(",
"None",
")",
"]",
"for",
"i",
",",
"l",
"in",
"enumerate",
"(",
"seq_lengths",
")",
":",
"if",
"not",
"l",
":",
"continue",
"selidxs",
"[",
"batch_dim",
"]",
"=",
"i",
"selidxs",
"[",
"seq_dim",
"]",
"=",
"slice",
"(",
"0",
",",
"l",
")",
"_selidxs",
"=",
"tuple",
"(",
"selidxs",
")",
"r",
"[",
"_selidxs",
"]",
"=",
"a",
"[",
"_selidxs",
"]",
"[",
"_invidxs",
"]",
"return",
"r",
","
] | Sequential reverse op. | [
"Sequential",
"reverse",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1224-L1243 |
3,632 | riga/tfdeploy | tfdeploy.py | ReverseV2 | def ReverseV2(a, axes):
"""
Reverse op.
"""
idxs = tuple(slice(None, None, 2 * int(i not in axes) - 1) for i in range(len(a.shape)))
return np.copy(a[idxs]), | python | def ReverseV2(a, axes):
idxs = tuple(slice(None, None, 2 * int(i not in axes) - 1) for i in range(len(a.shape)))
return np.copy(a[idxs]), | [
"def",
"ReverseV2",
"(",
"a",
",",
"axes",
")",
":",
"idxs",
"=",
"tuple",
"(",
"slice",
"(",
"None",
",",
"None",
",",
"2",
"*",
"int",
"(",
"i",
"not",
"in",
"axes",
")",
"-",
"1",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"a",
".",
"shape",
")",
")",
")",
"return",
"np",
".",
"copy",
"(",
"a",
"[",
"idxs",
"]",
")",
","
] | Reverse op. | [
"Reverse",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1247-L1252 |
3,633 | riga/tfdeploy | tfdeploy.py | Betainc | def Betainc(a, b, x):
"""
Complemented, incomplete gamma op.
"""
return sp.special.betainc(a, b, x), | python | def Betainc(a, b, x):
return sp.special.betainc(a, b, x), | [
"def",
"Betainc",
"(",
"a",
",",
"b",
",",
"x",
")",
":",
"return",
"sp",
".",
"special",
".",
"betainc",
"(",
"a",
",",
"b",
",",
"x",
")",
","
] | Complemented, incomplete gamma op. | [
"Complemented",
"incomplete",
"gamma",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1588-L1592 |
3,634 | riga/tfdeploy | tfdeploy.py | Diag | def Diag(a):
"""
Diag op.
"""
r = np.zeros(2 * a.shape, dtype=a.dtype)
for idx, v in np.ndenumerate(a):
r[2 * idx] = v
return r, | python | def Diag(a):
r = np.zeros(2 * a.shape, dtype=a.dtype)
for idx, v in np.ndenumerate(a):
r[2 * idx] = v
return r, | [
"def",
"Diag",
"(",
"a",
")",
":",
"r",
"=",
"np",
".",
"zeros",
"(",
"2",
"*",
"a",
".",
"shape",
",",
"dtype",
"=",
"a",
".",
"dtype",
")",
"for",
"idx",
",",
"v",
"in",
"np",
".",
"ndenumerate",
"(",
"a",
")",
":",
"r",
"[",
"2",
"*",
"idx",
"]",
"=",
"v",
"return",
"r",
","
] | Diag op. | [
"Diag",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1600-L1607 |
3,635 | riga/tfdeploy | tfdeploy.py | MatrixDiagPart | def MatrixDiagPart(a):
"""
Batched diag op that returns only the diagonal elements.
"""
r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),))
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = np.diagonal(a[pos])
return r, | python | def MatrixDiagPart(a):
r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),))
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = np.diagonal(a[pos])
return r, | [
"def",
"MatrixDiagPart",
"(",
"a",
")",
":",
"r",
"=",
"np",
".",
"zeros",
"(",
"a",
".",
"shape",
"[",
":",
"-",
"2",
"]",
"+",
"(",
"min",
"(",
"a",
".",
"shape",
"[",
"-",
"2",
":",
"]",
")",
",",
")",
")",
"for",
"coord",
"in",
"np",
".",
"ndindex",
"(",
"a",
".",
"shape",
"[",
":",
"-",
"2",
"]",
")",
":",
"pos",
"=",
"coord",
"+",
"(",
"Ellipsis",
",",
")",
"r",
"[",
"pos",
"]",
"=",
"np",
".",
"diagonal",
"(",
"a",
"[",
"pos",
"]",
")",
"return",
"r",
","
] | Batched diag op that returns only the diagonal elements. | [
"Batched",
"diag",
"op",
"that",
"returns",
"only",
"the",
"diagonal",
"elements",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1619-L1627 |
3,636 | riga/tfdeploy | tfdeploy.py | MatMul | def MatMul(a, b, transpose_a, transpose_b):
"""
Matrix multiplication op.
"""
return np.dot(a if not transpose_a else np.transpose(a),
b if not transpose_b else np.transpose(b)), | python | def MatMul(a, b, transpose_a, transpose_b):
return np.dot(a if not transpose_a else np.transpose(a),
b if not transpose_b else np.transpose(b)), | [
"def",
"MatMul",
"(",
"a",
",",
"b",
",",
"transpose_a",
",",
"transpose_b",
")",
":",
"return",
"np",
".",
"dot",
"(",
"a",
"if",
"not",
"transpose_a",
"else",
"np",
".",
"transpose",
"(",
"a",
")",
",",
"b",
"if",
"not",
"transpose_b",
"else",
"np",
".",
"transpose",
"(",
"b",
")",
")",
","
] | Matrix multiplication op. | [
"Matrix",
"multiplication",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1631-L1636 |
3,637 | riga/tfdeploy | tfdeploy.py | MatrixInverse | def MatrixInverse(a, adj):
"""
Matrix inversion op.
"""
return np.linalg.inv(a if not adj else _adjoint(a)), | python | def MatrixInverse(a, adj):
return np.linalg.inv(a if not adj else _adjoint(a)), | [
"def",
"MatrixInverse",
"(",
"a",
",",
"adj",
")",
":",
"return",
"np",
".",
"linalg",
".",
"inv",
"(",
"a",
"if",
"not",
"adj",
"else",
"_adjoint",
"(",
"a",
")",
")",
","
] | Matrix inversion op. | [
"Matrix",
"inversion",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1648-L1652 |
3,638 | riga/tfdeploy | tfdeploy.py | MatrixSolve | def MatrixSolve(a, rhs, adj):
"""
Matrix solve op.
"""
return np.linalg.solve(a if not adj else _adjoint(a), rhs), | python | def MatrixSolve(a, rhs, adj):
return np.linalg.solve(a if not adj else _adjoint(a), rhs), | [
"def",
"MatrixSolve",
"(",
"a",
",",
"rhs",
",",
"adj",
")",
":",
"return",
"np",
".",
"linalg",
".",
"solve",
"(",
"a",
"if",
"not",
"adj",
"else",
"_adjoint",
"(",
"a",
")",
",",
"rhs",
")",
","
] | Matrix solve op. | [
"Matrix",
"solve",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1664-L1668 |
3,639 | riga/tfdeploy | tfdeploy.py | MatrixTriangularSolve | def MatrixTriangularSolve(a, rhs, lower, adj):
"""
Matrix triangular solve op.
"""
trans = 0 if not adj else 2
r = np.empty(rhs.shape).astype(a.dtype)
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = sp.linalg.solve_triangular(a[pos] if not adj else np.conj(a[pos]), rhs[pos],
trans=trans, lower=lower)
return r, | python | def MatrixTriangularSolve(a, rhs, lower, adj):
trans = 0 if not adj else 2
r = np.empty(rhs.shape).astype(a.dtype)
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = sp.linalg.solve_triangular(a[pos] if not adj else np.conj(a[pos]), rhs[pos],
trans=trans, lower=lower)
return r, | [
"def",
"MatrixTriangularSolve",
"(",
"a",
",",
"rhs",
",",
"lower",
",",
"adj",
")",
":",
"trans",
"=",
"0",
"if",
"not",
"adj",
"else",
"2",
"r",
"=",
"np",
".",
"empty",
"(",
"rhs",
".",
"shape",
")",
".",
"astype",
"(",
"a",
".",
"dtype",
")",
"for",
"coord",
"in",
"np",
".",
"ndindex",
"(",
"a",
".",
"shape",
"[",
":",
"-",
"2",
"]",
")",
":",
"pos",
"=",
"coord",
"+",
"(",
"Ellipsis",
",",
")",
"r",
"[",
"pos",
"]",
"=",
"sp",
".",
"linalg",
".",
"solve_triangular",
"(",
"a",
"[",
"pos",
"]",
"if",
"not",
"adj",
"else",
"np",
".",
"conj",
"(",
"a",
"[",
"pos",
"]",
")",
",",
"rhs",
"[",
"pos",
"]",
",",
"trans",
"=",
"trans",
",",
"lower",
"=",
"lower",
")",
"return",
"r",
","
] | Matrix triangular solve op. | [
"Matrix",
"triangular",
"solve",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1672-L1684 |
3,640 | riga/tfdeploy | tfdeploy.py | MatrixSolveLs | def MatrixSolveLs(a, rhs, l2_reg):
"""
Matrix least-squares solve op.
"""
r = np.empty(rhs.shape).astype(a.dtype)
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0]
return r, | python | def MatrixSolveLs(a, rhs, l2_reg):
r = np.empty(rhs.shape).astype(a.dtype)
for coord in np.ndindex(a.shape[:-2]):
pos = coord + (Ellipsis,)
r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0]
return r, | [
"def",
"MatrixSolveLs",
"(",
"a",
",",
"rhs",
",",
"l2_reg",
")",
":",
"r",
"=",
"np",
".",
"empty",
"(",
"rhs",
".",
"shape",
")",
".",
"astype",
"(",
"a",
".",
"dtype",
")",
"for",
"coord",
"in",
"np",
".",
"ndindex",
"(",
"a",
".",
"shape",
"[",
":",
"-",
"2",
"]",
")",
":",
"pos",
"=",
"coord",
"+",
"(",
"Ellipsis",
",",
")",
"r",
"[",
"pos",
"]",
"=",
"np",
".",
"linalg",
".",
"lstsq",
"(",
"a",
"[",
"pos",
"]",
",",
"rhs",
"[",
"pos",
"]",
")",
"[",
"0",
"]",
"return",
"r",
","
] | Matrix least-squares solve op. | [
"Matrix",
"least",
"-",
"squares",
"solve",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1688-L1697 |
3,641 | riga/tfdeploy | tfdeploy.py | SelfAdjointEig | def SelfAdjointEig(a):
"""
Eigen decomp op.
"""
shape = list(a.shape)
shape[-2] += 1
return np.append(*np.linalg.eig(a)).reshape(*shape), | python | def SelfAdjointEig(a):
shape = list(a.shape)
shape[-2] += 1
return np.append(*np.linalg.eig(a)).reshape(*shape), | [
"def",
"SelfAdjointEig",
"(",
"a",
")",
":",
"shape",
"=",
"list",
"(",
"a",
".",
"shape",
")",
"shape",
"[",
"-",
"2",
"]",
"+=",
"1",
"return",
"np",
".",
"append",
"(",
"*",
"np",
".",
"linalg",
".",
"eig",
"(",
"a",
")",
")",
".",
"reshape",
"(",
"*",
"shape",
")",
","
] | Eigen decomp op. | [
"Eigen",
"decomp",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1701-L1707 |
3,642 | riga/tfdeploy | tfdeploy.py | Svd | def Svd(a, uv, full):
"""
Single value decomp op.
"""
u, s, v = np.linalg.svd(a, full_matrices=full, compute_uv=uv)
return s, u, v | python | def Svd(a, uv, full):
u, s, v = np.linalg.svd(a, full_matrices=full, compute_uv=uv)
return s, u, v | [
"def",
"Svd",
"(",
"a",
",",
"uv",
",",
"full",
")",
":",
"u",
",",
"s",
",",
"v",
"=",
"np",
".",
"linalg",
".",
"svd",
"(",
"a",
",",
"full_matrices",
"=",
"full",
",",
"compute_uv",
"=",
"uv",
")",
"return",
"s",
",",
"u",
",",
"v"
] | Single value decomp op. | [
"Single",
"value",
"decomp",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1719-L1724 |
3,643 | riga/tfdeploy | tfdeploy.py | Sum | def Sum(a, axis, keep_dims):
"""
Sum reduction op.
"""
return np.sum(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Sum(a, axis, keep_dims):
return np.sum(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Sum",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"sum",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Sum reduction op. | [
"Sum",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1804-L1809 |
3,644 | riga/tfdeploy | tfdeploy.py | Prod | def Prod(a, axis, keep_dims):
"""
Prod reduction op.
"""
return np.prod(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Prod(a, axis, keep_dims):
return np.prod(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Prod",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"prod",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Prod reduction op. | [
"Prod",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1813-L1818 |
3,645 | riga/tfdeploy | tfdeploy.py | Min | def Min(a, axis, keep_dims):
"""
Min reduction op.
"""
return np.amin(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Min(a, axis, keep_dims):
return np.amin(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Min",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"amin",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Min reduction op. | [
"Min",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1822-L1827 |
3,646 | riga/tfdeploy | tfdeploy.py | Max | def Max(a, axis, keep_dims):
"""
Max reduction op.
"""
return np.amax(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Max(a, axis, keep_dims):
return np.amax(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Max",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"amax",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Max reduction op. | [
"Max",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1831-L1836 |
3,647 | riga/tfdeploy | tfdeploy.py | Mean | def Mean(a, axis, keep_dims):
"""
Mean reduction op.
"""
return np.mean(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Mean(a, axis, keep_dims):
return np.mean(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Mean",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"mean",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Mean reduction op. | [
"Mean",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1840-L1845 |
3,648 | riga/tfdeploy | tfdeploy.py | All | def All(a, axis, keep_dims):
"""
All reduction op.
"""
return np.all(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def All(a, axis, keep_dims):
return np.all(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"All",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"all",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | All reduction op. | [
"All",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1849-L1854 |
3,649 | riga/tfdeploy | tfdeploy.py | Any | def Any(a, axis, keep_dims):
"""
Any reduction op.
"""
return np.any(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | python | def Any(a, axis, keep_dims):
return np.any(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis),
keepdims=keep_dims), | [
"def",
"Any",
"(",
"a",
",",
"axis",
",",
"keep_dims",
")",
":",
"return",
"np",
".",
"any",
"(",
"a",
",",
"axis",
"=",
"axis",
"if",
"not",
"isinstance",
"(",
"axis",
",",
"np",
".",
"ndarray",
")",
"else",
"tuple",
"(",
"axis",
")",
",",
"keepdims",
"=",
"keep_dims",
")",
","
] | Any reduction op. | [
"Any",
"reduction",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1858-L1863 |
3,650 | riga/tfdeploy | tfdeploy.py | SegmentSum | def SegmentSum(a, ids, *args):
"""
Segmented sum op.
"""
func = lambda idxs: reduce(np.add, a[idxs])
return seg_map(func, a, ids), | python | def SegmentSum(a, ids, *args):
func = lambda idxs: reduce(np.add, a[idxs])
return seg_map(func, a, ids), | [
"def",
"SegmentSum",
"(",
"a",
",",
"ids",
",",
"*",
"args",
")",
":",
"func",
"=",
"lambda",
"idxs",
":",
"reduce",
"(",
"np",
".",
"add",
",",
"a",
"[",
"idxs",
"]",
")",
"return",
"seg_map",
"(",
"func",
",",
"a",
",",
"ids",
")",
","
] | Segmented sum op. | [
"Segmented",
"sum",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1881-L1886 |
3,651 | riga/tfdeploy | tfdeploy.py | SegmentProd | def SegmentProd(a, ids):
"""
Segmented prod op.
"""
func = lambda idxs: reduce(np.multiply, a[idxs])
return seg_map(func, a, ids), | python | def SegmentProd(a, ids):
func = lambda idxs: reduce(np.multiply, a[idxs])
return seg_map(func, a, ids), | [
"def",
"SegmentProd",
"(",
"a",
",",
"ids",
")",
":",
"func",
"=",
"lambda",
"idxs",
":",
"reduce",
"(",
"np",
".",
"multiply",
",",
"a",
"[",
"idxs",
"]",
")",
"return",
"seg_map",
"(",
"func",
",",
"a",
",",
"ids",
")",
","
] | Segmented prod op. | [
"Segmented",
"prod",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1890-L1895 |
3,652 | riga/tfdeploy | tfdeploy.py | SegmentMin | def SegmentMin(a, ids):
"""
Segmented min op.
"""
func = lambda idxs: np.amin(a[idxs], axis=0)
return seg_map(func, a, ids), | python | def SegmentMin(a, ids):
func = lambda idxs: np.amin(a[idxs], axis=0)
return seg_map(func, a, ids), | [
"def",
"SegmentMin",
"(",
"a",
",",
"ids",
")",
":",
"func",
"=",
"lambda",
"idxs",
":",
"np",
".",
"amin",
"(",
"a",
"[",
"idxs",
"]",
",",
"axis",
"=",
"0",
")",
"return",
"seg_map",
"(",
"func",
",",
"a",
",",
"ids",
")",
","
] | Segmented min op. | [
"Segmented",
"min",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1899-L1904 |
3,653 | riga/tfdeploy | tfdeploy.py | SegmentMax | def SegmentMax(a, ids):
"""
Segmented max op.
"""
func = lambda idxs: np.amax(a[idxs], axis=0)
return seg_map(func, a, ids), | python | def SegmentMax(a, ids):
func = lambda idxs: np.amax(a[idxs], axis=0)
return seg_map(func, a, ids), | [
"def",
"SegmentMax",
"(",
"a",
",",
"ids",
")",
":",
"func",
"=",
"lambda",
"idxs",
":",
"np",
".",
"amax",
"(",
"a",
"[",
"idxs",
"]",
",",
"axis",
"=",
"0",
")",
"return",
"seg_map",
"(",
"func",
",",
"a",
",",
"ids",
")",
","
] | Segmented max op. | [
"Segmented",
"max",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1908-L1913 |
3,654 | riga/tfdeploy | tfdeploy.py | SegmentMean | def SegmentMean(a, ids):
"""
Segmented mean op.
"""
func = lambda idxs: np.mean(a[idxs], axis=0)
return seg_map(func, a, ids), | python | def SegmentMean(a, ids):
func = lambda idxs: np.mean(a[idxs], axis=0)
return seg_map(func, a, ids), | [
"def",
"SegmentMean",
"(",
"a",
",",
"ids",
")",
":",
"func",
"=",
"lambda",
"idxs",
":",
"np",
".",
"mean",
"(",
"a",
"[",
"idxs",
"]",
",",
"axis",
"=",
"0",
")",
"return",
"seg_map",
"(",
"func",
",",
"a",
",",
"ids",
")",
","
] | Segmented mean op. | [
"Segmented",
"mean",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1917-L1922 |
3,655 | riga/tfdeploy | tfdeploy.py | ListDiff | def ListDiff(a, b):
"""
List diff op.
"""
d = np.setdiff1d(a, b)
return d, np.searchsorted(a, d).astype(np.int32) | python | def ListDiff(a, b):
d = np.setdiff1d(a, b)
return d, np.searchsorted(a, d).astype(np.int32) | [
"def",
"ListDiff",
"(",
"a",
",",
"b",
")",
":",
"d",
"=",
"np",
".",
"setdiff1d",
"(",
"a",
",",
"b",
")",
"return",
"d",
",",
"np",
".",
"searchsorted",
"(",
"a",
",",
"d",
")",
".",
"astype",
"(",
"np",
".",
"int32",
")"
] | List diff op. | [
"List",
"diff",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1971-L1976 |
3,656 | riga/tfdeploy | tfdeploy.py | Unique | def Unique(a, t):
"""
Unique op.
"""
_, idxs, inv = np.unique(a, return_index=True, return_inverse=True)
return np.copy(a)[np.sort(idxs)], idxs[inv].astype(dtype_map[t]) | python | def Unique(a, t):
_, idxs, inv = np.unique(a, return_index=True, return_inverse=True)
return np.copy(a)[np.sort(idxs)], idxs[inv].astype(dtype_map[t]) | [
"def",
"Unique",
"(",
"a",
",",
"t",
")",
":",
"_",
",",
"idxs",
",",
"inv",
"=",
"np",
".",
"unique",
"(",
"a",
",",
"return_index",
"=",
"True",
",",
"return_inverse",
"=",
"True",
")",
"return",
"np",
".",
"copy",
"(",
"a",
")",
"[",
"np",
".",
"sort",
"(",
"idxs",
")",
"]",
",",
"idxs",
"[",
"inv",
"]",
".",
"astype",
"(",
"dtype_map",
"[",
"t",
"]",
")"
] | Unique op. | [
"Unique",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L1988-L1993 |
3,657 | riga/tfdeploy | tfdeploy.py | Elu | def Elu(a):
"""
Elu op.
"""
return np.where(a < 0, np.subtract(np.exp(a), 1), a), | python | def Elu(a):
return np.where(a < 0, np.subtract(np.exp(a), 1), a), | [
"def",
"Elu",
"(",
"a",
")",
":",
"return",
"np",
".",
"where",
"(",
"a",
"<",
"0",
",",
"np",
".",
"subtract",
"(",
"np",
".",
"exp",
"(",
"a",
")",
",",
"1",
")",
",",
"a",
")",
","
] | Elu op. | [
"Elu",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2037-L2041 |
3,658 | riga/tfdeploy | tfdeploy.py | Softsign | def Softsign(a):
"""
Softsign op.
"""
return np.divide(a, np.add(np.abs(a), 1)), | python | def Softsign(a):
return np.divide(a, np.add(np.abs(a), 1)), | [
"def",
"Softsign",
"(",
"a",
")",
":",
"return",
"np",
".",
"divide",
"(",
"a",
",",
"np",
".",
"add",
"(",
"np",
".",
"abs",
"(",
"a",
")",
",",
"1",
")",
")",
","
] | Softsign op. | [
"Softsign",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2053-L2057 |
3,659 | riga/tfdeploy | tfdeploy.py | Softmax | def Softmax(a):
"""
Softmax op.
"""
e = np.exp(a)
return np.divide(e, np.sum(e, axis=-1, keepdims=True)), | python | def Softmax(a):
e = np.exp(a)
return np.divide(e, np.sum(e, axis=-1, keepdims=True)), | [
"def",
"Softmax",
"(",
"a",
")",
":",
"e",
"=",
"np",
".",
"exp",
"(",
"a",
")",
"return",
"np",
".",
"divide",
"(",
"e",
",",
"np",
".",
"sum",
"(",
"e",
",",
"axis",
"=",
"-",
"1",
",",
"keepdims",
"=",
"True",
")",
")",
","
] | Softmax op. | [
"Softmax",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2077-L2082 |
3,660 | riga/tfdeploy | tfdeploy.py | Conv1D | def Conv1D(a, f, strides, padding, data_format):
"""
1D conv op.
"""
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _conv_patches(a, f, 3 * [strides], padding.decode("ascii"))
conv = np.sum(patches, axis=tuple(range(-f.ndim, -1)))
if data_format.decode("ascii") == "NCHW":
conv = np.rollaxis(conv, -1, 1)
return conv, | python | def Conv1D(a, f, strides, padding, data_format):
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _conv_patches(a, f, 3 * [strides], padding.decode("ascii"))
conv = np.sum(patches, axis=tuple(range(-f.ndim, -1)))
if data_format.decode("ascii") == "NCHW":
conv = np.rollaxis(conv, -1, 1)
return conv, | [
"def",
"Conv1D",
"(",
"a",
",",
"f",
",",
"strides",
",",
"padding",
",",
"data_format",
")",
":",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"a",
"=",
"np",
".",
"rollaxis",
"(",
"a",
",",
"1",
",",
"-",
"1",
")",
",",
"patches",
"=",
"_conv_patches",
"(",
"a",
",",
"f",
",",
"3",
"*",
"[",
"strides",
"]",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"conv",
"=",
"np",
".",
"sum",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"f",
".",
"ndim",
",",
"-",
"1",
")",
")",
")",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"conv",
"=",
"np",
".",
"rollaxis",
"(",
"conv",
",",
"-",
"1",
",",
"1",
")",
"return",
"conv",
","
] | 1D conv op. | [
"1D",
"conv",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2125-L2138 |
3,661 | riga/tfdeploy | tfdeploy.py | Conv3D | def Conv3D(a, f, strides, padding):
"""
3D conv op.
"""
patches = _conv_patches(a, f, strides, padding.decode("ascii"))
return np.sum(patches, axis=tuple(range(-f.ndim, -1))), | python | def Conv3D(a, f, strides, padding):
patches = _conv_patches(a, f, strides, padding.decode("ascii"))
return np.sum(patches, axis=tuple(range(-f.ndim, -1))), | [
"def",
"Conv3D",
"(",
"a",
",",
"f",
",",
"strides",
",",
"padding",
")",
":",
"patches",
"=",
"_conv_patches",
"(",
"a",
",",
"f",
",",
"strides",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"return",
"np",
".",
"sum",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"f",
".",
"ndim",
",",
"-",
"1",
")",
")",
")",
","
] | 3D conv op. | [
"3D",
"conv",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2159-L2164 |
3,662 | riga/tfdeploy | tfdeploy.py | AvgPool | def AvgPool(a, k, strides, padding, data_format):
"""
Average pooling op.
"""
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
pool = np.average(patches, axis=tuple(range(-len(k), 0)))
if data_format.decode("ascii") == "NCHW":
pool = np.rollaxis(pool, -1, 1)
return pool, | python | def AvgPool(a, k, strides, padding, data_format):
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
pool = np.average(patches, axis=tuple(range(-len(k), 0)))
if data_format.decode("ascii") == "NCHW":
pool = np.rollaxis(pool, -1, 1)
return pool, | [
"def",
"AvgPool",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
",",
"data_format",
")",
":",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"a",
"=",
"np",
".",
"rollaxis",
"(",
"a",
",",
"1",
",",
"-",
"1",
")",
",",
"patches",
"=",
"_pool_patches",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"pool",
"=",
"np",
".",
"average",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"len",
"(",
"k",
")",
",",
"0",
")",
")",
")",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"pool",
"=",
"np",
".",
"rollaxis",
"(",
"pool",
",",
"-",
"1",
",",
"1",
")",
"return",
"pool",
","
] | Average pooling op. | [
"Average",
"pooling",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2190-L2203 |
3,663 | riga/tfdeploy | tfdeploy.py | MaxPool | def MaxPool(a, k, strides, padding, data_format):
"""
Maximum pooling op.
"""
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
pool = np.amax(patches, axis=tuple(range(-len(k), 0)))
if data_format.decode("ascii") == "NCHW":
pool = np.rollaxis(pool, -1, 1)
return pool, | python | def MaxPool(a, k, strides, padding, data_format):
if data_format.decode("ascii") == "NCHW":
a = np.rollaxis(a, 1, -1),
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
pool = np.amax(patches, axis=tuple(range(-len(k), 0)))
if data_format.decode("ascii") == "NCHW":
pool = np.rollaxis(pool, -1, 1)
return pool, | [
"def",
"MaxPool",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
",",
"data_format",
")",
":",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"a",
"=",
"np",
".",
"rollaxis",
"(",
"a",
",",
"1",
",",
"-",
"1",
")",
",",
"patches",
"=",
"_pool_patches",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"pool",
"=",
"np",
".",
"amax",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"len",
"(",
"k",
")",
",",
"0",
")",
")",
")",
"if",
"data_format",
".",
"decode",
"(",
"\"ascii\"",
")",
"==",
"\"NCHW\"",
":",
"pool",
"=",
"np",
".",
"rollaxis",
"(",
"pool",
",",
"-",
"1",
",",
"1",
")",
"return",
"pool",
","
] | Maximum pooling op. | [
"Maximum",
"pooling",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2207-L2220 |
3,664 | riga/tfdeploy | tfdeploy.py | AvgPool3D | def AvgPool3D(a, k, strides, padding):
"""
Average 3D pooling op.
"""
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
return np.average(patches, axis=tuple(range(-len(k), 0))), | python | def AvgPool3D(a, k, strides, padding):
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
return np.average(patches, axis=tuple(range(-len(k), 0))), | [
"def",
"AvgPool3D",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
")",
":",
"patches",
"=",
"_pool_patches",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"return",
"np",
".",
"average",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"len",
"(",
"k",
")",
",",
"0",
")",
")",
")",
","
] | Average 3D pooling op. | [
"Average",
"3D",
"pooling",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2224-L2229 |
3,665 | riga/tfdeploy | tfdeploy.py | MaxPool3D | def MaxPool3D(a, k, strides, padding):
"""
Maximum 3D pooling op.
"""
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
return np.amax(patches, axis=tuple(range(-len(k), 0))), | python | def MaxPool3D(a, k, strides, padding):
patches = _pool_patches(a, k, strides, padding.decode("ascii"))
return np.amax(patches, axis=tuple(range(-len(k), 0))), | [
"def",
"MaxPool3D",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
")",
":",
"patches",
"=",
"_pool_patches",
"(",
"a",
",",
"k",
",",
"strides",
",",
"padding",
".",
"decode",
"(",
"\"ascii\"",
")",
")",
"return",
"np",
".",
"amax",
"(",
"patches",
",",
"axis",
"=",
"tuple",
"(",
"range",
"(",
"-",
"len",
"(",
"k",
")",
",",
"0",
")",
")",
")",
","
] | Maximum 3D pooling op. | [
"Maximum",
"3D",
"pooling",
"op",
"."
] | 8481f657d6e3a51d76185a195b993e45f448828a | https://github.com/riga/tfdeploy/blob/8481f657d6e3a51d76185a195b993e45f448828a/tfdeploy.py#L2233-L2238 |
3,666 | adafruit/Adafruit_CircuitPython_MatrixKeypad | adafruit_matrixkeypad.py | Matrix_Keypad.pressed_keys | def pressed_keys(self):
"""An array containing all detected keys that are pressed from the initalized
list-of-lists passed in during creation"""
# make a list of all the keys that are detected
pressed = []
# set all pins pins to be inputs w/pullups
for pin in self.row_pins+self.col_pins:
pin.direction = Direction.INPUT
pin.pull = Pull.UP
for row in range(len(self.row_pins)):
# set one row low at a time
self.row_pins[row].direction = Direction.OUTPUT
self.row_pins[row].value = False
# check the column pins, which ones are pulled down
for col in range(len(self.col_pins)):
if not self.col_pins[col].value:
pressed.append(self.keys[row][col])
# reset the pin to be an input
self.row_pins[row].direction = Direction.INPUT
self.row_pins[row].pull = Pull.UP
return pressed | python | def pressed_keys(self):
# make a list of all the keys that are detected
pressed = []
# set all pins pins to be inputs w/pullups
for pin in self.row_pins+self.col_pins:
pin.direction = Direction.INPUT
pin.pull = Pull.UP
for row in range(len(self.row_pins)):
# set one row low at a time
self.row_pins[row].direction = Direction.OUTPUT
self.row_pins[row].value = False
# check the column pins, which ones are pulled down
for col in range(len(self.col_pins)):
if not self.col_pins[col].value:
pressed.append(self.keys[row][col])
# reset the pin to be an input
self.row_pins[row].direction = Direction.INPUT
self.row_pins[row].pull = Pull.UP
return pressed | [
"def",
"pressed_keys",
"(",
"self",
")",
":",
"# make a list of all the keys that are detected",
"pressed",
"=",
"[",
"]",
"# set all pins pins to be inputs w/pullups",
"for",
"pin",
"in",
"self",
".",
"row_pins",
"+",
"self",
".",
"col_pins",
":",
"pin",
".",
"direction",
"=",
"Direction",
".",
"INPUT",
"pin",
".",
"pull",
"=",
"Pull",
".",
"UP",
"for",
"row",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"row_pins",
")",
")",
":",
"# set one row low at a time",
"self",
".",
"row_pins",
"[",
"row",
"]",
".",
"direction",
"=",
"Direction",
".",
"OUTPUT",
"self",
".",
"row_pins",
"[",
"row",
"]",
".",
"value",
"=",
"False",
"# check the column pins, which ones are pulled down",
"for",
"col",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"col_pins",
")",
")",
":",
"if",
"not",
"self",
".",
"col_pins",
"[",
"col",
"]",
".",
"value",
":",
"pressed",
".",
"append",
"(",
"self",
".",
"keys",
"[",
"row",
"]",
"[",
"col",
"]",
")",
"# reset the pin to be an input",
"self",
".",
"row_pins",
"[",
"row",
"]",
".",
"direction",
"=",
"Direction",
".",
"INPUT",
"self",
".",
"row_pins",
"[",
"row",
"]",
".",
"pull",
"=",
"Pull",
".",
"UP",
"return",
"pressed"
] | An array containing all detected keys that are pressed from the initalized
list-of-lists passed in during creation | [
"An",
"array",
"containing",
"all",
"detected",
"keys",
"that",
"are",
"pressed",
"from",
"the",
"initalized",
"list",
"-",
"of",
"-",
"lists",
"passed",
"in",
"during",
"creation"
] | f530b1a920a40ef09ec1394b7760f243a243045a | https://github.com/adafruit/Adafruit_CircuitPython_MatrixKeypad/blob/f530b1a920a40ef09ec1394b7760f243a243045a/adafruit_matrixkeypad.py#L69-L91 |
3,667 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.get_load_times | def get_load_times(self, asset_type):
"""
Just a ``list`` of the load times of a certain asset type for each page
:param asset_type: ``str`` of the asset type to return load times for
"""
load_times = []
search_str = '{0}_load_time'.format(asset_type)
for har_page in self.pages:
val = getattr(har_page, search_str, None)
if val is not None:
load_times.append(val)
return load_times | python | def get_load_times(self, asset_type):
load_times = []
search_str = '{0}_load_time'.format(asset_type)
for har_page in self.pages:
val = getattr(har_page, search_str, None)
if val is not None:
load_times.append(val)
return load_times | [
"def",
"get_load_times",
"(",
"self",
",",
"asset_type",
")",
":",
"load_times",
"=",
"[",
"]",
"search_str",
"=",
"'{0}_load_time'",
".",
"format",
"(",
"asset_type",
")",
"for",
"har_page",
"in",
"self",
".",
"pages",
":",
"val",
"=",
"getattr",
"(",
"har_page",
",",
"search_str",
",",
"None",
")",
"if",
"val",
"is",
"not",
"None",
":",
"load_times",
".",
"append",
"(",
"val",
")",
"return",
"load_times"
] | Just a ``list`` of the load times of a certain asset type for each page
:param asset_type: ``str`` of the asset type to return load times for | [
"Just",
"a",
"list",
"of",
"the",
"load",
"times",
"of",
"a",
"certain",
"asset",
"type",
"for",
"each",
"page"
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L41-L53 |
3,668 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.get_stdev | def get_stdev(self, asset_type):
"""
Returns the standard deviation for a set of a certain asset type.
:param asset_type: ``str`` of the asset type to calculate standard
deviation for.
:returns: A ``int`` or ``float`` of standard deviation, depending on
the self.decimal_precision
"""
load_times = []
# Handle edge cases like TTFB
if asset_type == 'ttfb':
for page in self.pages:
if page.time_to_first_byte is not None:
load_times.append(page.time_to_first_byte)
elif asset_type not in self.asset_types and asset_type != 'page':
raise ValueError('asset_type must be one of:\nttfb\n{0}'.format(
'\n'.join(self.asset_types)))
else:
load_times = self.get_load_times(asset_type)
if not load_times or not sum(load_times):
return 0
return round(stdev(load_times),
self.decimal_precision) | python | def get_stdev(self, asset_type):
load_times = []
# Handle edge cases like TTFB
if asset_type == 'ttfb':
for page in self.pages:
if page.time_to_first_byte is not None:
load_times.append(page.time_to_first_byte)
elif asset_type not in self.asset_types and asset_type != 'page':
raise ValueError('asset_type must be one of:\nttfb\n{0}'.format(
'\n'.join(self.asset_types)))
else:
load_times = self.get_load_times(asset_type)
if not load_times or not sum(load_times):
return 0
return round(stdev(load_times),
self.decimal_precision) | [
"def",
"get_stdev",
"(",
"self",
",",
"asset_type",
")",
":",
"load_times",
"=",
"[",
"]",
"# Handle edge cases like TTFB",
"if",
"asset_type",
"==",
"'ttfb'",
":",
"for",
"page",
"in",
"self",
".",
"pages",
":",
"if",
"page",
".",
"time_to_first_byte",
"is",
"not",
"None",
":",
"load_times",
".",
"append",
"(",
"page",
".",
"time_to_first_byte",
")",
"elif",
"asset_type",
"not",
"in",
"self",
".",
"asset_types",
"and",
"asset_type",
"!=",
"'page'",
":",
"raise",
"ValueError",
"(",
"'asset_type must be one of:\\nttfb\\n{0}'",
".",
"format",
"(",
"'\\n'",
".",
"join",
"(",
"self",
".",
"asset_types",
")",
")",
")",
"else",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"asset_type",
")",
"if",
"not",
"load_times",
"or",
"not",
"sum",
"(",
"load_times",
")",
":",
"return",
"0",
"return",
"round",
"(",
"stdev",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns the standard deviation for a set of a certain asset type.
:param asset_type: ``str`` of the asset type to calculate standard
deviation for.
:returns: A ``int`` or ``float`` of standard deviation, depending on
the self.decimal_precision | [
"Returns",
"the",
"standard",
"deviation",
"for",
"a",
"set",
"of",
"a",
"certain",
"asset",
"type",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L55-L79 |
3,669 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.pages | def pages(self):
"""
The aggregate pages of all the parser objects.
"""
pages = []
for har_dict in self.har_data:
har_parser = HarParser(har_data=har_dict)
if self.page_id:
for page in har_parser.pages:
if page.page_id == self.page_id:
pages.append(page)
else:
pages = pages + har_parser.pages
return pages | python | def pages(self):
pages = []
for har_dict in self.har_data:
har_parser = HarParser(har_data=har_dict)
if self.page_id:
for page in har_parser.pages:
if page.page_id == self.page_id:
pages.append(page)
else:
pages = pages + har_parser.pages
return pages | [
"def",
"pages",
"(",
"self",
")",
":",
"pages",
"=",
"[",
"]",
"for",
"har_dict",
"in",
"self",
".",
"har_data",
":",
"har_parser",
"=",
"HarParser",
"(",
"har_data",
"=",
"har_dict",
")",
"if",
"self",
".",
"page_id",
":",
"for",
"page",
"in",
"har_parser",
".",
"pages",
":",
"if",
"page",
".",
"page_id",
"==",
"self",
".",
"page_id",
":",
"pages",
".",
"append",
"(",
"page",
")",
"else",
":",
"pages",
"=",
"pages",
"+",
"har_parser",
".",
"pages",
"return",
"pages"
] | The aggregate pages of all the parser objects. | [
"The",
"aggregate",
"pages",
"of",
"all",
"the",
"parser",
"objects",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L82-L95 |
3,670 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.time_to_first_byte | def time_to_first_byte(self):
"""
The aggregate time to first byte for all pages.
"""
ttfb = []
for page in self.pages:
if page.time_to_first_byte is not None:
ttfb.append(page.time_to_first_byte)
return round(mean(ttfb), self.decimal_precision) | python | def time_to_first_byte(self):
ttfb = []
for page in self.pages:
if page.time_to_first_byte is not None:
ttfb.append(page.time_to_first_byte)
return round(mean(ttfb), self.decimal_precision) | [
"def",
"time_to_first_byte",
"(",
"self",
")",
":",
"ttfb",
"=",
"[",
"]",
"for",
"page",
"in",
"self",
".",
"pages",
":",
"if",
"page",
".",
"time_to_first_byte",
"is",
"not",
"None",
":",
"ttfb",
".",
"append",
"(",
"page",
".",
"time_to_first_byte",
")",
"return",
"round",
"(",
"mean",
"(",
"ttfb",
")",
",",
"self",
".",
"decimal_precision",
")"
] | The aggregate time to first byte for all pages. | [
"The",
"aggregate",
"time",
"to",
"first",
"byte",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L105-L113 |
3,671 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.js_load_time | def js_load_time(self):
"""
Returns aggregate javascript load time.
"""
load_times = self.get_load_times('js')
return round(mean(load_times), self.decimal_precision) | python | def js_load_time(self):
load_times = self.get_load_times('js')
return round(mean(load_times), self.decimal_precision) | [
"def",
"js_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'js'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate javascript load time. | [
"Returns",
"aggregate",
"javascript",
"load",
"time",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L124-L129 |
3,672 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.css_load_time | def css_load_time(self):
"""
Returns aggregate css load time for all pages.
"""
load_times = self.get_load_times('css')
return round(mean(load_times), self.decimal_precision) | python | def css_load_time(self):
load_times = self.get_load_times('css')
return round(mean(load_times), self.decimal_precision) | [
"def",
"css_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'css'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate css load time for all pages. | [
"Returns",
"aggregate",
"css",
"load",
"time",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L132-L137 |
3,673 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.image_load_time | def image_load_time(self):
"""
Returns aggregate image load time for all pages.
"""
load_times = self.get_load_times('image')
return round(mean(load_times), self.decimal_precision) | python | def image_load_time(self):
load_times = self.get_load_times('image')
return round(mean(load_times), self.decimal_precision) | [
"def",
"image_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'image'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate image load time for all pages. | [
"Returns",
"aggregate",
"image",
"load",
"time",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L140-L145 |
3,674 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.html_load_time | def html_load_time(self):
"""
Returns aggregate html load time for all pages.
"""
load_times = self.get_load_times('html')
return round(mean(load_times), self.decimal_precision) | python | def html_load_time(self):
load_times = self.get_load_times('html')
return round(mean(load_times), self.decimal_precision) | [
"def",
"html_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'html'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate html load time for all pages. | [
"Returns",
"aggregate",
"html",
"load",
"time",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L148-L153 |
3,675 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.audio_load_time | def audio_load_time(self):
"""
Returns aggregate audio load time for all pages.
"""
load_times = self.get_load_times('audio')
return round(mean(load_times), self.decimal_precision) | python | def audio_load_time(self):
load_times = self.get_load_times('audio')
return round(mean(load_times), self.decimal_precision) | [
"def",
"audio_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'audio'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate audio load time for all pages. | [
"Returns",
"aggregate",
"audio",
"load",
"time",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L156-L161 |
3,676 | mrname/haralyzer | haralyzer/multihar.py | MultiHarParser.video_load_time | def video_load_time(self):
"""
Returns aggregate video load time for all pages.
"""
load_times = self.get_load_times('video')
return round(mean(load_times), self.decimal_precision) | python | def video_load_time(self):
load_times = self.get_load_times('video')
return round(mean(load_times), self.decimal_precision) | [
"def",
"video_load_time",
"(",
"self",
")",
":",
"load_times",
"=",
"self",
".",
"get_load_times",
"(",
"'video'",
")",
"return",
"round",
"(",
"mean",
"(",
"load_times",
")",
",",
"self",
".",
"decimal_precision",
")"
] | Returns aggregate video load time for all pages. | [
"Returns",
"aggregate",
"video",
"load",
"time",
"for",
"all",
"pages",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/multihar.py#L164-L169 |
3,677 | mrname/haralyzer | haralyzer/assets.py | HarParser.match_headers | def match_headers(self, entry, header_type, header, value, regex=True):
"""
Function to match headers.
Since the output of headers might use different case, like:
'content-type' vs 'Content-Type'
This function is case-insensitive
:param entry: entry object
:param header_type: ``str`` of header type. Valid values:
* 'request'
* 'response'
:param header: ``str`` of the header to search for
:param value: ``str`` of value to search for
:param regex: ``bool`` indicating whether to use regex or exact match
:returns: a ``bool`` indicating whether a match was found
"""
if header_type not in entry:
raise ValueError('Invalid header_type, should be either:\n\n'
'* \'request\'\n*\'response\'')
# TODO - headers are empty in some HAR data.... need fallbacks here
for h in entry[header_type]['headers']:
if h['name'].lower() == header.lower() and h['value'] is not None:
if regex and re.search(value, h['value'], flags=re.IGNORECASE):
return True
elif value == h['value']:
return True
return False | python | def match_headers(self, entry, header_type, header, value, regex=True):
if header_type not in entry:
raise ValueError('Invalid header_type, should be either:\n\n'
'* \'request\'\n*\'response\'')
# TODO - headers are empty in some HAR data.... need fallbacks here
for h in entry[header_type]['headers']:
if h['name'].lower() == header.lower() and h['value'] is not None:
if regex and re.search(value, h['value'], flags=re.IGNORECASE):
return True
elif value == h['value']:
return True
return False | [
"def",
"match_headers",
"(",
"self",
",",
"entry",
",",
"header_type",
",",
"header",
",",
"value",
",",
"regex",
"=",
"True",
")",
":",
"if",
"header_type",
"not",
"in",
"entry",
":",
"raise",
"ValueError",
"(",
"'Invalid header_type, should be either:\\n\\n'",
"'* \\'request\\'\\n*\\'response\\''",
")",
"# TODO - headers are empty in some HAR data.... need fallbacks here",
"for",
"h",
"in",
"entry",
"[",
"header_type",
"]",
"[",
"'headers'",
"]",
":",
"if",
"h",
"[",
"'name'",
"]",
".",
"lower",
"(",
")",
"==",
"header",
".",
"lower",
"(",
")",
"and",
"h",
"[",
"'value'",
"]",
"is",
"not",
"None",
":",
"if",
"regex",
"and",
"re",
".",
"search",
"(",
"value",
",",
"h",
"[",
"'value'",
"]",
",",
"flags",
"=",
"re",
".",
"IGNORECASE",
")",
":",
"return",
"True",
"elif",
"value",
"==",
"h",
"[",
"'value'",
"]",
":",
"return",
"True",
"return",
"False"
] | Function to match headers.
Since the output of headers might use different case, like:
'content-type' vs 'Content-Type'
This function is case-insensitive
:param entry: entry object
:param header_type: ``str`` of header type. Valid values:
* 'request'
* 'response'
:param header: ``str`` of the header to search for
:param value: ``str`` of value to search for
:param regex: ``bool`` indicating whether to use regex or exact match
:returns: a ``bool`` indicating whether a match was found | [
"Function",
"to",
"match",
"headers",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L40-L73 |
3,678 | mrname/haralyzer | haralyzer/assets.py | HarParser.match_content_type | def match_content_type(entry, content_type, regex=True):
"""
Matches the content type of a request using the mimeType metadata.
:param entry: ``dict`` of a single entry from a HarPage
:param content_type: ``str`` of regex to use for finding content type
:param regex: ``bool`` indicating whether to use regex or exact match.
"""
mimeType = entry['response']['content']['mimeType']
if regex and re.search(content_type, mimeType, flags=re.IGNORECASE):
return True
elif content_type == mimeType:
return True
return False | python | def match_content_type(entry, content_type, regex=True):
mimeType = entry['response']['content']['mimeType']
if regex and re.search(content_type, mimeType, flags=re.IGNORECASE):
return True
elif content_type == mimeType:
return True
return False | [
"def",
"match_content_type",
"(",
"entry",
",",
"content_type",
",",
"regex",
"=",
"True",
")",
":",
"mimeType",
"=",
"entry",
"[",
"'response'",
"]",
"[",
"'content'",
"]",
"[",
"'mimeType'",
"]",
"if",
"regex",
"and",
"re",
".",
"search",
"(",
"content_type",
",",
"mimeType",
",",
"flags",
"=",
"re",
".",
"IGNORECASE",
")",
":",
"return",
"True",
"elif",
"content_type",
"==",
"mimeType",
":",
"return",
"True",
"return",
"False"
] | Matches the content type of a request using the mimeType metadata.
:param entry: ``dict`` of a single entry from a HarPage
:param content_type: ``str`` of regex to use for finding content type
:param regex: ``bool`` indicating whether to use regex or exact match. | [
"Matches",
"the",
"content",
"type",
"of",
"a",
"request",
"using",
"the",
"mimeType",
"metadata",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L76-L92 |
3,679 | mrname/haralyzer | haralyzer/assets.py | HarParser.match_status_code | def match_status_code(self, entry, status_code, regex=True):
"""
Helper function that returns entries with a status code matching
then given `status_code` argument.
NOTE: This is doing a STRING comparison NOT NUMERICAL
:param entry: entry object to analyze
:param status_code: ``str`` of status code to search for
:param request_type: ``regex`` of request type to match
"""
if regex:
return re.search(status_code,
str(entry['response']['status'])) is not None
else:
return str(entry['response']['status']) == status_code | python | def match_status_code(self, entry, status_code, regex=True):
if regex:
return re.search(status_code,
str(entry['response']['status'])) is not None
else:
return str(entry['response']['status']) == status_code | [
"def",
"match_status_code",
"(",
"self",
",",
"entry",
",",
"status_code",
",",
"regex",
"=",
"True",
")",
":",
"if",
"regex",
":",
"return",
"re",
".",
"search",
"(",
"status_code",
",",
"str",
"(",
"entry",
"[",
"'response'",
"]",
"[",
"'status'",
"]",
")",
")",
"is",
"not",
"None",
"else",
":",
"return",
"str",
"(",
"entry",
"[",
"'response'",
"]",
"[",
"'status'",
"]",
")",
"==",
"status_code"
] | Helper function that returns entries with a status code matching
then given `status_code` argument.
NOTE: This is doing a STRING comparison NOT NUMERICAL
:param entry: entry object to analyze
:param status_code: ``str`` of status code to search for
:param request_type: ``regex`` of request type to match | [
"Helper",
"function",
"that",
"returns",
"entries",
"with",
"a",
"status",
"code",
"matching",
"then",
"given",
"status_code",
"argument",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L126-L141 |
3,680 | mrname/haralyzer | haralyzer/assets.py | HarParser.pages | def pages(self):
"""
This is a list of HarPage objects, each of which represents a page
from the HAR file.
"""
# Start with a page object for unknown entries if the HAR data has
# any entries with no page ID
pages = []
if any('pageref' not in entry for entry in self.har_data['entries']):
pages.append(HarPage('unknown', har_parser=self))
for har_page in self.har_data['pages']:
page = HarPage(har_page['id'], har_parser=self)
pages.append(page)
return pages | python | def pages(self):
# Start with a page object for unknown entries if the HAR data has
# any entries with no page ID
pages = []
if any('pageref' not in entry for entry in self.har_data['entries']):
pages.append(HarPage('unknown', har_parser=self))
for har_page in self.har_data['pages']:
page = HarPage(har_page['id'], har_parser=self)
pages.append(page)
return pages | [
"def",
"pages",
"(",
"self",
")",
":",
"# Start with a page object for unknown entries if the HAR data has",
"# any entries with no page ID",
"pages",
"=",
"[",
"]",
"if",
"any",
"(",
"'pageref'",
"not",
"in",
"entry",
"for",
"entry",
"in",
"self",
".",
"har_data",
"[",
"'entries'",
"]",
")",
":",
"pages",
".",
"append",
"(",
"HarPage",
"(",
"'unknown'",
",",
"har_parser",
"=",
"self",
")",
")",
"for",
"har_page",
"in",
"self",
".",
"har_data",
"[",
"'pages'",
"]",
":",
"page",
"=",
"HarPage",
"(",
"har_page",
"[",
"'id'",
"]",
",",
"har_parser",
"=",
"self",
")",
"pages",
".",
"append",
"(",
"page",
")",
"return",
"pages"
] | This is a list of HarPage objects, each of which represents a page
from the HAR file. | [
"This",
"is",
"a",
"list",
"of",
"HarPage",
"objects",
"each",
"of",
"which",
"represents",
"a",
"page",
"from",
"the",
"HAR",
"file",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L174-L188 |
3,681 | mrname/haralyzer | haralyzer/assets.py | HarPage.filter_entries | def filter_entries(self, request_type=None, content_type=None,
status_code=None, http_version=None, regex=True):
"""
Returns a ``list`` of entry objects based on the filter criteria.
:param request_type: ``str`` of request type (i.e. - GET or POST)
:param content_type: ``str`` of regex to use for finding content type
:param status_code: ``int`` of the desired status code
:param http_version: ``str`` of HTTP version of request
:param regex: ``bool`` indicating whether to use regex or exact match.
"""
results = []
for entry in self.entries:
"""
So yea... this is a bit ugly. We are looking for:
* The request type using self._match_request_type()
* The content type using self._match_headers()
* The HTTP response status code using self._match_status_code()
* The HTTP version using self._match_headers()
Oh lords of python.... please forgive my soul
"""
valid_entry = True
p = self.parser
if request_type is not None and not p.match_request_type(
entry, request_type, regex=regex):
valid_entry = False
if content_type is not None:
if not self.parser.match_content_type(entry, content_type,
regex=regex):
valid_entry = False
if status_code is not None and not p.match_status_code(
entry, status_code, regex=regex):
valid_entry = False
if http_version is not None and not p.match_http_version(
entry, http_version, regex=regex):
valid_entry = False
if valid_entry:
results.append(entry)
return results | python | def filter_entries(self, request_type=None, content_type=None,
status_code=None, http_version=None, regex=True):
results = []
for entry in self.entries:
"""
So yea... this is a bit ugly. We are looking for:
* The request type using self._match_request_type()
* The content type using self._match_headers()
* The HTTP response status code using self._match_status_code()
* The HTTP version using self._match_headers()
Oh lords of python.... please forgive my soul
"""
valid_entry = True
p = self.parser
if request_type is not None and not p.match_request_type(
entry, request_type, regex=regex):
valid_entry = False
if content_type is not None:
if not self.parser.match_content_type(entry, content_type,
regex=regex):
valid_entry = False
if status_code is not None and not p.match_status_code(
entry, status_code, regex=regex):
valid_entry = False
if http_version is not None and not p.match_http_version(
entry, http_version, regex=regex):
valid_entry = False
if valid_entry:
results.append(entry)
return results | [
"def",
"filter_entries",
"(",
"self",
",",
"request_type",
"=",
"None",
",",
"content_type",
"=",
"None",
",",
"status_code",
"=",
"None",
",",
"http_version",
"=",
"None",
",",
"regex",
"=",
"True",
")",
":",
"results",
"=",
"[",
"]",
"for",
"entry",
"in",
"self",
".",
"entries",
":",
"\"\"\"\n So yea... this is a bit ugly. We are looking for:\n\n * The request type using self._match_request_type()\n * The content type using self._match_headers()\n * The HTTP response status code using self._match_status_code()\n * The HTTP version using self._match_headers()\n\n Oh lords of python.... please forgive my soul\n \"\"\"",
"valid_entry",
"=",
"True",
"p",
"=",
"self",
".",
"parser",
"if",
"request_type",
"is",
"not",
"None",
"and",
"not",
"p",
".",
"match_request_type",
"(",
"entry",
",",
"request_type",
",",
"regex",
"=",
"regex",
")",
":",
"valid_entry",
"=",
"False",
"if",
"content_type",
"is",
"not",
"None",
":",
"if",
"not",
"self",
".",
"parser",
".",
"match_content_type",
"(",
"entry",
",",
"content_type",
",",
"regex",
"=",
"regex",
")",
":",
"valid_entry",
"=",
"False",
"if",
"status_code",
"is",
"not",
"None",
"and",
"not",
"p",
".",
"match_status_code",
"(",
"entry",
",",
"status_code",
",",
"regex",
"=",
"regex",
")",
":",
"valid_entry",
"=",
"False",
"if",
"http_version",
"is",
"not",
"None",
"and",
"not",
"p",
".",
"match_http_version",
"(",
"entry",
",",
"http_version",
",",
"regex",
"=",
"regex",
")",
":",
"valid_entry",
"=",
"False",
"if",
"valid_entry",
":",
"results",
".",
"append",
"(",
"entry",
")",
"return",
"results"
] | Returns a ``list`` of entry objects based on the filter criteria.
:param request_type: ``str`` of request type (i.e. - GET or POST)
:param content_type: ``str`` of regex to use for finding content type
:param status_code: ``int`` of the desired status code
:param http_version: ``str`` of HTTP version of request
:param regex: ``bool`` indicating whether to use regex or exact match. | [
"Returns",
"a",
"list",
"of",
"entry",
"objects",
"based",
"on",
"the",
"filter",
"criteria",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L308-L351 |
3,682 | mrname/haralyzer | haralyzer/assets.py | HarPage.get_load_time | def get_load_time(self, request_type=None, content_type=None,
status_code=None, asynchronous=True, **kwargs):
"""
This method can return the TOTAL load time for the assets or the ACTUAL
load time, the difference being that the actual load time takes
asynchronous transactions into account. So, if you want the total load
time, set asynchronous=False.
EXAMPLE:
I want to know the load time for images on a page that has two images,
each of which took 2 seconds to download, but the browser downloaded
them at the same time.
self.get_load_time(content_types=['image']) (returns 2)
self.get_load_time(content_types=['image'], asynchronous=False) (returns 4)
"""
entries = self.filter_entries(
request_type=request_type, content_type=content_type,
status_code=status_code
)
if "async" in kwargs:
asynchronous = kwargs['async']
if not asynchronous:
time = 0
for entry in entries:
time += entry['time']
return time
else:
return len(self.parser.create_asset_timeline(entries)) | python | def get_load_time(self, request_type=None, content_type=None,
status_code=None, asynchronous=True, **kwargs):
entries = self.filter_entries(
request_type=request_type, content_type=content_type,
status_code=status_code
)
if "async" in kwargs:
asynchronous = kwargs['async']
if not asynchronous:
time = 0
for entry in entries:
time += entry['time']
return time
else:
return len(self.parser.create_asset_timeline(entries)) | [
"def",
"get_load_time",
"(",
"self",
",",
"request_type",
"=",
"None",
",",
"content_type",
"=",
"None",
",",
"status_code",
"=",
"None",
",",
"asynchronous",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"entries",
"=",
"self",
".",
"filter_entries",
"(",
"request_type",
"=",
"request_type",
",",
"content_type",
"=",
"content_type",
",",
"status_code",
"=",
"status_code",
")",
"if",
"\"async\"",
"in",
"kwargs",
":",
"asynchronous",
"=",
"kwargs",
"[",
"'async'",
"]",
"if",
"not",
"asynchronous",
":",
"time",
"=",
"0",
"for",
"entry",
"in",
"entries",
":",
"time",
"+=",
"entry",
"[",
"'time'",
"]",
"return",
"time",
"else",
":",
"return",
"len",
"(",
"self",
".",
"parser",
".",
"create_asset_timeline",
"(",
"entries",
")",
")"
] | This method can return the TOTAL load time for the assets or the ACTUAL
load time, the difference being that the actual load time takes
asynchronous transactions into account. So, if you want the total load
time, set asynchronous=False.
EXAMPLE:
I want to know the load time for images on a page that has two images,
each of which took 2 seconds to download, but the browser downloaded
them at the same time.
self.get_load_time(content_types=['image']) (returns 2)
self.get_load_time(content_types=['image'], asynchronous=False) (returns 4) | [
"This",
"method",
"can",
"return",
"the",
"TOTAL",
"load",
"time",
"for",
"the",
"assets",
"or",
"the",
"ACTUAL",
"load",
"time",
"the",
"difference",
"being",
"that",
"the",
"actual",
"load",
"time",
"takes",
"asynchronous",
"transactions",
"into",
"account",
".",
"So",
"if",
"you",
"want",
"the",
"total",
"load",
"time",
"set",
"asynchronous",
"=",
"False",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L353-L384 |
3,683 | mrname/haralyzer | haralyzer/assets.py | HarPage.get_total_size | def get_total_size(self, entries):
"""
Returns the total size of a collection of entries.
:param entries: ``list`` of entries to calculate the total size of.
"""
size = 0
for entry in entries:
if entry['response']['bodySize'] > 0:
size += entry['response']['bodySize']
return size | python | def get_total_size(self, entries):
size = 0
for entry in entries:
if entry['response']['bodySize'] > 0:
size += entry['response']['bodySize']
return size | [
"def",
"get_total_size",
"(",
"self",
",",
"entries",
")",
":",
"size",
"=",
"0",
"for",
"entry",
"in",
"entries",
":",
"if",
"entry",
"[",
"'response'",
"]",
"[",
"'bodySize'",
"]",
">",
"0",
":",
"size",
"+=",
"entry",
"[",
"'response'",
"]",
"[",
"'bodySize'",
"]",
"return",
"size"
] | Returns the total size of a collection of entries.
:param entries: ``list`` of entries to calculate the total size of. | [
"Returns",
"the",
"total",
"size",
"of",
"a",
"collection",
"of",
"entries",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L386-L396 |
3,684 | mrname/haralyzer | haralyzer/assets.py | HarPage.get_total_size_trans | def get_total_size_trans(self, entries):
"""
Returns the total size of a collection of entries - transferred.
NOTE: use with har file generated with chrome-har-capturer
:param entries: ``list`` of entries to calculate the total size of.
"""
size = 0
for entry in entries:
if entry['response']['_transferSize'] > 0:
size += entry['response']['_transferSize']
return size | python | def get_total_size_trans(self, entries):
size = 0
for entry in entries:
if entry['response']['_transferSize'] > 0:
size += entry['response']['_transferSize']
return size | [
"def",
"get_total_size_trans",
"(",
"self",
",",
"entries",
")",
":",
"size",
"=",
"0",
"for",
"entry",
"in",
"entries",
":",
"if",
"entry",
"[",
"'response'",
"]",
"[",
"'_transferSize'",
"]",
">",
"0",
":",
"size",
"+=",
"entry",
"[",
"'response'",
"]",
"[",
"'_transferSize'",
"]",
"return",
"size"
] | Returns the total size of a collection of entries - transferred.
NOTE: use with har file generated with chrome-har-capturer
:param entries: ``list`` of entries to calculate the total size of. | [
"Returns",
"the",
"total",
"size",
"of",
"a",
"collection",
"of",
"entries",
"-",
"transferred",
"."
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L398-L410 |
3,685 | mrname/haralyzer | haralyzer/assets.py | HarPage.time_to_first_byte | def time_to_first_byte(self):
"""
Time to first byte of the page request in ms
"""
# The unknown page is just a placeholder for entries with no page ID.
# As such, it would not have a TTFB
if self.page_id == 'unknown':
return None
ttfb = 0
for entry in self.entries:
if entry['response']['status'] == 200:
for k, v in iteritems(entry['timings']):
if k != 'receive':
if v > 0:
ttfb += v
break
else:
ttfb += entry['time']
return ttfb | python | def time_to_first_byte(self):
# The unknown page is just a placeholder for entries with no page ID.
# As such, it would not have a TTFB
if self.page_id == 'unknown':
return None
ttfb = 0
for entry in self.entries:
if entry['response']['status'] == 200:
for k, v in iteritems(entry['timings']):
if k != 'receive':
if v > 0:
ttfb += v
break
else:
ttfb += entry['time']
return ttfb | [
"def",
"time_to_first_byte",
"(",
"self",
")",
":",
"# The unknown page is just a placeholder for entries with no page ID.",
"# As such, it would not have a TTFB",
"if",
"self",
".",
"page_id",
"==",
"'unknown'",
":",
"return",
"None",
"ttfb",
"=",
"0",
"for",
"entry",
"in",
"self",
".",
"entries",
":",
"if",
"entry",
"[",
"'response'",
"]",
"[",
"'status'",
"]",
"==",
"200",
":",
"for",
"k",
",",
"v",
"in",
"iteritems",
"(",
"entry",
"[",
"'timings'",
"]",
")",
":",
"if",
"k",
"!=",
"'receive'",
":",
"if",
"v",
">",
"0",
":",
"ttfb",
"+=",
"v",
"break",
"else",
":",
"ttfb",
"+=",
"entry",
"[",
"'time'",
"]",
"return",
"ttfb"
] | Time to first byte of the page request in ms | [
"Time",
"to",
"first",
"byte",
"of",
"the",
"page",
"request",
"in",
"ms"
] | 5ef38b8cfc044d2dfeacf2dd4d1efb810228309d | https://github.com/mrname/haralyzer/blob/5ef38b8cfc044d2dfeacf2dd4d1efb810228309d/haralyzer/assets.py#L449-L468 |
3,686 | kako-nawao/django-group-by | django_group_by/group.py | AggregatedGroup._data | def _data(self):
"""
Cached data built from instance raw _values as a dictionary.
"""
d = {}
# Iterate all keys and values
for k, v in self._row_values.items():
# Split related model fields
attrs = k.rsplit('__', 1)
# Set value depending case
if len(attrs) == 2:
# Related model field, store nested
fk, fn = attrs
if fk not in d:
d[fk] = {}
d[fk][fn] = v
else:
# Own model field, store directly
d[k] = v
# Return (+cache) data
return d | python | def _data(self):
d = {}
# Iterate all keys and values
for k, v in self._row_values.items():
# Split related model fields
attrs = k.rsplit('__', 1)
# Set value depending case
if len(attrs) == 2:
# Related model field, store nested
fk, fn = attrs
if fk not in d:
d[fk] = {}
d[fk][fn] = v
else:
# Own model field, store directly
d[k] = v
# Return (+cache) data
return d | [
"def",
"_data",
"(",
"self",
")",
":",
"d",
"=",
"{",
"}",
"# Iterate all keys and values",
"for",
"k",
",",
"v",
"in",
"self",
".",
"_row_values",
".",
"items",
"(",
")",
":",
"# Split related model fields",
"attrs",
"=",
"k",
".",
"rsplit",
"(",
"'__'",
",",
"1",
")",
"# Set value depending case",
"if",
"len",
"(",
"attrs",
")",
"==",
"2",
":",
"# Related model field, store nested",
"fk",
",",
"fn",
"=",
"attrs",
"if",
"fk",
"not",
"in",
"d",
":",
"d",
"[",
"fk",
"]",
"=",
"{",
"}",
"d",
"[",
"fk",
"]",
"[",
"fn",
"]",
"=",
"v",
"else",
":",
"# Own model field, store directly",
"d",
"[",
"k",
"]",
"=",
"v",
"# Return (+cache) data",
"return",
"d"
] | Cached data built from instance raw _values as a dictionary. | [
"Cached",
"data",
"built",
"from",
"instance",
"raw",
"_values",
"as",
"a",
"dictionary",
"."
] | 0d901513620acebc736722b040cff83d6483789a | https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/group.py#L19-L43 |
3,687 | kako-nawao/django-group-by | django_group_by/group.py | AggregatedGroup._set_values | def _set_values(self):
"""
Populate instance with given.
"""
# Iterate all keys and values in data
for k, v in self._data.items():
# If it's a dict, process it (it's probably instance data)
if isinstance(v, dict):
try:
# Get related model from field (follow path)
rel_model = self._model
for attr in k.split('__'):
rel_model = getattr(rel_model, attr).field.related_model
except AttributeError:
# Not a model, maybe it is a dict field (?)
pass
else:
# Model, first shorten field name
k = k.replace('__', '_')
# Now init instance if required (not if we got ID None)
if 'id' in v and v['id'] is None:
# This means we grouped by ID, if it's none then FK is None
v = None
else:
# Either we have ID or we didn't group by ID, use instance
v = rel_model(**v)
# Set value
setattr(self, k, v) | python | def _set_values(self):
# Iterate all keys and values in data
for k, v in self._data.items():
# If it's a dict, process it (it's probably instance data)
if isinstance(v, dict):
try:
# Get related model from field (follow path)
rel_model = self._model
for attr in k.split('__'):
rel_model = getattr(rel_model, attr).field.related_model
except AttributeError:
# Not a model, maybe it is a dict field (?)
pass
else:
# Model, first shorten field name
k = k.replace('__', '_')
# Now init instance if required (not if we got ID None)
if 'id' in v and v['id'] is None:
# This means we grouped by ID, if it's none then FK is None
v = None
else:
# Either we have ID or we didn't group by ID, use instance
v = rel_model(**v)
# Set value
setattr(self, k, v) | [
"def",
"_set_values",
"(",
"self",
")",
":",
"# Iterate all keys and values in data",
"for",
"k",
",",
"v",
"in",
"self",
".",
"_data",
".",
"items",
"(",
")",
":",
"# If it's a dict, process it (it's probably instance data)",
"if",
"isinstance",
"(",
"v",
",",
"dict",
")",
":",
"try",
":",
"# Get related model from field (follow path)",
"rel_model",
"=",
"self",
".",
"_model",
"for",
"attr",
"in",
"k",
".",
"split",
"(",
"'__'",
")",
":",
"rel_model",
"=",
"getattr",
"(",
"rel_model",
",",
"attr",
")",
".",
"field",
".",
"related_model",
"except",
"AttributeError",
":",
"# Not a model, maybe it is a dict field (?)",
"pass",
"else",
":",
"# Model, first shorten field name",
"k",
"=",
"k",
".",
"replace",
"(",
"'__'",
",",
"'_'",
")",
"# Now init instance if required (not if we got ID None)",
"if",
"'id'",
"in",
"v",
"and",
"v",
"[",
"'id'",
"]",
"is",
"None",
":",
"# This means we grouped by ID, if it's none then FK is None",
"v",
"=",
"None",
"else",
":",
"# Either we have ID or we didn't group by ID, use instance",
"v",
"=",
"rel_model",
"(",
"*",
"*",
"v",
")",
"# Set value",
"setattr",
"(",
"self",
",",
"k",
",",
"v",
")"
] | Populate instance with given. | [
"Populate",
"instance",
"with",
"given",
"."
] | 0d901513620acebc736722b040cff83d6483789a | https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/group.py#L45-L77 |
3,688 | kako-nawao/django-group-by | django_group_by/mixin.py | GroupByMixin._expand_group_by_fields | def _expand_group_by_fields(cls, model, fields):
"""
Expand FK fields into all related object's fields to avoid future
lookups.
:param fields: fields to "group by"
:return: expanded fields
"""
# Containers for resulting fields and related model fields
res = []
related = {}
# Add own fields and populate related fields
for field_name in fields:
if '__' in field_name:
# Related model field: append to related model's fields
fk_field_name, related_field = field_name.split('__', 1)
if fk_field_name not in related:
related[fk_field_name] = [related_field]
else:
related[fk_field_name].append(related_field)
else:
# Simple field, get the field instance
model_field = model._meta.get_field(field_name)
if isinstance(model_field, (ForeignKey, ManyToManyField)):
# It's a related field, get model
related_model = model_field.related_model
# Append all its fields with the correct prefix
res.extend('{}__{}'.format(field_name, f.column)
for f in related_model._meta.fields)
else:
# It's a common field, just append it
res.append(field_name)
# Resolve all related fields
for fk_field_name, field_names in related.items():
# Get field
fk = model._meta.get_field(fk_field_name)
# Get all fields for that related model
related_fields = cls._expand_group_by_fields(fk.related_model,
field_names)
# Append them with the correct prefix
res.extend('{}__{}'.format(fk_field_name, f) for f in related_fields)
# Return all fields
return res | python | def _expand_group_by_fields(cls, model, fields):
# Containers for resulting fields and related model fields
res = []
related = {}
# Add own fields and populate related fields
for field_name in fields:
if '__' in field_name:
# Related model field: append to related model's fields
fk_field_name, related_field = field_name.split('__', 1)
if fk_field_name not in related:
related[fk_field_name] = [related_field]
else:
related[fk_field_name].append(related_field)
else:
# Simple field, get the field instance
model_field = model._meta.get_field(field_name)
if isinstance(model_field, (ForeignKey, ManyToManyField)):
# It's a related field, get model
related_model = model_field.related_model
# Append all its fields with the correct prefix
res.extend('{}__{}'.format(field_name, f.column)
for f in related_model._meta.fields)
else:
# It's a common field, just append it
res.append(field_name)
# Resolve all related fields
for fk_field_name, field_names in related.items():
# Get field
fk = model._meta.get_field(fk_field_name)
# Get all fields for that related model
related_fields = cls._expand_group_by_fields(fk.related_model,
field_names)
# Append them with the correct prefix
res.extend('{}__{}'.format(fk_field_name, f) for f in related_fields)
# Return all fields
return res | [
"def",
"_expand_group_by_fields",
"(",
"cls",
",",
"model",
",",
"fields",
")",
":",
"# Containers for resulting fields and related model fields",
"res",
"=",
"[",
"]",
"related",
"=",
"{",
"}",
"# Add own fields and populate related fields",
"for",
"field_name",
"in",
"fields",
":",
"if",
"'__'",
"in",
"field_name",
":",
"# Related model field: append to related model's fields",
"fk_field_name",
",",
"related_field",
"=",
"field_name",
".",
"split",
"(",
"'__'",
",",
"1",
")",
"if",
"fk_field_name",
"not",
"in",
"related",
":",
"related",
"[",
"fk_field_name",
"]",
"=",
"[",
"related_field",
"]",
"else",
":",
"related",
"[",
"fk_field_name",
"]",
".",
"append",
"(",
"related_field",
")",
"else",
":",
"# Simple field, get the field instance",
"model_field",
"=",
"model",
".",
"_meta",
".",
"get_field",
"(",
"field_name",
")",
"if",
"isinstance",
"(",
"model_field",
",",
"(",
"ForeignKey",
",",
"ManyToManyField",
")",
")",
":",
"# It's a related field, get model",
"related_model",
"=",
"model_field",
".",
"related_model",
"# Append all its fields with the correct prefix",
"res",
".",
"extend",
"(",
"'{}__{}'",
".",
"format",
"(",
"field_name",
",",
"f",
".",
"column",
")",
"for",
"f",
"in",
"related_model",
".",
"_meta",
".",
"fields",
")",
"else",
":",
"# It's a common field, just append it",
"res",
".",
"append",
"(",
"field_name",
")",
"# Resolve all related fields",
"for",
"fk_field_name",
",",
"field_names",
"in",
"related",
".",
"items",
"(",
")",
":",
"# Get field",
"fk",
"=",
"model",
".",
"_meta",
".",
"get_field",
"(",
"fk_field_name",
")",
"# Get all fields for that related model",
"related_fields",
"=",
"cls",
".",
"_expand_group_by_fields",
"(",
"fk",
".",
"related_model",
",",
"field_names",
")",
"# Append them with the correct prefix",
"res",
".",
"extend",
"(",
"'{}__{}'",
".",
"format",
"(",
"fk_field_name",
",",
"f",
")",
"for",
"f",
"in",
"related_fields",
")",
"# Return all fields",
"return",
"res"
] | Expand FK fields into all related object's fields to avoid future
lookups.
:param fields: fields to "group by"
:return: expanded fields | [
"Expand",
"FK",
"fields",
"into",
"all",
"related",
"object",
"s",
"fields",
"to",
"avoid",
"future",
"lookups",
"."
] | 0d901513620acebc736722b040cff83d6483789a | https://github.com/kako-nawao/django-group-by/blob/0d901513620acebc736722b040cff83d6483789a/django_group_by/mixin.py#L23-L74 |
3,689 | SiLab-Bonn/basil | basil/TL/Dummy.py | Dummy.write | def write(self, addr, data):
'''Write to dummy memory
Parameters
----------
addr : int
The register address.
data : list, tuple
Data (byte array) to be written.
Returns
-------
nothing
'''
logger.debug(
"Dummy SiTransferLayer.write addr: %s data: %s" % (hex(addr), data))
for curr_addr, d in enumerate(data, start=addr):
self.mem[curr_addr] = array.array('B', [d])[0] | python | def write(self, addr, data):
'''Write to dummy memory
Parameters
----------
addr : int
The register address.
data : list, tuple
Data (byte array) to be written.
Returns
-------
nothing
'''
logger.debug(
"Dummy SiTransferLayer.write addr: %s data: %s" % (hex(addr), data))
for curr_addr, d in enumerate(data, start=addr):
self.mem[curr_addr] = array.array('B', [d])[0] | [
"def",
"write",
"(",
"self",
",",
"addr",
",",
"data",
")",
":",
"logger",
".",
"debug",
"(",
"\"Dummy SiTransferLayer.write addr: %s data: %s\"",
"%",
"(",
"hex",
"(",
"addr",
")",
",",
"data",
")",
")",
"for",
"curr_addr",
",",
"d",
"in",
"enumerate",
"(",
"data",
",",
"start",
"=",
"addr",
")",
":",
"self",
".",
"mem",
"[",
"curr_addr",
"]",
"=",
"array",
".",
"array",
"(",
"'B'",
",",
"[",
"d",
"]",
")",
"[",
"0",
"]"
] | Write to dummy memory
Parameters
----------
addr : int
The register address.
data : list, tuple
Data (byte array) to be written.
Returns
-------
nothing | [
"Write",
"to",
"dummy",
"memory"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/TL/Dummy.py#L36-L53 |
3,690 | SiLab-Bonn/basil | basil/utils/BitLogic.py | BitLogic._swap_slice_indices | def _swap_slice_indices(self, slc, make_slice=False):
'''Swap slice indices
Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing.
'''
try:
start = slc.start
stop = slc.stop
slc_step = slc.step
except AttributeError:
if make_slice:
if slc < 0:
slc += self.length()
return slice(slc, slc + 1)
else:
return slc
else:
if not start and start != 0:
slc_stop = self.length()
elif start < 0:
slc_stop = self.length() + start + 1
else:
slc_stop = start + 1
if not stop and stop != 0:
slc_start = 0
elif stop < 0:
slc_start = self.length() + stop
else:
slc_start = stop
return slice(slc_start, slc_stop, slc_step) | python | def _swap_slice_indices(self, slc, make_slice=False):
'''Swap slice indices
Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing.
'''
try:
start = slc.start
stop = slc.stop
slc_step = slc.step
except AttributeError:
if make_slice:
if slc < 0:
slc += self.length()
return slice(slc, slc + 1)
else:
return slc
else:
if not start and start != 0:
slc_stop = self.length()
elif start < 0:
slc_stop = self.length() + start + 1
else:
slc_stop = start + 1
if not stop and stop != 0:
slc_start = 0
elif stop < 0:
slc_start = self.length() + stop
else:
slc_start = stop
return slice(slc_start, slc_stop, slc_step) | [
"def",
"_swap_slice_indices",
"(",
"self",
",",
"slc",
",",
"make_slice",
"=",
"False",
")",
":",
"try",
":",
"start",
"=",
"slc",
".",
"start",
"stop",
"=",
"slc",
".",
"stop",
"slc_step",
"=",
"slc",
".",
"step",
"except",
"AttributeError",
":",
"if",
"make_slice",
":",
"if",
"slc",
"<",
"0",
":",
"slc",
"+=",
"self",
".",
"length",
"(",
")",
"return",
"slice",
"(",
"slc",
",",
"slc",
"+",
"1",
")",
"else",
":",
"return",
"slc",
"else",
":",
"if",
"not",
"start",
"and",
"start",
"!=",
"0",
":",
"slc_stop",
"=",
"self",
".",
"length",
"(",
")",
"elif",
"start",
"<",
"0",
":",
"slc_stop",
"=",
"self",
".",
"length",
"(",
")",
"+",
"start",
"+",
"1",
"else",
":",
"slc_stop",
"=",
"start",
"+",
"1",
"if",
"not",
"stop",
"and",
"stop",
"!=",
"0",
":",
"slc_start",
"=",
"0",
"elif",
"stop",
"<",
"0",
":",
"slc_start",
"=",
"self",
".",
"length",
"(",
")",
"+",
"stop",
"else",
":",
"slc_start",
"=",
"stop",
"return",
"slice",
"(",
"slc_start",
",",
"slc_stop",
",",
"slc_step",
")"
] | Swap slice indices
Change slice indices from Verilog slicing (e.g. IEEE 1800-2012) to Python slicing. | [
"Swap",
"slice",
"indices"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/BitLogic.py#L107-L136 |
3,691 | SiLab-Bonn/basil | examples/lx9/host/lx9.py | Pixel._clear_strobes | def _clear_strobes(self):
"""
Resets the "enable" and "load" output streams to all 0.
"""
#reset some stuff
self['SEQ']['GLOBAL_SHIFT_EN'].setall(False)
self['SEQ']['GLOBAL_CTR_LD'].setall(False)
self['SEQ']['GLOBAL_DAC_LD'].setall(False)
self['SEQ']['PIXEL_SHIFT_EN'].setall(False)
self['SEQ']['INJECTION'].setall(False) | python | def _clear_strobes(self):
#reset some stuff
self['SEQ']['GLOBAL_SHIFT_EN'].setall(False)
self['SEQ']['GLOBAL_CTR_LD'].setall(False)
self['SEQ']['GLOBAL_DAC_LD'].setall(False)
self['SEQ']['PIXEL_SHIFT_EN'].setall(False)
self['SEQ']['INJECTION'].setall(False) | [
"def",
"_clear_strobes",
"(",
"self",
")",
":",
"#reset some stuff",
"self",
"[",
"'SEQ'",
"]",
"[",
"'GLOBAL_SHIFT_EN'",
"]",
".",
"setall",
"(",
"False",
")",
"self",
"[",
"'SEQ'",
"]",
"[",
"'GLOBAL_CTR_LD'",
"]",
".",
"setall",
"(",
"False",
")",
"self",
"[",
"'SEQ'",
"]",
"[",
"'GLOBAL_DAC_LD'",
"]",
".",
"setall",
"(",
"False",
")",
"self",
"[",
"'SEQ'",
"]",
"[",
"'PIXEL_SHIFT_EN'",
"]",
".",
"setall",
"(",
"False",
")",
"self",
"[",
"'SEQ'",
"]",
"[",
"'INJECTION'",
"]",
".",
"setall",
"(",
"False",
")"
] | Resets the "enable" and "load" output streams to all 0. | [
"Resets",
"the",
"enable",
"and",
"load",
"output",
"streams",
"to",
"all",
"0",
"."
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/examples/lx9/host/lx9.py#L91-L101 |
3,692 | SiLab-Bonn/basil | basil/HL/spi.py | spi.set_data | def set_data(self, data, addr=0):
'''
Sets data for outgoing stream
'''
if self._mem_bytes < len(data):
raise ValueError('Size of data (%d bytes) is too big for memory (%d bytes)' % (len(data), self._mem_bytes))
self._intf.write(self._conf['base_addr'] + self._spi_mem_offset + addr, data) | python | def set_data(self, data, addr=0):
'''
Sets data for outgoing stream
'''
if self._mem_bytes < len(data):
raise ValueError('Size of data (%d bytes) is too big for memory (%d bytes)' % (len(data), self._mem_bytes))
self._intf.write(self._conf['base_addr'] + self._spi_mem_offset + addr, data) | [
"def",
"set_data",
"(",
"self",
",",
"data",
",",
"addr",
"=",
"0",
")",
":",
"if",
"self",
".",
"_mem_bytes",
"<",
"len",
"(",
"data",
")",
":",
"raise",
"ValueError",
"(",
"'Size of data (%d bytes) is too big for memory (%d bytes)'",
"%",
"(",
"len",
"(",
"data",
")",
",",
"self",
".",
"_mem_bytes",
")",
")",
"self",
".",
"_intf",
".",
"write",
"(",
"self",
".",
"_conf",
"[",
"'base_addr'",
"]",
"+",
"self",
".",
"_spi_mem_offset",
"+",
"addr",
",",
"data",
")"
] | Sets data for outgoing stream | [
"Sets",
"data",
"for",
"outgoing",
"stream"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/spi.py#L107-L113 |
3,693 | SiLab-Bonn/basil | basil/HL/spi.py | spi.get_data | def get_data(self, size=None, addr=None):
'''
Gets data for incoming stream
'''
# readback memory offset
if addr is None:
addr = self._mem_bytes
if size and self._mem_bytes < size:
raise ValueError('Size is too big')
if size is None:
return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, self._mem_bytes)
else:
return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, size) | python | def get_data(self, size=None, addr=None):
'''
Gets data for incoming stream
'''
# readback memory offset
if addr is None:
addr = self._mem_bytes
if size and self._mem_bytes < size:
raise ValueError('Size is too big')
if size is None:
return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, self._mem_bytes)
else:
return self._intf.read(self._conf['base_addr'] + self._spi_mem_offset + addr, size) | [
"def",
"get_data",
"(",
"self",
",",
"size",
"=",
"None",
",",
"addr",
"=",
"None",
")",
":",
"# readback memory offset",
"if",
"addr",
"is",
"None",
":",
"addr",
"=",
"self",
".",
"_mem_bytes",
"if",
"size",
"and",
"self",
".",
"_mem_bytes",
"<",
"size",
":",
"raise",
"ValueError",
"(",
"'Size is too big'",
")",
"if",
"size",
"is",
"None",
":",
"return",
"self",
".",
"_intf",
".",
"read",
"(",
"self",
".",
"_conf",
"[",
"'base_addr'",
"]",
"+",
"self",
".",
"_spi_mem_offset",
"+",
"addr",
",",
"self",
".",
"_mem_bytes",
")",
"else",
":",
"return",
"self",
".",
"_intf",
".",
"read",
"(",
"self",
".",
"_conf",
"[",
"'base_addr'",
"]",
"+",
"self",
".",
"_spi_mem_offset",
"+",
"addr",
",",
"size",
")"
] | Gets data for incoming stream | [
"Gets",
"data",
"for",
"incoming",
"stream"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/spi.py#L116-L130 |
3,694 | SiLab-Bonn/basil | basil/HL/GPAC.py | GPAC.read_eeprom_calibration | def read_eeprom_calibration(self): # use default values for temperature, EEPROM values are usually not calibrated and random
'''Reading EEPROM calibration for sources and regulators
'''
header = self.get_format()
if header == self.HEADER_GPAC:
data = self._read_eeprom(self.CAL_DATA_ADDR, size=calcsize(self.CAL_DATA_GPAC_FORMAT))
for idx, channel in enumerate(self._ch_cal.iterkeys()):
ch_data = data[idx * calcsize(self.CAL_DATA_CH_GPAC_FORMAT):(idx + 1) * calcsize(self.CAL_DATA_CH_GPAC_FORMAT)]
values = unpack_from(self.CAL_DATA_CH_GPAC_FORMAT, ch_data)
self._ch_cal[channel]['name'] = "".join([c for c in values[0] if (c in string.printable)]) # values[0].strip()
self._ch_cal[channel]['default'] = values[1]
self._ch_cal[channel]['min'] = values[2]
self._ch_cal[channel]['max'] = values[3]
self._ch_cal[channel]['ADCI']['gain'] = -values[4] # fix gain sign
self._ch_cal[channel]['ADCI']['offset'] = values[5]
self._ch_cal[channel]['ADCV']['gain'] = values[6]
self._ch_cal[channel]['ADCV']['offset'] = values[7]
self._ch_cal[channel]['DAC']['gain'] = values[8]
self._ch_cal[channel]['DAC']['offset'] = values[9]
self._ch_cal[channel]['limit'] = values[10]
else:
raise ValueError('EEPROM data format not supported (header: %s)' % header) | python | def read_eeprom_calibration(self): # use default values for temperature, EEPROM values are usually not calibrated and random
'''Reading EEPROM calibration for sources and regulators
'''
header = self.get_format()
if header == self.HEADER_GPAC:
data = self._read_eeprom(self.CAL_DATA_ADDR, size=calcsize(self.CAL_DATA_GPAC_FORMAT))
for idx, channel in enumerate(self._ch_cal.iterkeys()):
ch_data = data[idx * calcsize(self.CAL_DATA_CH_GPAC_FORMAT):(idx + 1) * calcsize(self.CAL_DATA_CH_GPAC_FORMAT)]
values = unpack_from(self.CAL_DATA_CH_GPAC_FORMAT, ch_data)
self._ch_cal[channel]['name'] = "".join([c for c in values[0] if (c in string.printable)]) # values[0].strip()
self._ch_cal[channel]['default'] = values[1]
self._ch_cal[channel]['min'] = values[2]
self._ch_cal[channel]['max'] = values[3]
self._ch_cal[channel]['ADCI']['gain'] = -values[4] # fix gain sign
self._ch_cal[channel]['ADCI']['offset'] = values[5]
self._ch_cal[channel]['ADCV']['gain'] = values[6]
self._ch_cal[channel]['ADCV']['offset'] = values[7]
self._ch_cal[channel]['DAC']['gain'] = values[8]
self._ch_cal[channel]['DAC']['offset'] = values[9]
self._ch_cal[channel]['limit'] = values[10]
else:
raise ValueError('EEPROM data format not supported (header: %s)' % header) | [
"def",
"read_eeprom_calibration",
"(",
"self",
")",
":",
"# use default values for temperature, EEPROM values are usually not calibrated and random",
"header",
"=",
"self",
".",
"get_format",
"(",
")",
"if",
"header",
"==",
"self",
".",
"HEADER_GPAC",
":",
"data",
"=",
"self",
".",
"_read_eeprom",
"(",
"self",
".",
"CAL_DATA_ADDR",
",",
"size",
"=",
"calcsize",
"(",
"self",
".",
"CAL_DATA_GPAC_FORMAT",
")",
")",
"for",
"idx",
",",
"channel",
"in",
"enumerate",
"(",
"self",
".",
"_ch_cal",
".",
"iterkeys",
"(",
")",
")",
":",
"ch_data",
"=",
"data",
"[",
"idx",
"*",
"calcsize",
"(",
"self",
".",
"CAL_DATA_CH_GPAC_FORMAT",
")",
":",
"(",
"idx",
"+",
"1",
")",
"*",
"calcsize",
"(",
"self",
".",
"CAL_DATA_CH_GPAC_FORMAT",
")",
"]",
"values",
"=",
"unpack_from",
"(",
"self",
".",
"CAL_DATA_CH_GPAC_FORMAT",
",",
"ch_data",
")",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'name'",
"]",
"=",
"\"\"",
".",
"join",
"(",
"[",
"c",
"for",
"c",
"in",
"values",
"[",
"0",
"]",
"if",
"(",
"c",
"in",
"string",
".",
"printable",
")",
"]",
")",
"# values[0].strip()",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'default'",
"]",
"=",
"values",
"[",
"1",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'min'",
"]",
"=",
"values",
"[",
"2",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'max'",
"]",
"=",
"values",
"[",
"3",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'ADCI'",
"]",
"[",
"'gain'",
"]",
"=",
"-",
"values",
"[",
"4",
"]",
"# fix gain sign",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'ADCI'",
"]",
"[",
"'offset'",
"]",
"=",
"values",
"[",
"5",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'ADCV'",
"]",
"[",
"'gain'",
"]",
"=",
"values",
"[",
"6",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'ADCV'",
"]",
"[",
"'offset'",
"]",
"=",
"values",
"[",
"7",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'DAC'",
"]",
"[",
"'gain'",
"]",
"=",
"values",
"[",
"8",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'DAC'",
"]",
"[",
"'offset'",
"]",
"=",
"values",
"[",
"9",
"]",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'limit'",
"]",
"=",
"values",
"[",
"10",
"]",
"else",
":",
"raise",
"ValueError",
"(",
"'EEPROM data format not supported (header: %s)'",
"%",
"header",
")"
] | Reading EEPROM calibration for sources and regulators | [
"Reading",
"EEPROM",
"calibration",
"for",
"sources",
"and",
"regulators"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L716-L737 |
3,695 | SiLab-Bonn/basil | basil/HL/GPAC.py | GPAC.get_over_current | def get_over_current(self, channel):
'''Reading over current status of power channel
'''
try:
bit = self._ch_map[channel]['GPIOOC']['bit']
except KeyError:
raise ValueError('get_over_current() not supported for channel %s' % channel)
return not self._get_power_gpio_value(bit) | python | def get_over_current(self, channel):
'''Reading over current status of power channel
'''
try:
bit = self._ch_map[channel]['GPIOOC']['bit']
except KeyError:
raise ValueError('get_over_current() not supported for channel %s' % channel)
return not self._get_power_gpio_value(bit) | [
"def",
"get_over_current",
"(",
"self",
",",
"channel",
")",
":",
"try",
":",
"bit",
"=",
"self",
".",
"_ch_map",
"[",
"channel",
"]",
"[",
"'GPIOOC'",
"]",
"[",
"'bit'",
"]",
"except",
"KeyError",
":",
"raise",
"ValueError",
"(",
"'get_over_current() not supported for channel %s'",
"%",
"channel",
")",
"return",
"not",
"self",
".",
"_get_power_gpio_value",
"(",
"bit",
")"
] | Reading over current status of power channel | [
"Reading",
"over",
"current",
"status",
"of",
"power",
"channel"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L830-L837 |
3,696 | SiLab-Bonn/basil | basil/HL/GPAC.py | GPAC.set_current | def set_current(self, channel, value, unit='A'):
'''Setting current of current source
'''
dac_offset = self._ch_cal[channel]['DAC']['offset']
dac_gain = self._ch_cal[channel]['DAC']['gain']
if unit == 'raw':
value = value
elif unit == 'A':
value = int((-value * 1000000 - dac_offset) / dac_gain) # fix sign of output
elif unit == 'mA':
value = int((-value * 1000 - dac_offset) / dac_gain) # fix sign of output
elif unit == 'uA':
value = int((-value - dac_offset) / dac_gain) # fix sign of output
else:
raise TypeError("Invalid unit type.")
self._set_dac_value(channel=channel, value=value) | python | def set_current(self, channel, value, unit='A'):
'''Setting current of current source
'''
dac_offset = self._ch_cal[channel]['DAC']['offset']
dac_gain = self._ch_cal[channel]['DAC']['gain']
if unit == 'raw':
value = value
elif unit == 'A':
value = int((-value * 1000000 - dac_offset) / dac_gain) # fix sign of output
elif unit == 'mA':
value = int((-value * 1000 - dac_offset) / dac_gain) # fix sign of output
elif unit == 'uA':
value = int((-value - dac_offset) / dac_gain) # fix sign of output
else:
raise TypeError("Invalid unit type.")
self._set_dac_value(channel=channel, value=value) | [
"def",
"set_current",
"(",
"self",
",",
"channel",
",",
"value",
",",
"unit",
"=",
"'A'",
")",
":",
"dac_offset",
"=",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'DAC'",
"]",
"[",
"'offset'",
"]",
"dac_gain",
"=",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'DAC'",
"]",
"[",
"'gain'",
"]",
"if",
"unit",
"==",
"'raw'",
":",
"value",
"=",
"value",
"elif",
"unit",
"==",
"'A'",
":",
"value",
"=",
"int",
"(",
"(",
"-",
"value",
"*",
"1000000",
"-",
"dac_offset",
")",
"/",
"dac_gain",
")",
"# fix sign of output",
"elif",
"unit",
"==",
"'mA'",
":",
"value",
"=",
"int",
"(",
"(",
"-",
"value",
"*",
"1000",
"-",
"dac_offset",
")",
"/",
"dac_gain",
")",
"# fix sign of output",
"elif",
"unit",
"==",
"'uA'",
":",
"value",
"=",
"int",
"(",
"(",
"-",
"value",
"-",
"dac_offset",
")",
"/",
"dac_gain",
")",
"# fix sign of output",
"else",
":",
"raise",
"TypeError",
"(",
"\"Invalid unit type.\"",
")",
"self",
".",
"_set_dac_value",
"(",
"channel",
"=",
"channel",
",",
"value",
"=",
"value",
")"
] | Setting current of current source | [
"Setting",
"current",
"of",
"current",
"source"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/GPAC.py#L858-L874 |
3,697 | SiLab-Bonn/basil | basil/HL/bram_fifo.py | bram_fifo.get_data | def get_data(self):
''' Reading data in BRAM.
Returns
-------
array : numpy.ndarray
Array of unsigned integers (32 bit).
'''
fifo_int_size_1 = self.FIFO_INT_SIZE
fifo_int_size_2 = self.FIFO_INT_SIZE
if fifo_int_size_1 > fifo_int_size_2:
fifo_int_size = fifo_int_size_2 # use smaller chunk
logger.warning("Reading wrong FIFO size. Expected: %d <= %d" % (fifo_int_size_1, fifo_int_size_2))
else:
fifo_int_size = fifo_int_size_1 # use smaller chunk
return np.frombuffer(self._intf.read(self._conf['base_data_addr'], size=4 * fifo_int_size), dtype=np.dtype('<u4')) | python | def get_data(self):
''' Reading data in BRAM.
Returns
-------
array : numpy.ndarray
Array of unsigned integers (32 bit).
'''
fifo_int_size_1 = self.FIFO_INT_SIZE
fifo_int_size_2 = self.FIFO_INT_SIZE
if fifo_int_size_1 > fifo_int_size_2:
fifo_int_size = fifo_int_size_2 # use smaller chunk
logger.warning("Reading wrong FIFO size. Expected: %d <= %d" % (fifo_int_size_1, fifo_int_size_2))
else:
fifo_int_size = fifo_int_size_1 # use smaller chunk
return np.frombuffer(self._intf.read(self._conf['base_data_addr'], size=4 * fifo_int_size), dtype=np.dtype('<u4')) | [
"def",
"get_data",
"(",
"self",
")",
":",
"fifo_int_size_1",
"=",
"self",
".",
"FIFO_INT_SIZE",
"fifo_int_size_2",
"=",
"self",
".",
"FIFO_INT_SIZE",
"if",
"fifo_int_size_1",
">",
"fifo_int_size_2",
":",
"fifo_int_size",
"=",
"fifo_int_size_2",
"# use smaller chunk",
"logger",
".",
"warning",
"(",
"\"Reading wrong FIFO size. Expected: %d <= %d\"",
"%",
"(",
"fifo_int_size_1",
",",
"fifo_int_size_2",
")",
")",
"else",
":",
"fifo_int_size",
"=",
"fifo_int_size_1",
"# use smaller chunk",
"return",
"np",
".",
"frombuffer",
"(",
"self",
".",
"_intf",
".",
"read",
"(",
"self",
".",
"_conf",
"[",
"'base_data_addr'",
"]",
",",
"size",
"=",
"4",
"*",
"fifo_int_size",
")",
",",
"dtype",
"=",
"np",
".",
"dtype",
"(",
"'<u4'",
")",
")"
] | Reading data in BRAM.
Returns
-------
array : numpy.ndarray
Array of unsigned integers (32 bit). | [
"Reading",
"data",
"in",
"BRAM",
"."
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/bram_fifo.py#L60-L75 |
3,698 | SiLab-Bonn/basil | basil/HL/FEI4AdapterCard.py | Fei4Dcs.set_default | def set_default(self, channels=None):
'''Setting default voltage
'''
if not channels:
channels = self._ch_cal.keys()
for channel in channels:
self.set_voltage(channel, self._ch_cal[channel]['default'], unit='V') | python | def set_default(self, channels=None):
'''Setting default voltage
'''
if not channels:
channels = self._ch_cal.keys()
for channel in channels:
self.set_voltage(channel, self._ch_cal[channel]['default'], unit='V') | [
"def",
"set_default",
"(",
"self",
",",
"channels",
"=",
"None",
")",
":",
"if",
"not",
"channels",
":",
"channels",
"=",
"self",
".",
"_ch_cal",
".",
"keys",
"(",
")",
"for",
"channel",
"in",
"channels",
":",
"self",
".",
"set_voltage",
"(",
"channel",
",",
"self",
".",
"_ch_cal",
"[",
"channel",
"]",
"[",
"'default'",
"]",
",",
"unit",
"=",
"'V'",
")"
] | Setting default voltage | [
"Setting",
"default",
"voltage"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/HL/FEI4AdapterCard.py#L140-L146 |
3,699 | SiLab-Bonn/basil | basil/utils/sim/Protocol.py | PickleInterface.send | def send(self, obj):
"""Prepend a 4-byte length to the string"""
assert isinstance(obj, ProtocolBase)
string = pickle.dumps(obj)
length = len(string)
self.sock.sendall(struct.pack("<I", length) + string) | python | def send(self, obj):
assert isinstance(obj, ProtocolBase)
string = pickle.dumps(obj)
length = len(string)
self.sock.sendall(struct.pack("<I", length) + string) | [
"def",
"send",
"(",
"self",
",",
"obj",
")",
":",
"assert",
"isinstance",
"(",
"obj",
",",
"ProtocolBase",
")",
"string",
"=",
"pickle",
".",
"dumps",
"(",
"obj",
")",
"length",
"=",
"len",
"(",
"string",
")",
"self",
".",
"sock",
".",
"sendall",
"(",
"struct",
".",
"pack",
"(",
"\"<I\"",
",",
"length",
")",
"+",
"string",
")"
] | Prepend a 4-byte length to the string | [
"Prepend",
"a",
"4",
"-",
"byte",
"length",
"to",
"the",
"string"
] | 99052482d9334dd1f5598eb2d2fb4d5399a32291 | https://github.com/SiLab-Bonn/basil/blob/99052482d9334dd1f5598eb2d2fb4d5399a32291/basil/utils/sim/Protocol.py#L57-L62 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.