|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: string |
|
- name: eng |
|
dtype: string |
|
- name: afr |
|
dtype: string |
|
- name: amh |
|
dtype: string |
|
- name: bem |
|
dtype: string |
|
- name: cjk |
|
dtype: string |
|
- name: dik |
|
dtype: string |
|
- name: dyu |
|
dtype: string |
|
- name: ewe |
|
dtype: string |
|
- name: fuv |
|
dtype: string |
|
- name: hau |
|
dtype: string |
|
- name: ibo |
|
dtype: string |
|
- name: kik |
|
dtype: string |
|
- name: kab |
|
dtype: string |
|
- name: kam |
|
dtype: string |
|
- name: kon |
|
dtype: string |
|
- name: kmb |
|
dtype: string |
|
- name: lua |
|
dtype: string |
|
- name: lug |
|
dtype: string |
|
- name: lin |
|
dtype: string |
|
- name: kin |
|
dtype: string |
|
- name: yor |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 12340971 |
|
num_examples: 8091 |
|
download_size: 5936673 |
|
dataset_size: 12340971 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: apache-2.0 |
|
task_categories: |
|
- translation |
|
--- |
|
|
|
|
|
## AfriMMD - African Multilingual Multimodal Dataset (POC) |
|
AfriMMD is a multilingual dataset created to enhance linguistic diversity in AI, |
|
focusing on African languages. This is a proof-of-concept experiment on the use |
|
of multimodal datasets to represent African languages in AI. The dataset contains |
|
translations of the captions in the widely-used Flickr8k dataset into 20 African |
|
languages. The goal is to address the underrepresentation of African languages |
|
in AI and foster more inclusive AI technologies. The image-text pairs have been |
|
carefully translated into multiple African languages, providing an avenue |
|
for advanced and inclusive AI development, particularly in multimodal tasks that |
|
involve both text and images. |
|
|
|
Images associated with the dataset can manually be downloaded from [Github](https://github.com/jbrownlee/Datasets/releases/tag/Flickr8k) |
|
or [Kaggle](https://www.kaggle.com/datasets/adityajn105/flickr8k?select=Images) |
|
|
|
## Supported Languages |
|
Amharic (amh), Bemba (bem), Chokwe (cjk), Rek (dik), Dyula (dyu), Ewe (ewe), |
|
Fulfulde (fuv), Hausa (hau), Igbo (ibo), Kikuyu (kik), Kabyle (kab), |
|
Kamba (kam), Kikongo (kon), Kimbundu (kmb), LubaKasai (lua), Ganda (lug), |
|
Lingala (lin), Kinyarwanda (kin), Yoruba (yor) |
|
|
|
|
|
## Load Dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('AfriMM/AfriMMD') |
|
``` |
|
|
|
## Applications |
|
- Multilingual multimodal tasks (eg: image captioning in African languages, pre-trained vision-language models, etc.) |
|
- Translation and language learning for supported African languages. |
|
- Research on cross-cultural understanding and representation in AI. |
|
|
|
|
|
## Citation |
|
```bibtex |
|
@dataset{afrimm2024, |
|
author = {AfriMM - ML Collective}, |
|
title = {AfriMMD: Multimodal Dataset for African Languages}, |
|
year = 2024, |
|
url = {https://huggingface.co/datasets/AfriMM/AfriMMD} |
|
} |
|
``` |