code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def get_protein_data_pgrouped(proteindata, p_acc, headerfields): """Parses protein data for a certain protein into tsv output dictionary""" report = get_protein_data_base(proteindata, p_acc, headerfields) return get_cov_protnumbers(proteindata, p_acc, report)
Parses protein data for a certain protein into tsv output dictionary
def truncate(self, length): """Return a new `Multihash` with a shorter digest `length`. If the given `length` is greater than the original, a `ValueError` is raised. >>> mh1 = Multihash(0x01, b'FOOBAR') >>> mh2 = mh1.truncate(3) >>> mh2 == (0x01, b'FOO') True >>> mh3 = mh1.truncate(10) Traceback (most recent call last): ... ValueError: cannot enlarge the original digest by 4 bytes """ if length > len(self.digest): raise ValueError("cannot enlarge the original digest by %d bytes" % (length - len(self.digest))) return self.__class__(self.func, self.digest[:length])
Return a new `Multihash` with a shorter digest `length`. If the given `length` is greater than the original, a `ValueError` is raised. >>> mh1 = Multihash(0x01, b'FOOBAR') >>> mh2 = mh1.truncate(3) >>> mh2 == (0x01, b'FOO') True >>> mh3 = mh1.truncate(10) Traceback (most recent call last): ... ValueError: cannot enlarge the original digest by 4 bytes
def _process_state(cls, unprocessed, processed, state): """Preprocess a single state definition.""" assert type(state) is str, "wrong state name %r" % state assert state[0] != '#', "invalid state name %r" % state if state in processed: return processed[state] tokens = processed[state] = [] rflags = cls.flags for tdef in unprocessed[state]: if isinstance(tdef, include): # it's a state reference assert tdef != state, "circular state reference %r" % state tokens.extend(cls._process_state(unprocessed, processed, str(tdef))) continue if isinstance(tdef, _inherit): # should be processed already, but may not in the case of: # 1. the state has no counterpart in any parent # 2. the state includes more than one 'inherit' continue if isinstance(tdef, default): new_state = cls._process_new_state(tdef.state, unprocessed, processed) tokens.append((re.compile('').match, None, new_state)) continue assert type(tdef) is tuple, "wrong rule def %r" % tdef try: rex = cls._process_regex(tdef[0], rflags, state) except Exception as err: raise ValueError("uncompilable regex %r in state %r of %r: %s" % (tdef[0], state, cls, err)) token = cls._process_token(tdef[1]) if len(tdef) == 2: new_state = None else: new_state = cls._process_new_state(tdef[2], unprocessed, processed) tokens.append((rex, token, new_state)) return tokens
Preprocess a single state definition.
def get_context_data(self, **kwargs): """Add context data to view""" context = super().get_context_data(**kwargs) tabs = self.get_active_tabs() context.update({ 'page_detail_tabs': tabs, 'active_tab': tabs[0].code if tabs else '', 'app_label': self.get_app_label(), 'model_name': self.get_model_name(), 'model_alias': self.get_model_alias(), 'model_verbose_name': self.object._meta.verbose_name.title(), 'back_url': self.get_back_url(), 'edit_url': self.get_edit_url(), 'delete_url': self.get_delete_url(), 'title': self.title, }) return context
Add context data to view
def lx4num(string, first): """ Scan a string from a specified starting position for the end of a number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/lx4num_c.html :param string: Any character string. :type string: str :param first: First character to scan from in string. :type first: int :return: last and nchar :rtype: tuple """ string = stypes.stringToCharP(string) first = ctypes.c_int(first) last = ctypes.c_int() nchar = ctypes.c_int() libspice.lx4num_c(string, first, ctypes.byref(last), ctypes.byref(nchar)) return last.value, nchar.value
Scan a string from a specified starting position for the end of a number. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/lx4num_c.html :param string: Any character string. :type string: str :param first: First character to scan from in string. :type first: int :return: last and nchar :rtype: tuple
def fmap(self, f: Callable[[T], B]) -> 'List[B]': """doufo.List.fmap: map `List` Args: `self`: `f` (`Callable[[T], B]`): any callable funtion Returns: return (`List[B]`): A `List` of objected from `f`. Raises: """ return List([f(x) for x in self.unbox()])
doufo.List.fmap: map `List` Args: `self`: `f` (`Callable[[T], B]`): any callable funtion Returns: return (`List[B]`): A `List` of objected from `f`. Raises:
def is_valid_mac(addr): """Check the syntax of a given mac address. The acceptable format is xx:xx:xx:xx:xx:xx """ addrs = addr.split(':') if len(addrs) != 6: return False for m in addrs: try: if int(m, 16) > 255: return False except ValueError: return False return True
Check the syntax of a given mac address. The acceptable format is xx:xx:xx:xx:xx:xx
def analyze(problem, Y, calc_second_order=True, num_resamples=100, conf_level=0.95, print_to_console=False, parallel=False, n_processors=None, seed=None): """Perform Sobol Analysis on model outputs. Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf', where each entry is a list of size D (the number of parameters) containing the indices in the same order as the parameter file. If calc_second_order is True, the dictionary also contains keys 'S2' and 'S2_conf'. Parameters ---------- problem : dict The problem definition Y : numpy.array A NumPy array containing the model outputs calc_second_order : bool Calculate second-order sensitivities (default True) num_resamples : int The number of resamples (default 100) conf_level : float The confidence interval level (default 0.95) print_to_console : bool Print results directly to console (default False) References ---------- .. [1] Sobol, I. M. (2001). "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates." Mathematics and Computers in Simulation, 55(1-3):271-280, doi:10.1016/S0378-4754(00)00270-6. .. [2] Saltelli, A. (2002). "Making best use of model evaluations to compute sensitivity indices." Computer Physics Communications, 145(2):280-297, doi:10.1016/S0010-4655(02)00280-1. .. [3] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola (2010). "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index." Computer Physics Communications, 181(2):259-270, doi:10.1016/j.cpc.2009.09.018. Examples -------- >>> X = saltelli.sample(problem, 1000) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True) """ if seed: np.random.seed(seed) # determining if groups are defined and adjusting the number # of rows in the cross-sampled matrix accordingly if not problem.get('groups'): D = problem['num_vars'] else: D = len(set(problem['groups'])) if calc_second_order and Y.size % (2 * D + 2) == 0: N = int(Y.size / (2 * D + 2)) elif not calc_second_order and Y.size % (D + 2) == 0: N = int(Y.size / (D + 2)) else: raise RuntimeError(""" Incorrect number of samples in model output file. Confirm that calc_second_order matches option used during sampling.""") if conf_level < 0 or conf_level > 1: raise RuntimeError("Confidence level must be between 0-1.") # normalize the model output Y = (Y - Y.mean()) / Y.std() A, B, AB, BA = separate_output_values(Y, D, N, calc_second_order) r = np.random.randint(N, size=(N, num_resamples)) Z = norm.ppf(0.5 + conf_level / 2) if not parallel: S = create_Si_dict(D, calc_second_order) for j in range(D): S['S1'][j] = first_order(A, AB[:, j], B) S['S1_conf'][j] = Z * first_order(A[r], AB[r, j], B[r]).std(ddof=1) S['ST'][j] = total_order(A, AB[:, j], B) S['ST_conf'][j] = Z * total_order(A[r], AB[r, j], B[r]).std(ddof=1) # Second order (+conf.) if calc_second_order: for j in range(D): for k in range(j + 1, D): S['S2'][j, k] = second_order( A, AB[:, j], AB[:, k], BA[:, j], B) S['S2_conf'][j, k] = Z * second_order(A[r], AB[r, j], AB[r, k], BA[r, j], B[r]).std(ddof=1) else: tasks, n_processors = create_task_list( D, calc_second_order, n_processors) func = partial(sobol_parallel, Z, A, AB, BA, B, r) pool = Pool(n_processors) S_list = pool.map_async(func, tasks) pool.close() pool.join() S = Si_list_to_dict(S_list.get(), D, calc_second_order) # Print results to console if print_to_console: print_indices(S, problem, calc_second_order) # Add problem context and override conversion method for special case S.problem = problem S.to_df = MethodType(to_df, S) return S
Perform Sobol Analysis on model outputs. Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf', where each entry is a list of size D (the number of parameters) containing the indices in the same order as the parameter file. If calc_second_order is True, the dictionary also contains keys 'S2' and 'S2_conf'. Parameters ---------- problem : dict The problem definition Y : numpy.array A NumPy array containing the model outputs calc_second_order : bool Calculate second-order sensitivities (default True) num_resamples : int The number of resamples (default 100) conf_level : float The confidence interval level (default 0.95) print_to_console : bool Print results directly to console (default False) References ---------- .. [1] Sobol, I. M. (2001). "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates." Mathematics and Computers in Simulation, 55(1-3):271-280, doi:10.1016/S0378-4754(00)00270-6. .. [2] Saltelli, A. (2002). "Making best use of model evaluations to compute sensitivity indices." Computer Physics Communications, 145(2):280-297, doi:10.1016/S0010-4655(02)00280-1. .. [3] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola (2010). "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index." Computer Physics Communications, 181(2):259-270, doi:10.1016/j.cpc.2009.09.018. Examples -------- >>> X = saltelli.sample(problem, 1000) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True)
def renumber(args): """ %prog renumber Mt35.consolidated.bed > tagged.bed Renumber genes for annotation updates. """ from jcvi.algorithms.lis import longest_increasing_subsequence from jcvi.utils.grouper import Grouper p = OptionParser(renumber.__doc__) p.set_annot_reformat_opts() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) bedfile, = args pf = bedfile.rsplit(".", 1)[0] abedfile = pf + ".a.bed" bbedfile = pf + ".b.bed" if need_update(bedfile, (abedfile, bbedfile)): prepare(bedfile) mbed = Bed(bbedfile) g = Grouper() for s in mbed: accn = s.accn g.join(*accn.split(";")) bed = Bed(abedfile) for chr, sbed in bed.sub_beds(): current_chr = chr_number(chr) if not current_chr: continue ranks = [] gg = set() for s in sbed: accn = s.accn achr, arank = atg_name(accn) if achr != current_chr: continue ranks.append(arank) gg.add(accn) lranks = longest_increasing_subsequence(ranks) print(current_chr, len(sbed), "==>", len(ranks), \ "==>", len(lranks), file=sys.stderr) granks = set(gene_name(current_chr, x, prefix=opts.prefix, \ pad0=opts.pad0, uc=opts.uc) for x in lranks) | \ set(gene_name(current_chr, x, prefix=opts.prefix, \ pad0=opts.pad0, sep="te", uc=opts.uc) for x in lranks) tagstore = {} for s in sbed: achr, arank = atg_name(s.accn) accn = s.accn if accn in granks: tag = (accn, FRAME) elif accn in gg: tag = (accn, RETAIN) else: tag = (".", NEW) tagstore[accn] = tag # Find cases where genes overlap for s in sbed: accn = s.accn gaccn = g[accn] tags = [((tagstore[x][-1] if x in tagstore else NEW), x) for x in gaccn] group = [(PRIORITY.index(tag), x) for tag, x in tags] best = min(group)[-1] if accn != best: tag = (best, OVERLAP) else: tag = tagstore[accn] print("\t".join((str(s), "|".join(tag))))
%prog renumber Mt35.consolidated.bed > tagged.bed Renumber genes for annotation updates.
def getNextService(self, discover): """Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service """ manager = self.getManager() if manager is not None and not manager: self.destroyManager() if not manager: yadis_url, services = discover(self.url) manager = self.createManager(services, yadis_url) if manager: service = manager.next() manager.store(self.session) else: service = None return service
Return the next authentication service for the pair of user_input and session. This function handles fallback. @param discover: a callable that takes a URL and returns a list of services @type discover: str -> [service] @return: the next available service
def awake(self, procid): """ Remove procid from waitlists and reestablish it in the running list """ logger.debug(f"Remove procid:{procid} from waitlists and reestablish it in the running list") for wait_list in self.rwait: if procid in wait_list: wait_list.remove(procid) for wait_list in self.twait: if procid in wait_list: wait_list.remove(procid) self.timers[procid] = None self.running.append(procid) if self._current is None: self._current = procid
Remove procid from waitlists and reestablish it in the running list
def encode_username_password( username: Union[str, bytes], password: Union[str, bytes] ) -> bytes: """Encodes a username/password pair in the format used by HTTP auth. The return value is a byte string in the form ``username:password``. .. versionadded:: 5.1 """ if isinstance(username, unicode_type): username = unicodedata.normalize("NFC", username) if isinstance(password, unicode_type): password = unicodedata.normalize("NFC", password) return utf8(username) + b":" + utf8(password)
Encodes a username/password pair in the format used by HTTP auth. The return value is a byte string in the form ``username:password``. .. versionadded:: 5.1
def set_translation(lang): """Set the translation used by (some) pywws modules. This sets the translation object ``pywws.localisation.translation`` to use a particular language. The ``lang`` parameter can be any string of the form ``en``, ``en_GB`` or ``en_GB.UTF-8``. Anything after a ``.`` character is ignored. In the case of a string such as ``en_GB``, the routine will search for an ``en_GB`` language file before searching for an ``en`` one. :param lang: language code. :type lang: string :return: success status. :rtype: bool """ global translation # make list of possible languages, in order of preference langs = list() if lang: if '.' in lang: lang = lang.split('.')[0] langs += [lang, lang[:2]] # get translation object path = pkg_resources.resource_filename('pywws', 'lang') codeset = locale.getpreferredencoding() if codeset == 'ASCII': codeset = 'UTF-8' try: translation = gettext.translation( 'pywws', path, languages=langs, codeset=codeset) # Python 3 translations don't have a ugettext method if not hasattr(translation, 'ugettext'): translation.ugettext = translation.gettext except IOError: return False return True
Set the translation used by (some) pywws modules. This sets the translation object ``pywws.localisation.translation`` to use a particular language. The ``lang`` parameter can be any string of the form ``en``, ``en_GB`` or ``en_GB.UTF-8``. Anything after a ``.`` character is ignored. In the case of a string such as ``en_GB``, the routine will search for an ``en_GB`` language file before searching for an ``en`` one. :param lang: language code. :type lang: string :return: success status. :rtype: bool
def accept(self): """ Call the :meth:`accept` method of the underlying socket and set up SSL on the returned socket, using the Context object supplied to this :class:`Connection` object at creation. :return: A *(conn, addr)* pair where *conn* is the new :class:`Connection` object created, and *address* is as returned by the socket's :meth:`accept`. """ client, addr = self._socket.accept() conn = Connection(self._context, client) conn.set_accept_state() return (conn, addr)
Call the :meth:`accept` method of the underlying socket and set up SSL on the returned socket, using the Context object supplied to this :class:`Connection` object at creation. :return: A *(conn, addr)* pair where *conn* is the new :class:`Connection` object created, and *address* is as returned by the socket's :meth:`accept`.
def attach_related_file(self, path, mimetype=None): """Attaches a file from the filesystem.""" filename = os.path.basename(path) content = open(path, 'rb').read() self.attach_related(filename, content, mimetype)
Attaches a file from the filesystem.
def convertPrice(variant, regex=None, short_regex=None, none_regex=none_price_regex): ''' Helper function to convert the given input price into integers (cents count). :obj:`int`, :obj:`float` and :obj:`str` are supported :param variant: Price :param re.compile regex: Regex to convert str into price. The re should contain two named groups `euro` and `cent` :param re.compile short_regex: Short regex version (no cent part) group `euro` should contain a valid integer. :param re.compile none_regex: Regex to detect that no value is provided if the input data is str, the normal regex do not match and this regex matches `None` is returned. :rtype: int/None''' if isinstance(variant, int) and not isinstance(variant, bool): return variant elif isinstance(variant, float): return round(variant * 100) elif isinstance(variant, str): match = (regex or default_price_regex).search(variant) \ or (short_regex or short_price_regex).match(variant) if not match: if none_regex and none_regex.match(variant): return None raise ValueError('Could not extract price: {0}'.format(variant)) return int(match.group('euro')) * 100 + \ int(match.groupdict().get('cent', '').ljust(2, '0')) else: raise TypeError('Unknown price type: {0!r}'.format(variant))
Helper function to convert the given input price into integers (cents count). :obj:`int`, :obj:`float` and :obj:`str` are supported :param variant: Price :param re.compile regex: Regex to convert str into price. The re should contain two named groups `euro` and `cent` :param re.compile short_regex: Short regex version (no cent part) group `euro` should contain a valid integer. :param re.compile none_regex: Regex to detect that no value is provided if the input data is str, the normal regex do not match and this regex matches `None` is returned. :rtype: int/None
def margin( self, axis=None, weighted=True, include_missing=False, include_transforms_for_dims=None, prune=False, include_mr_cat=False, ): """Return ndarray representing slice margin across selected axis. A margin (or basis) can be calculated for a contingency table, provided that the dimensions of the desired directions are marginable. The dimensions are marginable if they represent mutualy exclusive data, such as true categorical data. For array types the items dimensions are not marginable. Requesting a margin across these dimensions (e.g. slice.margin(axis=0) for a categorical array cube slice) will produce an error. For multiple response slices, the implicit convention is that the provided direction scales to the selections dimension of the slice. These cases produce meaningful data, but of a slightly different shape (e.g. slice.margin(0) for a MR x CAT slice will produce 2D ndarray (variable dimensions are never collapsed!)). :param axis: Axis across which to sum. Can be 0 (columns margin), 1 (rows margin) and None (table margin). If requested across variables dimension (e.g. requesting 0 margin for CA array) it will produce an error. :param weighted: Weighted or unweighted counts. :param include_missing: Include missing categories or not. :param include_transforms_for_dims: Indices of dimensions for which to include transformations :param prune: Perform pruning based on unweighted counts. :returns: (weighed or unweighted counts) summed across provided axis. For multiple response types, items dimensions are not collapsed. """ axis = self._calculate_correct_axis_for_cube(axis) hs_dims = self._hs_dims_for_cube(include_transforms_for_dims) margin = self._cube.margin( axis=axis, weighted=weighted, include_missing=include_missing, include_transforms_for_dims=hs_dims, prune=prune, include_mr_cat=include_mr_cat, ) return self._extract_slice_result_from_cube(margin)
Return ndarray representing slice margin across selected axis. A margin (or basis) can be calculated for a contingency table, provided that the dimensions of the desired directions are marginable. The dimensions are marginable if they represent mutualy exclusive data, such as true categorical data. For array types the items dimensions are not marginable. Requesting a margin across these dimensions (e.g. slice.margin(axis=0) for a categorical array cube slice) will produce an error. For multiple response slices, the implicit convention is that the provided direction scales to the selections dimension of the slice. These cases produce meaningful data, but of a slightly different shape (e.g. slice.margin(0) for a MR x CAT slice will produce 2D ndarray (variable dimensions are never collapsed!)). :param axis: Axis across which to sum. Can be 0 (columns margin), 1 (rows margin) and None (table margin). If requested across variables dimension (e.g. requesting 0 margin for CA array) it will produce an error. :param weighted: Weighted or unweighted counts. :param include_missing: Include missing categories or not. :param include_transforms_for_dims: Indices of dimensions for which to include transformations :param prune: Perform pruning based on unweighted counts. :returns: (weighed or unweighted counts) summed across provided axis. For multiple response types, items dimensions are not collapsed.
def get_entry_categories(self, category_nodes): """ Return a list of entry's categories based on imported categories. """ categories = [] for category_node in category_nodes: domain = category_node.attrib.get('domain') if domain == 'category': categories.append(self.categories[category_node.text]) return categories
Return a list of entry's categories based on imported categories.
def get_input(problem): """" Returns the specified problem answer in the form problem: problem id Returns string, or bytes if a file is loaded """ input_data = load_input() pbsplit = problem.split(":") problem_input = input_data['input'][pbsplit[0]] if isinstance(problem_input, dict) and "filename" in problem_input and "value" in problem_input: if len(pbsplit) > 1 and pbsplit[1] == 'filename': return problem_input["filename"] else: return open(problem_input["value"], 'rb').read() else: return problem_input
Returns the specified problem answer in the form problem: problem id Returns string, or bytes if a file is loaded
def solubility_parameter(self): r'''Solubility parameter of the chemical at its current temperature and pressure, in units of [Pa^0.5]. .. math:: \delta = \sqrt{\frac{\Delta H_{vap} - RT}{V_m}} Calculated based on enthalpy of vaporization and molar volume. Normally calculated at STP. For uses of this property, see :obj:`thermo.solubility.solubility_parameter`. Examples -------- >>> Chemical('NH3').solubility_parameter 24766.329043856073 ''' return solubility_parameter(T=self.T, Hvapm=self.Hvapm, Vml=self.Vml, Method=self.solubility_parameter_method, CASRN=self.CAS)
r'''Solubility parameter of the chemical at its current temperature and pressure, in units of [Pa^0.5]. .. math:: \delta = \sqrt{\frac{\Delta H_{vap} - RT}{V_m}} Calculated based on enthalpy of vaporization and molar volume. Normally calculated at STP. For uses of this property, see :obj:`thermo.solubility.solubility_parameter`. Examples -------- >>> Chemical('NH3').solubility_parameter 24766.329043856073
def withAttribute(*args,**attrDict): """Helper to create a validating parse action to be used with start tags created with :class:`makeXMLTags` or :class:`makeHTMLTags`. Use ``withAttribute`` to qualify a starting tag with a required attribute value, to avoid false matches on common tags such as ``<TD>`` or ``<DIV>``. Call ``withAttribute`` with a series of attribute names and values. Specify the list of filter attributes names and values as: - keyword arguments, as in ``(align="right")``, or - as an explicit dict with ``**`` operator, when an attribute name is also a Python reserved word, as in ``**{"class":"Customer", "align":"right"}`` - a list of name-value tuples, as in ``(("ns1:class", "Customer"), ("ns2:align","right"))`` For attribute names with a namespace prefix, you must use the second form. Attribute names are matched insensitive to upper/lower case. If just testing for ``class`` (with or without a namespace), use :class:`withClass`. To verify that the attribute exists, but without specifying a value, pass ``withAttribute.ANY_VALUE`` as the value. Example:: html = ''' <div> Some text <div type="grid">1 4 0 1 0</div> <div type="graph">1,3 2,3 1,1</div> <div>this has no type</div> </div> ''' div,div_end = makeHTMLTags("div") # only match div tag having a type attribute with value "grid" div_grid = div().setParseAction(withAttribute(type="grid")) grid_expr = div_grid + SkipTo(div | div_end)("body") for grid_header in grid_expr.searchString(html): print(grid_header.body) # construct a match with any div tag having a type attribute, regardless of the value div_any_type = div().setParseAction(withAttribute(type=withAttribute.ANY_VALUE)) div_expr = div_any_type + SkipTo(div | div_end)("body") for div_header in div_expr.searchString(html): print(div_header.body) prints:: 1 4 0 1 0 1 4 0 1 0 1,3 2,3 1,1 """ if args: attrs = args[:] else: attrs = attrDict.items() attrs = [(k,v) for k,v in attrs] def pa(s,l,tokens): for attrName,attrValue in attrs: if attrName not in tokens: raise ParseException(s,l,"no matching attribute " + attrName) if attrValue != withAttribute.ANY_VALUE and tokens[attrName] != attrValue: raise ParseException(s,l,"attribute '%s' has value '%s', must be '%s'" % (attrName, tokens[attrName], attrValue)) return pa
Helper to create a validating parse action to be used with start tags created with :class:`makeXMLTags` or :class:`makeHTMLTags`. Use ``withAttribute`` to qualify a starting tag with a required attribute value, to avoid false matches on common tags such as ``<TD>`` or ``<DIV>``. Call ``withAttribute`` with a series of attribute names and values. Specify the list of filter attributes names and values as: - keyword arguments, as in ``(align="right")``, or - as an explicit dict with ``**`` operator, when an attribute name is also a Python reserved word, as in ``**{"class":"Customer", "align":"right"}`` - a list of name-value tuples, as in ``(("ns1:class", "Customer"), ("ns2:align","right"))`` For attribute names with a namespace prefix, you must use the second form. Attribute names are matched insensitive to upper/lower case. If just testing for ``class`` (with or without a namespace), use :class:`withClass`. To verify that the attribute exists, but without specifying a value, pass ``withAttribute.ANY_VALUE`` as the value. Example:: html = ''' <div> Some text <div type="grid">1 4 0 1 0</div> <div type="graph">1,3 2,3 1,1</div> <div>this has no type</div> </div> ''' div,div_end = makeHTMLTags("div") # only match div tag having a type attribute with value "grid" div_grid = div().setParseAction(withAttribute(type="grid")) grid_expr = div_grid + SkipTo(div | div_end)("body") for grid_header in grid_expr.searchString(html): print(grid_header.body) # construct a match with any div tag having a type attribute, regardless of the value div_any_type = div().setParseAction(withAttribute(type=withAttribute.ANY_VALUE)) div_expr = div_any_type + SkipTo(div | div_end)("body") for div_header in div_expr.searchString(html): print(div_header.body) prints:: 1 4 0 1 0 1 4 0 1 0 1,3 2,3 1,1
def register_blueprints(app, application_package_name=None, blueprint_directory=None): """Register Flask blueprints on app object""" if not application_package_name: application_package_name = 'app' if not blueprint_directory: blueprint_directory = os.path.join(os.getcwd(), application_package_name) blueprint_directories = get_child_directories(blueprint_directory) for directory in blueprint_directories: abs_package = '{}.{}'.format(application_package_name, directory) service = importlib.import_module(abs_package) app.register_blueprint(service.blueprint_api, url_prefix='')
Register Flask blueprints on app object
def UpdateFlow(self, client_id, flow_id, flow_obj=db.Database.unchanged, flow_state=db.Database.unchanged, client_crash_info=db.Database.unchanged, pending_termination=db.Database.unchanged, processing_on=db.Database.unchanged, processing_since=db.Database.unchanged, processing_deadline=db.Database.unchanged): """Updates flow objects in the database.""" try: flow = self.flows[(client_id, flow_id)] except KeyError: raise db.UnknownFlowError(client_id, flow_id) if flow_obj != db.Database.unchanged: self.flows[(client_id, flow_id)] = flow_obj flow = flow_obj if flow_state != db.Database.unchanged: flow.flow_state = flow_state if client_crash_info != db.Database.unchanged: flow.client_crash_info = client_crash_info if pending_termination != db.Database.unchanged: flow.pending_termination = pending_termination if processing_on != db.Database.unchanged: flow.processing_on = processing_on if processing_since != db.Database.unchanged: flow.processing_since = processing_since if processing_deadline != db.Database.unchanged: flow.processing_deadline = processing_deadline flow.last_update_time = rdfvalue.RDFDatetime.Now()
Updates flow objects in the database.
def remove_accounts_from_group(accounts_query, group): """ Remove accounts from group. """ query = accounts_query.filter(date_deleted__isnull=True) for account in query: remove_account_from_group(account, group)
Remove accounts from group.
def __read_device(self): """Read the state of the gamepad.""" state = XinputState() res = self.manager.xinput.XInputGetState( self.__device_number, ctypes.byref(state)) if res == XINPUT_ERROR_SUCCESS: return state if res != XINPUT_ERROR_DEVICE_NOT_CONNECTED: raise RuntimeError( "Unknown error %d attempting to get state of device %d" % ( res, self.__device_number)) # else (device is not connected) return None
Read the state of the gamepad.
def execute_catch(c, sql, vars=None): """Run a query, but ignore any errors. For error recovery paths where the error handler should not raise another.""" try: c.execute(sql, vars) except Exception as err: cmd = sql.split(' ', 1)[0] log.error("Error executing %s: %s", cmd, err)
Run a query, but ignore any errors. For error recovery paths where the error handler should not raise another.
def create_intent(self, parent, intent, language_code=None, intent_view=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None): """ Creates an intent in the specified agent. Example: >>> import dialogflow_v2 >>> >>> client = dialogflow_v2.IntentsClient() >>> >>> parent = client.project_agent_path('[PROJECT]') >>> >>> # TODO: Initialize ``intent``: >>> intent = {} >>> >>> response = client.create_intent(parent, intent) Args: parent (str): Required. The agent to create a intent for. Format: ``projects/<Project ID>/agent``. intent (Union[dict, ~google.cloud.dialogflow_v2.types.Intent]): Required. The intent to create. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.dialogflow_v2.types.Intent` language_code (str): Optional. The language of training phrases, parameters and rich messages defined in ``intent``. If not specified, the agent's default language is used. [More than a dozen languages](https://dialogflow.com/docs/reference/language) are supported. Note: languages must be enabled in the agent, before they can be used. intent_view (~google.cloud.dialogflow_v2.types.IntentView): Optional. The resource view to apply to the returned intent. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.dialogflow_v2.types.Intent` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if 'create_intent' not in self._inner_api_calls: self._inner_api_calls[ 'create_intent'] = google.api_core.gapic_v1.method.wrap_method( self.transport.create_intent, default_retry=self._method_configs['CreateIntent'].retry, default_timeout=self._method_configs['CreateIntent'] .timeout, client_info=self._client_info, ) request = intent_pb2.CreateIntentRequest( parent=parent, intent=intent, language_code=language_code, intent_view=intent_view, ) return self._inner_api_calls['create_intent']( request, retry=retry, timeout=timeout, metadata=metadata)
Creates an intent in the specified agent. Example: >>> import dialogflow_v2 >>> >>> client = dialogflow_v2.IntentsClient() >>> >>> parent = client.project_agent_path('[PROJECT]') >>> >>> # TODO: Initialize ``intent``: >>> intent = {} >>> >>> response = client.create_intent(parent, intent) Args: parent (str): Required. The agent to create a intent for. Format: ``projects/<Project ID>/agent``. intent (Union[dict, ~google.cloud.dialogflow_v2.types.Intent]): Required. The intent to create. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.dialogflow_v2.types.Intent` language_code (str): Optional. The language of training phrases, parameters and rich messages defined in ``intent``. If not specified, the agent's default language is used. [More than a dozen languages](https://dialogflow.com/docs/reference/language) are supported. Note: languages must be enabled in the agent, before they can be used. intent_view (~google.cloud.dialogflow_v2.types.IntentView): Optional. The resource view to apply to the returned intent. retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.dialogflow_v2.types.Intent` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid.
def from_bytes(OverwinterTx, byte_string): ''' byte-like -> OverwinterTx ''' header = byte_string[0:4] group_id = byte_string[4:8] if header != b'\x03\x00\x00\x80' or group_id != b'\x70\x82\xc4\x03': raise ValueError( 'Bad header or group ID. Expected {} and {}. Got: {} and {}' .format(b'\x03\x00\x00\x80'.hex(), b'\x70\x82\xc4\x03'.hex(), header.hex(), group_id.hex())) tx_ins = [] tx_ins_num = shared.VarInt.from_bytes(byte_string[8:]) current = 8 + len(tx_ins_num) for _ in range(tx_ins_num.number): tx_in = TxIn.from_bytes(byte_string[current:]) current += len(tx_in) tx_ins.append(tx_in) tx_outs = [] tx_outs_num = shared.VarInt.from_bytes(byte_string[current:]) current += len(tx_outs_num) for _ in range(tx_outs_num.number): tx_out = TxOut.from_bytes(byte_string[current:]) current += len(tx_out) tx_outs.append(tx_out) lock_time = byte_string[current:current + 4] current += 4 expiry_height = byte_string[current:current + 4] current += 4 if current == len(byte_string): # No joinsplits tx_joinsplits = tuple() joinsplit_pubkey = None joinsplit_sig = None else: tx_joinsplits = [] tx_joinsplits_num = shared.VarInt.from_bytes(byte_string[current:]) current += len(tx_outs_num) for _ in range(tx_joinsplits_num.number): tx_joinsplit = z.SproutJoinsplit.from_bytes( byte_string[current:]) current += len(tx_joinsplit) tx_joinsplits.append(tx_joinsplit) joinsplit_pubkey = byte_string[current:current + 32] current += 32 joinsplit_sig = byte_string[current:current + 64] return OverwinterTx( tx_ins=tx_ins, tx_outs=tx_outs, lock_time=lock_time, expiry_height=expiry_height, tx_joinsplits=tx_joinsplits, joinsplit_pubkey=joinsplit_pubkey, joinsplit_sig=joinsplit_sig)
byte-like -> OverwinterTx
def add_to_stage(self, paths): """Stage given files :param paths: :return: """ cmd = self._command.add(paths) (code, stdout, stderr) = self._exec(cmd) if code: raise errors.VCSError('Can\'t add paths to VCS. Process exited with code %d and message: %s' % ( code, stderr + stdout))
Stage given files :param paths: :return:
def convert_runsummary_to_json( df, comment='Uploaded via km3pipe.StreamDS', prefix='TEST_' ): """Convert a Pandas DataFrame with runsummary to JSON for DB upload""" data_field = [] comment += ", by {}".format(getpass.getuser()) for det_id, det_data in df.groupby('det_id'): runs_field = [] data_field.append({"DetectorId": det_id, "Runs": runs_field}) for run, run_data in det_data.groupby('run'): parameters_field = [] runs_field.append({ "Run": int(run), "Parameters": parameters_field }) parameter_dict = {} for row in run_data.itertuples(): for parameter_name in run_data.columns: if parameter_name in REQUIRED_COLUMNS: continue if parameter_name not in parameter_dict: entry = {'Name': prefix + parameter_name, 'Data': []} parameter_dict[parameter_name] = entry data_value = getattr(row, parameter_name) try: data_value = float(data_value) except ValueError as e: log.critical("Data values has to be floats!") raise ValueError(e) value = {'S': str(getattr(row, 'source')), 'D': data_value} parameter_dict[parameter_name]['Data'].append(value) for parameter_data in parameter_dict.values(): parameters_field.append(parameter_data) data_to_upload = {"Comment": comment, "Data": data_field} file_data_to_upload = json.dumps(data_to_upload) return file_data_to_upload
Convert a Pandas DataFrame with runsummary to JSON for DB upload
def add_method(obj, func, name=None): """Adds an instance method to an object.""" if name is None: name = func.__name__ if sys.version_info < (3,): method = types.MethodType(func, obj, obj.__class__) else: method = types.MethodType(func, obj) setattr(obj, name, method)
Adds an instance method to an object.
def _histogram_move_keys_by_game(sess, ds, batch_size=8*1024): """Given dataset of key names, return histogram of moves/game. Move counts are written by the game players, so this is mostly useful for repair or backfill. Args: sess: TF session ds: TF dataset containing game move keys. batch_size: performance tuning parameter """ ds = ds.batch(batch_size) # Turns 'g_0000001234_m_133' into 'g_0000001234' ds = ds.map(lambda x: tf.strings.substr(x, 0, 12)) iterator = ds.make_initializable_iterator() sess.run(iterator.initializer) get_next = iterator.get_next() h = collections.Counter() try: while True: h.update(sess.run(get_next)) except tf.errors.OutOfRangeError: pass # NOTE: Cannot be truly sure the count is right till the end. return h
Given dataset of key names, return histogram of moves/game. Move counts are written by the game players, so this is mostly useful for repair or backfill. Args: sess: TF session ds: TF dataset containing game move keys. batch_size: performance tuning parameter
def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = X.map(_document_frequency).sum() tfs = X.map(lambda x: np.asarray(x.sum(axis=0))).sum().ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return kept_indices, removed_terms
Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features.
def _parse_args(self,freqsAngles=True,_firstFlip=False,*args): """Helper function to parse the arguments to the __call__ and actionsFreqsAngles functions""" from galpy.orbit import Orbit RasOrbit= False integrated= True #whether the orbit was already integrated when given if len(args) == 5 or len(args) == 3: #pragma: no cover raise IOError("Must specify phi for actionAngleIsochroneApprox") if len(args) == 6 or len(args) == 4: if len(args) == 6: R,vR,vT, z, vz, phi= args else: R,vR,vT, phi= args z, vz= 0., 0. if isinstance(R,float): os= [Orbit([R,vR,vT,z,vz,phi])] RasOrbit= True integrated= False elif len(R.shape) == 1: #not integrated yet os= [Orbit([R[ii],vR[ii],vT[ii],z[ii],vz[ii],phi[ii]]) for ii in range(R.shape[0])] RasOrbit= True integrated= False if isinstance(args[0],Orbit) \ or (isinstance(args[0],list) and isinstance(args[0][0],Orbit)) \ or RasOrbit: if RasOrbit: pass elif not isinstance(args[0],list): os= [args[0]] if len(os[0]._orb.vxvv) == 3 or len(os[0]._orb.vxvv) == 5: #pragma: no cover raise IOError("Must specify phi for actionAngleIsochroneApprox") else: os= args[0] if len(os[0]._orb.vxvv) == 3 or len(os[0]._orb.vxvv) == 5: #pragma: no cover raise IOError("Must specify phi for actionAngleIsochroneApprox") self._check_consistent_units_orbitInput(os[0]) if not hasattr(os[0]._orb,'orbit'): #not integrated yet if _firstFlip: for o in os: o._orb.vxvv[1]= -o._orb.vxvv[1] o._orb.vxvv[2]= -o._orb.vxvv[2] o._orb.vxvv[4]= -o._orb.vxvv[4] [o.integrate(self._tsJ,pot=self._pot, method=self._integrate_method, dt=self._integrate_dt) for o in os] if _firstFlip: for o in os: o._orb.vxvv[1]= -o._orb.vxvv[1] o._orb.vxvv[2]= -o._orb.vxvv[2] o._orb.vxvv[4]= -o._orb.vxvv[4] o._orb.orbit[:,1]= -o._orb.orbit[:,1] o._orb.orbit[:,2]= -o._orb.orbit[:,2] o._orb.orbit[:,4]= -o._orb.orbit[:,4] integrated= False ntJ= os[0].getOrbit().shape[0] no= len(os) R= nu.empty((no,ntJ)) vR= nu.empty((no,ntJ)) vT= nu.empty((no,ntJ)) z= nu.zeros((no,ntJ))+10.**-7. #To avoid numpy warnings for vz= nu.zeros((no,ntJ))+10.**-7. #planarOrbits phi= nu.empty((no,ntJ)) for ii in range(len(os)): this_orbit= os[ii].getOrbit() R[ii,:]= this_orbit[:,0] vR[ii,:]= this_orbit[:,1] vT[ii,:]= this_orbit[:,2] if this_orbit.shape[1] == 6: z[ii,:]= this_orbit[:,3] vz[ii,:]= this_orbit[:,4] phi[ii,:]= this_orbit[:,5] else: phi[ii,:]= this_orbit[:,3] if freqsAngles and not integrated: #also integrate backwards in time, such that the requested point is not at the edge no= R.shape[0] nt= R.shape[1] oR= nu.empty((no,2*nt-1)) ovR= nu.empty((no,2*nt-1)) ovT= nu.empty((no,2*nt-1)) oz= nu.zeros((no,2*nt-1))+10.**-7. #To avoid numpy warnings for ovz= nu.zeros((no,2*nt-1))+10.**-7. #planarOrbits ophi= nu.empty((no,2*nt-1)) if _firstFlip: oR[:,:nt]= R[:,::-1] ovR[:,:nt]= vR[:,::-1] ovT[:,:nt]= vT[:,::-1] oz[:,:nt]= z[:,::-1] ovz[:,:nt]= vz[:,::-1] ophi[:,:nt]= phi[:,::-1] else: oR[:,nt-1:]= R ovR[:,nt-1:]= vR ovT[:,nt-1:]= vT oz[:,nt-1:]= z ovz[:,nt-1:]= vz ophi[:,nt-1:]= phi #load orbits if _firstFlip: os= [Orbit([R[ii,0],vR[ii,0],vT[ii,0],z[ii,0],vz[ii,0],phi[ii,0]]) for ii in range(R.shape[0])] else: os= [Orbit([R[ii,0],-vR[ii,0],-vT[ii,0],z[ii,0],-vz[ii,0],phi[ii,0]]) for ii in range(R.shape[0])] #integrate orbits [o.integrate(self._tsJ,pot=self._pot, method=self._integrate_method, dt=self._integrate_dt) for o in os] #extract phase-space points along the orbit ts= self._tsJ if _firstFlip: for ii in range(no): oR[ii,nt:]= os[ii].R(ts[1:]) #drop t=0, which we have ovR[ii,nt:]= os[ii].vR(ts[1:]) #already ovT[ii,nt:]= os[ii].vT(ts[1:]) # reverse, such that if os[ii].getOrbit().shape[1] == 6: oz[ii,nt:]= os[ii].z(ts[1:]) #everything is in the ovz[ii,nt:]= os[ii].vz(ts[1:]) #right order ophi[ii,nt:]= os[ii].phi(ts[1:]) #! else: for ii in range(no): oR[ii,:nt-1]= os[ii].R(ts[1:])[::-1] #drop t=0, which we have ovR[ii,:nt-1]= -os[ii].vR(ts[1:])[::-1] #already ovT[ii,:nt-1]= -os[ii].vT(ts[1:])[::-1] # reverse, such that if os[ii].getOrbit().shape[1] == 6: oz[ii,:nt-1]= os[ii].z(ts[1:])[::-1] #everything is in the ovz[ii,:nt-1]= -os[ii].vz(ts[1:])[::-1] #right order ophi[ii,:nt-1]= os[ii].phi(ts[1:])[::-1] #! return (oR,ovR,ovT,oz,ovz,ophi) else: return (R,vR,vT,z,vz,phi)
Helper function to parse the arguments to the __call__ and actionsFreqsAngles functions
def get_user_presence(self, userid): ''' check on presence of a user ''' response, status_code = self.__pod__.Presence.get_v2_user_uid_presence( sessionToken=self.__session__, uid=userid ).result() self.logger.debug('%s: %s' % (status_code, response)) return status_code, response
check on presence of a user
def get_child_by_name(parent, name): """ Iterate through a gtk container, `parent`, and return the widget with the name `name`. """ # http://stackoverflow.com/questions/2072976/access-to-widget-in-gtk def iterate_children(widget, name): if widget.get_name() == name: return widget try: for w in widget.get_children(): result = iterate_children(w, name) if result is not None: return result else: continue except AttributeError: pass return iterate_children(parent, name)
Iterate through a gtk container, `parent`, and return the widget with the name `name`.
def add_item_metadata(self, handle, key, value): """Store the given key:value pair for the item associated with handle. :param handle: handle for accessing an item before the dataset is frozen :param key: metadata key :param value: metadata value """ _mkdir_if_missing(self._metadata_fragments_abspath) prefix = self._handle_to_fragment_absprefixpath(handle) fpath = prefix + '.{}.json'.format(key) _put_obj(fpath, value)
Store the given key:value pair for the item associated with handle. :param handle: handle for accessing an item before the dataset is frozen :param key: metadata key :param value: metadata value
def create_embeded_pkcs7_signature(data, cert, key): """ Creates an embeded ("nodetached") pkcs7 signature. This is equivalent to the output of:: openssl smime -sign -signer cert -inkey key -outform DER -nodetach < data :type data: bytes :type cert: str :type key: str """ # noqa: E501 assert isinstance(data, bytes) assert isinstance(cert, str) try: pkey = crypto.load_privatekey(crypto.FILETYPE_PEM, key) signcert = crypto.load_certificate(crypto.FILETYPE_PEM, cert) except crypto.Error as e: raise exceptions.CorruptCertificate from e bio_in = crypto._new_mem_buf(data) pkcs7 = crypto._lib.PKCS7_sign( signcert._x509, pkey._pkey, crypto._ffi.NULL, bio_in, PKCS7_NOSIGS ) bio_out = crypto._new_mem_buf() crypto._lib.i2d_PKCS7_bio(bio_out, pkcs7) signed_data = crypto._bio_to_string(bio_out) return signed_data
Creates an embeded ("nodetached") pkcs7 signature. This is equivalent to the output of:: openssl smime -sign -signer cert -inkey key -outform DER -nodetach < data :type data: bytes :type cert: str :type key: str
def convert_to_consumable_types (self, project, name, prop_set, sources, only_one=False): """ Attempts to convert 'source' to the types that this generator can handle. The intention is to produce the set of targets can should be used when generator is run. only_one: convert 'source' to only one of source types if there's more that one possibility, report an error. Returns a pair: consumed: all targets that can be consumed. """ if __debug__: from .targets import ProjectTarget assert isinstance(name, basestring) or name is None assert isinstance(project, ProjectTarget) assert isinstance(prop_set, property_set.PropertySet) assert is_iterable_typed(sources, virtual_target.VirtualTarget) assert isinstance(only_one, bool) consumed = [] missing_types = [] if len (sources) > 1: # Don't know how to handle several sources yet. Just try # to pass the request to other generator missing_types = self.source_types_ else: (c, m) = self.consume_directly (sources [0]) consumed += c missing_types += m # No need to search for transformation if # some source type has consumed source and # no more source types are needed. if only_one and consumed: missing_types = [] #TODO: we should check that only one source type #if create of 'only_one' is true. # TODO: consider if consuned/bypassed separation should # be done by 'construct_types'. if missing_types: transformed = construct_types (project, name, missing_types, prop_set, sources) # Add targets of right type to 'consumed'. Add others to # 'bypassed'. The 'generators.construct' rule has done # its best to convert everything to the required type. # There's no need to rerun it on targets of different types. # NOTE: ignoring usage requirements for t in transformed[1]: if t.type() in missing_types: consumed.append(t) consumed = unique(consumed) return consumed
Attempts to convert 'source' to the types that this generator can handle. The intention is to produce the set of targets can should be used when generator is run. only_one: convert 'source' to only one of source types if there's more that one possibility, report an error. Returns a pair: consumed: all targets that can be consumed.
def set_host_finished(self, scan_id, target, host): """ Add the host in a list of finished hosts """ finished_hosts = self.scans_table[scan_id]['finished_hosts'] finished_hosts[target].extend(host) self.scans_table[scan_id]['finished_hosts'] = finished_hosts
Add the host in a list of finished hosts
def dist(src, tar, method=sim_levenshtein): """Return a distance between two strings. This is a generalized function for calling other distance functions. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison method : function Specifies the similarity metric (:py:func:`sim_levenshtein` by default) -- Note that this takes a similarity metric function, not a distance metric function. Returns ------- float Distance according to the specified function Raises ------ AttributeError Unknown distance function Examples -------- >>> round(dist('cat', 'hat'), 12) 0.333333333333 >>> round(dist('Niall', 'Neil'), 12) 0.6 >>> dist('aluminum', 'Catalan') 0.875 >>> dist('ATCG', 'TAGC') 0.75 """ if callable(method): return 1 - method(src, tar) else: raise AttributeError('Unknown distance function: ' + str(method))
Return a distance between two strings. This is a generalized function for calling other distance functions. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison method : function Specifies the similarity metric (:py:func:`sim_levenshtein` by default) -- Note that this takes a similarity metric function, not a distance metric function. Returns ------- float Distance according to the specified function Raises ------ AttributeError Unknown distance function Examples -------- >>> round(dist('cat', 'hat'), 12) 0.333333333333 >>> round(dist('Niall', 'Neil'), 12) 0.6 >>> dist('aluminum', 'Catalan') 0.875 >>> dist('ATCG', 'TAGC') 0.75
def _select_index(self, row, col): """Change the selection index, and make sure it stays in the right range A little more complicated than just dooing modulo the number of row columns to be sure to cycle through all element. horizontaly, the element are maped like this : to r <-- a b c d e f --> to g to f <-- g h i j k l --> to m to l <-- m n o p q r --> to a and vertically a d g j m p b e h k n q c f i l o r """ nr, nc = self._size nr = nr-1 nc = nc-1 # case 1 if (row > nr and col >= nc) or (row >= nr and col > nc): self._select_index(0, 0) # case 2 elif (row <= 0 and col < 0) or (row < 0 and col <= 0): self._select_index(nr, nc) # case 3 elif row > nr : self._select_index(0, col+1) # case 4 elif row < 0 : self._select_index(nr, col-1) # case 5 elif col > nc : self._select_index(row+1, 0) # case 6 elif col < 0 : self._select_index(row-1, nc) elif 0 <= row and row <= nr and 0 <= col and col <= nc : self._index = (row, col) else : raise NotImplementedError("you'r trying to go where no completion\ have gone before : %d:%d (%d:%d)"%(row, col, nr, nc) )
Change the selection index, and make sure it stays in the right range A little more complicated than just dooing modulo the number of row columns to be sure to cycle through all element. horizontaly, the element are maped like this : to r <-- a b c d e f --> to g to f <-- g h i j k l --> to m to l <-- m n o p q r --> to a and vertically a d g j m p b e h k n q c f i l o r
def addFilter(self, filterMethod=FILTER_METHOD_AND, **kwargs): ''' addFilter - Add a filter to this query. @param filterMethod <str> - The filter method to use (AND or OR), default: 'AND' @param additional args - Filter arguments. @see QueryableListBase.filter @raises ValueError if filterMethod is not one of known methods. ''' filterMethod = filterMethod.upper() if filterMethod not in FILTER_METHODS: raise ValueError('Unknown filter method, %s. Must be one of: %s' %(str(filterMethod), repr(FILTER_METHODS))) self.filters.append((filterMethod, kwargs))
addFilter - Add a filter to this query. @param filterMethod <str> - The filter method to use (AND or OR), default: 'AND' @param additional args - Filter arguments. @see QueryableListBase.filter @raises ValueError if filterMethod is not one of known methods.
def lbd_to_XYZ_jac(*args,**kwargs): """ NAME: lbd_to_XYZ_jac PURPOSE: calculate the Jacobian of the Galactic spherical coordinates to Galactic rectangular coordinates transformation INPUT: l,b,D- Galactic spherical coordinates vlos,pmll,pmbb- Galactic spherical velocities (some as proper motions) if 6 inputs: l,b,D,vlos,pmll x cos(b),pmbb if 3: l,b,D degree= (False) if True, l and b are in degrees OUTPUT: jacobian HISTORY: 2013-12-09 - Written - Bovy (IAS) """ out= sc.zeros((6,6)) if len(args) == 3: l,b,D= args vlos, pmll, pmbb= 0., 0., 0. elif len(args) == 6: l,b,D,vlos,pmll,pmbb= args if kwargs.get('degree',False): l*= _DEGTORAD b*= _DEGTORAD cl= sc.cos(l) sl= sc.sin(l) cb= sc.cos(b) sb= sc.sin(b) out[0,0]= -D*cb*sl out[0,1]= -D*sb*cl out[0,2]= cb*cl out[1,0]= D*cb*cl out[1,1]= -D*sb*sl out[1,2]= cb*sl out[2,1]= D*cb out[2,2]= sb if len(args) == 3: if kwargs.get('degree',False): out[:,0]*= _DEGTORAD out[:,1]*= _DEGTORAD return out[:3,:3] out[3,0]= -sl*cb*vlos-cl*_K*D*pmll+sb*sl*_K*D*pmbb out[3,1]= -cl*sb*vlos-cb*cl*_K*D*pmbb out[3,2]= -sl*_K*pmll-sb*cl*_K*pmbb out[3,3]= cl*cb out[3,4]= -sl*_K*D out[3,5]= -cl*sb*_K*D out[4,0]= cl*cb*vlos-sl*_K*D*pmll-cl*sb*_K*D*pmbb out[4,1]= -sl*sb*vlos-sl*cb*_K*D*pmbb out[4,2]= cl*_K*pmll-sl*sb*_K*pmbb out[4,3]= sl*cb out[4,4]= cl*_K*D out[4,5]= -sl*sb*_K*D out[5,1]= cb*vlos-sb*_K*D*pmbb out[5,2]= cb*_K*pmbb out[5,3]= sb out[5,5]= cb*_K*D if kwargs.get('degree',False): out[:,0]*= _DEGTORAD out[:,1]*= _DEGTORAD return out
NAME: lbd_to_XYZ_jac PURPOSE: calculate the Jacobian of the Galactic spherical coordinates to Galactic rectangular coordinates transformation INPUT: l,b,D- Galactic spherical coordinates vlos,pmll,pmbb- Galactic spherical velocities (some as proper motions) if 6 inputs: l,b,D,vlos,pmll x cos(b),pmbb if 3: l,b,D degree= (False) if True, l and b are in degrees OUTPUT: jacobian HISTORY: 2013-12-09 - Written - Bovy (IAS)
def get_alert(thing_name, key, session=None): """Set an alert on a thing with the given condition """ return _request('get', '/get/alert/for/{0}'.format(thing_name), params={'key': key}, session=session)
Set an alert on a thing with the given condition
def show_lbaas_healthmonitor(self, lbaas_healthmonitor, **_params): """Fetches information for a lbaas_healthmonitor.""" return self.get(self.lbaas_healthmonitor_path % (lbaas_healthmonitor), params=_params)
Fetches information for a lbaas_healthmonitor.
def handle_url_build_error(self, error: Exception, endpoint: str, values: dict) -> str: """Handle a build error. Ideally this will return a valid url given the error endpoint and values. """ for handler in self.url_build_error_handlers: result = handler(error, endpoint, values) if result is not None: return result raise error
Handle a build error. Ideally this will return a valid url given the error endpoint and values.
def tdSensorValue(self, protocol, model, sid, datatype): """Get the sensor value for a given sensor. :return: a dict with the keys: value, timestamp. """ value = create_string_buffer(20) timestamp = c_int() self._lib.tdSensorValue(protocol, model, sid, datatype, value, sizeof(value), byref(timestamp)) return {'value': self._to_str(value), 'timestamp': timestamp.value}
Get the sensor value for a given sensor. :return: a dict with the keys: value, timestamp.
def robust_outer_product(vec_1, vec_2): """ Calculates a 'robust' outer product of two vectors that may or may not contain very small values. Parameters ---------- vec_1 : 1D ndarray vec_2 : 1D ndarray Returns ------- outer_prod : 2D ndarray. The outer product of vec_1 and vec_2 """ mantissa_1, exponents_1 = np.frexp(vec_1) mantissa_2, exponents_2 = np.frexp(vec_2) new_mantissas = mantissa_1[None, :] * mantissa_2[:, None] new_exponents = exponents_1[None, :] + exponents_2[:, None] return new_mantissas * np.exp2(new_exponents)
Calculates a 'robust' outer product of two vectors that may or may not contain very small values. Parameters ---------- vec_1 : 1D ndarray vec_2 : 1D ndarray Returns ------- outer_prod : 2D ndarray. The outer product of vec_1 and vec_2
def sort_tiers(self, key=lambda x: x.name): """Sort the tiers given the key. Example key functions: Sort according to the tiername in a list: ``lambda x: ['name1', 'name2' ... 'namen'].index(x.name)``. Sort according to the number of annotations: ``lambda x: len(list(x.get_intervals()))`` :param func key: A key function. Default sorts alphabetically. """ self.tiers.sort(key=key)
Sort the tiers given the key. Example key functions: Sort according to the tiername in a list: ``lambda x: ['name1', 'name2' ... 'namen'].index(x.name)``. Sort according to the number of annotations: ``lambda x: len(list(x.get_intervals()))`` :param func key: A key function. Default sorts alphabetically.
def business_rule_notification_is_blocked(self, hosts, services): # pylint: disable=too-many-locals """Process business rule notifications behaviour. If all problems have been acknowledged, no notifications should be sent if state is not OK. By default, downtimes are ignored, unless explicitly told to be treated as acknowledgements through with the business_rule_downtime_as_ack set. :return: True if all source problem are acknowledged, otherwise False :rtype: bool """ # Walks through problems to check if all items in non ok are # acknowledged or in downtime period. acknowledged = 0 for src_prob_id in self.source_problems: if src_prob_id in hosts: src_prob = hosts[src_prob_id] else: src_prob = services[src_prob_id] if src_prob.last_hard_state_id != 0: if src_prob.problem_has_been_acknowledged: # Problem hast been acknowledged acknowledged += 1 # Only check problems under downtime if we are # explicitly told to do so. elif self.business_rule_downtime_as_ack is True: if src_prob.scheduled_downtime_depth > 0: # Problem is under downtime, and downtimes should be # treated as acknowledgements acknowledged += 1 elif hasattr(src_prob, "host") and \ hosts[src_prob.host].scheduled_downtime_depth > 0: # Host is under downtime, and downtimes should be # treated as acknowledgements acknowledged += 1 return acknowledged == len(self.source_problems)
Process business rule notifications behaviour. If all problems have been acknowledged, no notifications should be sent if state is not OK. By default, downtimes are ignored, unless explicitly told to be treated as acknowledgements through with the business_rule_downtime_as_ack set. :return: True if all source problem are acknowledged, otherwise False :rtype: bool
def generate_single_simulation(self, x): """ Generate a single SSA simulation :param x: an integer to reset the random seed. If None, the initial random number generator is used :return: a list of :class:`~means.simulation.Trajectory` one per species in the problem :rtype: list[:class:`~means.simulation.Trajectory`] """ #reset random seed if x: self.__rng = np.random.RandomState(x) # perform one stochastic simulation time_points, species_over_time = self._gssa(self.__initial_conditions, self.__t_max) # build descriptors for first order raw moments aka expectations (e.g. [1, 0, 0], [0, 1, 0] and [0, 0, 1]) descriptors = [] for i, s in enumerate(self.__species): row = [0] * len(self.__species) row[i] = 1 descriptors.append(Moment(row, s)) # build trajectories trajectories = [Trajectory(time_points, spot, desc) for spot, desc in zip(species_over_time, descriptors)] return trajectories
Generate a single SSA simulation :param x: an integer to reset the random seed. If None, the initial random number generator is used :return: a list of :class:`~means.simulation.Trajectory` one per species in the problem :rtype: list[:class:`~means.simulation.Trajectory`]
def create_untl_xml_subelement(parent, element, prefix=''): """Create a UNTL XML subelement.""" subelement = SubElement(parent, prefix + element.tag) if element.content is not None: subelement.text = element.content if element.qualifier is not None: subelement.attrib["qualifier"] = element.qualifier if element.children > 0: for child in element.children: SubElement(subelement, prefix + child.tag).text = child.content else: subelement.text = element.content return subelement
Create a UNTL XML subelement.
def _bundle_generic(bfile, addhelper, fmt, reffmt, data_dir): ''' Loop over all basis sets and add data to an archive Parameters ---------- bfile : object An object that gets passed through to the addhelper function addhelper : function A function that takes bfile and adds data to the bfile fmt : str Format of the basis set to create reffmt : str Format to use for the references data_dir : str Data directory with all the basis set information. Returns ------- None ''' ext = converters.get_format_extension(fmt) refext = refconverters.get_format_extension(reffmt) subdir = 'basis_set_bundle-' + fmt + '-' + reffmt readme_path = os.path.join(subdir, 'README.txt') addhelper(bfile, readme_path, _create_readme(fmt, reffmt)) for name, data, notes in _basis_data_iter(fmt, reffmt, data_dir): for ver, verdata in data.items(): filename = misc.basis_name_to_filename(name) basis_filepath = os.path.join(subdir, '{}.{}{}'.format(filename, ver, ext)) ref_filename = os.path.join(subdir, '{}.{}.ref{}'.format(filename, ver, refext)) bsdata, refdata = verdata addhelper(bfile, basis_filepath, bsdata) addhelper(bfile, ref_filename, refdata) if len(notes) > 0: notes_filename = os.path.join(subdir, filename + '.notes') addhelper(bfile, notes_filename, notes) for fam in api.get_families(data_dir): fam_notes = api.get_family_notes(fam, data_dir) if len(fam_notes) > 0: fam_notes_filename = os.path.join(subdir, fam + '.family_notes') addhelper(bfile, fam_notes_filename, fam_notes)
Loop over all basis sets and add data to an archive Parameters ---------- bfile : object An object that gets passed through to the addhelper function addhelper : function A function that takes bfile and adds data to the bfile fmt : str Format of the basis set to create reffmt : str Format to use for the references data_dir : str Data directory with all the basis set information. Returns ------- None
def snapshot(self): """Snapshot current state.""" self._snapshot = { 'muted': self.muted, 'volume': self.volume, 'stream': self.stream } _LOGGER.info('took snapshot of current state of %s', self.friendly_name)
Snapshot current state.
def transform_q(q, query): """ Replaces (lookup, value) children of Q with equivalent WhereNode objects. This is a pre-prep of our Q object, ready for later rendering into SQL. Modifies in place, no need to return. (We could do this in render_q, but then we'd have to pass the Query object from ConditionalAggregate down into SQLConditionalAggregate, which Django avoids to do in their API so we try and follow their lead here) """ for i, child in enumerate(q.children): if isinstance(child, Q): transform_q(child, query) else: # child is (lookup, value) tuple where_node = query.build_filter(child) q.children[i] = where_node
Replaces (lookup, value) children of Q with equivalent WhereNode objects. This is a pre-prep of our Q object, ready for later rendering into SQL. Modifies in place, no need to return. (We could do this in render_q, but then we'd have to pass the Query object from ConditionalAggregate down into SQLConditionalAggregate, which Django avoids to do in their API so we try and follow their lead here)
def migrate_passwords_to_leader_storage(self, excludes=None): """Migrate any passwords storage on disk to leader storage.""" if not is_leader(): log("Skipping password migration as not the lead unit", level=DEBUG) return dirname = os.path.dirname(self.root_passwd_file_template) path = os.path.join(dirname, '*.passwd') for f in glob.glob(path): if excludes and f in excludes: log("Excluding %s from leader storage migration" % (f), level=DEBUG) continue key = os.path.basename(f) with open(f, 'r') as passwd: _value = passwd.read().strip() try: leader_set(settings={key: _value}) if self.delete_ondisk_passwd_file: os.unlink(f) except ValueError: # NOTE cluster relation not yet ready - skip for now pass
Migrate any passwords storage on disk to leader storage.
def main(sample_id, assembly_file, minsize): """Main executor of the process_mapping template. Parameters ---------- sample_id : str Sample Identification string. assembly: str Path to the fatsa file generated by the assembler. minsize: str Min contig size to be considered a complete ORF """ logger.info("Starting assembly file processing") warnings = [] fails = "" # Parse the spades assembly file and perform the first filtering. logger.info("Starting assembly parsing") assembly_obj = Assembly(assembly_file, 0, 0, sample_id, minsize) if 'spades' in assembly_file: assembler = "SPAdes" else: assembler = "MEGAHIT" with open(".warnings", "w") as warn_fh: t_80 = int(minsize) * 0.8 t_150 = int(minsize) * 1.5 # Check if assembly size of the first assembly is lower than 80% of the # estimated genome size - DENV ORF has min 10k nt. If True, redo the filtering without the # k-mer coverage filter assembly_len = assembly_obj.get_assembly_length() logger.debug("Checking assembly length: {}".format(assembly_len)) if assembly_obj.nORFs < 1: warn_msg = "No complete ORFs found." warn_fh.write(warn_msg) fails = warn_msg if assembly_len < t_80: logger.warning("Assembly size ({}) smaller than the minimum " "threshold of 80% of expected genome size. " "Applying contig filters without the k-mer " "coverage filter".format(assembly_len)) assembly_len = assembly_obj.get_assembly_length() logger.debug("Checking updated assembly length: " "{}".format(assembly_len)) if assembly_len < t_80: warn_msg = "Assembly size smaller than the minimum" \ " threshold of 80% of expected genome size: {}".format( assembly_len) logger.warning(warn_msg) warn_fh.write(warn_msg) fails = warn_msg if assembly_len > t_150: warn_msg = "Assembly size ({}) larger than the maximum" \ " threshold of 150% of expected genome size.".format( assembly_len) logger.warning(warn_msg) warn_fh.write(warn_msg) fails = warn_msg # Write json report with open(".report.json", "w") as json_report: json_dic = { "tableRow": [{ "sample": sample_id, "data": [ {"header": "Contigs ({})".format(assembler), "value": len(assembly_obj.contigs), "table": "assembly", "columnBar": True}, {"header": "Assembled BP ({})".format(assembler), "value": assembly_len, "table": "assembly", "columnBar": True}, {"header": "ORFs", "value": assembly_obj.nORFs, "table": "assembly", "columnBar":False} ] }], } if warnings: json_dic["warnings"] = [{ "sample": sample_id, "table": "assembly", "value": warnings }] if fails: json_dic["fail"] = [{ "sample": sample_id, "table": "assembly", "value": [fails] }] json_report.write(json.dumps(json_dic, separators=(",", ":"))) with open(".status", "w") as status_fh: status_fh.write("pass")
Main executor of the process_mapping template. Parameters ---------- sample_id : str Sample Identification string. assembly: str Path to the fatsa file generated by the assembler. minsize: str Min contig size to be considered a complete ORF
def _connect(self): """Try to connect to the database. Raises: :exc:`~ConnectionError`: If the connection to the database fails. :exc:`~AuthenticationError`: If there is a OperationFailure due to Authentication failure after connecting to the database. :exc:`~ConfigurationError`: If there is a ConfigurationError while connecting to the database. """ try: # FYI: the connection process might raise a # `ServerSelectionTimeoutError`, that is a subclass of # `ConnectionFailure`. # The presence of ca_cert, certfile, keyfile, crlfile implies the # use of certificates for TLS connectivity. if self.ca_cert is None or self.certfile is None or \ self.keyfile is None or self.crlfile is None: client = pymongo.MongoClient(self.host, self.port, replicaset=self.replicaset, serverselectiontimeoutms=self.connection_timeout, ssl=self.ssl, **MONGO_OPTS) if self.login is not None and self.password is not None: client[self.dbname].authenticate(self.login, self.password) else: logger.info('Connecting to MongoDB over TLS/SSL...') client = pymongo.MongoClient(self.host, self.port, replicaset=self.replicaset, serverselectiontimeoutms=self.connection_timeout, ssl=self.ssl, ssl_ca_certs=self.ca_cert, ssl_certfile=self.certfile, ssl_keyfile=self.keyfile, ssl_pem_passphrase=self.keyfile_passphrase, ssl_crlfile=self.crlfile, ssl_cert_reqs=CERT_REQUIRED, **MONGO_OPTS) if self.login is not None: client[self.dbname].authenticate(self.login, mechanism='MONGODB-X509') return client except (pymongo.errors.ConnectionFailure, pymongo.errors.OperationFailure) as exc: logger.info('Exception in _connect(): {}'.format(exc)) raise ConnectionError(str(exc)) from exc except pymongo.errors.ConfigurationError as exc: raise ConfigurationError from exc
Try to connect to the database. Raises: :exc:`~ConnectionError`: If the connection to the database fails. :exc:`~AuthenticationError`: If there is a OperationFailure due to Authentication failure after connecting to the database. :exc:`~ConfigurationError`: If there is a ConfigurationError while connecting to the database.
def exception_wrapper(f): """Decorator to convert dbus exception to pympris exception.""" @wraps(f) def wrapper(*args, **kwds): try: return f(*args, **kwds) except dbus.exceptions.DBusException as err: _args = err.args raise PyMPRISException(*_args) return wrapper
Decorator to convert dbus exception to pympris exception.
def set_affinity_matrix(self, affinity_mat): """ Parameters ---------- affinity_mat : sparse matrix (N_obs, N_obs). The adjacency matrix to input. """ affinity_mat = check_array(affinity_mat, accept_sparse=sparse_formats) if affinity_mat.shape[0] != affinity_mat.shape[1]: raise ValueError("affinity matrix is not square") self.affinity_matrix = affinity_mat
Parameters ---------- affinity_mat : sparse matrix (N_obs, N_obs). The adjacency matrix to input.
def encrypt(self): """ We perform no encryption, we just encode the value as base64 and then decode it in decrypt(). """ value = self.parameters.get("Plaintext") if isinstance(value, six.text_type): value = value.encode('utf-8') return json.dumps({"CiphertextBlob": base64.b64encode(value).decode("utf-8"), 'KeyId': 'key_id'})
We perform no encryption, we just encode the value as base64 and then decode it in decrypt().
def find_additional_rels(self, all_models): """Attempts to scan for additional relationship fields for this model based on all of the other models' structures and relationships. """ for model_name, model in iteritems(all_models): if model_name != self.name: for field_name in model.field_names: field = model.fields[field_name] # if this field type references the current model if field.field_type == self.name and field.back_populates is not None and \ (isinstance(field, StatikForeignKeyField) or isinstance(field, StatikManyToManyField)): self.additional_rels[field.back_populates] = { 'to_model': model_name, 'back_populates': field_name, 'secondary': (model_name, field.field_type) if isinstance(field, StatikManyToManyField) else None } logger.debug( 'Additional relationship %s.%s -> %s (%s)', self.name, field.back_populates, model_name, self.additional_rels[field.back_populates] )
Attempts to scan for additional relationship fields for this model based on all of the other models' structures and relationships.
def get_instance_property(instance, property_name): """Retrieves property of an instance, keeps retrying until getting a non-None""" name = get_name(instance) while True: try: value = getattr(instance, property_name) if value is not None: break print(f"retrieving {property_name} on {name} produced None, retrying") time.sleep(RETRY_INTERVAL_SEC) instance.reload() continue except Exception as e: print(f"retrieving {property_name} on {name} failed with {e}, retrying") time.sleep(RETRY_INTERVAL_SEC) try: instance.reload() except Exception: pass continue return value
Retrieves property of an instance, keeps retrying until getting a non-None
def memoizedmethod(method): """ Decorator that caches method result. Args: method (function): Method Returns: function: Memoized method. Notes: Target method class needs as "_cache" attribute (dict). It is the case of "ObjectIOBase" and all its subclasses. """ method_name = method.__name__ @wraps(method) def patched(self, *args, **kwargs): """Patched method""" # Gets value from cache try: return self._cache[method_name] # Evaluates and cache value except KeyError: result = self._cache[method_name] = method( self, *args, **kwargs) return result return patched
Decorator that caches method result. Args: method (function): Method Returns: function: Memoized method. Notes: Target method class needs as "_cache" attribute (dict). It is the case of "ObjectIOBase" and all its subclasses.
def ReadTrigger(self, trigger_link, options=None): """Reads a trigger. :param str trigger_link: The link to the trigger. :param dict options: The request options for the request. :return: The read Trigger. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(trigger_link) trigger_id = base.GetResourceIdOrFullNameFromLink(trigger_link) return self.Read(path, 'triggers', trigger_id, None, options)
Reads a trigger. :param str trigger_link: The link to the trigger. :param dict options: The request options for the request. :return: The read Trigger. :rtype: dict
def shadow_hash(crypt_salt=None, password=None, algorithm='sha512'): ''' Generates a salted hash suitable for /etc/shadow. crypt_salt : None Salt to be used in the generation of the hash. If one is not provided, a random salt will be generated. password : None Value to be salted and hashed. If one is not provided, a random password will be generated. algorithm : sha512 Hash algorithm to use. CLI Example: .. code-block:: bash salt '*' random.shadow_hash 'My5alT' 'MyP@asswd' md5 ''' return salt.utils.pycrypto.gen_hash(crypt_salt, password, algorithm)
Generates a salted hash suitable for /etc/shadow. crypt_salt : None Salt to be used in the generation of the hash. If one is not provided, a random salt will be generated. password : None Value to be salted and hashed. If one is not provided, a random password will be generated. algorithm : sha512 Hash algorithm to use. CLI Example: .. code-block:: bash salt '*' random.shadow_hash 'My5alT' 'MyP@asswd' md5
def check_type_and_values_of_specification_dict(specification_dict, unique_alternatives): """ Verifies that the values of specification_dict have the correct type, have the correct structure, and have valid values (i.e. are actually in the set of possible alternatives). Will raise various errors if / when appropriate. Parameters ---------- specification_dict : OrderedDict. Keys are a proper subset of the columns in `long_form_df`. Values are either a list or a single string, `"all_diff"` or `"all_same"`. If a list, the elements should be: - single objects that are within the alternative ID column of `long_form_df` - lists of objects that are within the alternative ID column of `long_form_df`. For each single object in the list, a unique column will be created (i.e. there will be a unique coefficient for that variable in the corresponding utility equation of the corresponding alternative). For lists within the `specification_dict` values, a single column will be created for all the alternatives within iterable (i.e. there will be one common coefficient for the variables in the iterable). unique_alternatives : 1D ndarray. Should contain the possible alternative id's for this dataset. Returns ------- None. """ for key in specification_dict: specification = specification_dict[key] if isinstance(specification, str): if specification not in ["all_same", "all_diff"]: msg = "specification_dict[{}] not in ['all_same', 'all_diff']" raise ValueError(msg.format(key)) elif isinstance(specification, list): # Imagine that the specification is [[1, 2], 3] # group would be [1, 2] # group_item would be 1 or 2. group_item should never be a list. for group in specification: group_is_list = isinstance(group, list) if group_is_list: for group_item in group: if isinstance(group_item, list): msg = "Wrong structure for specification_dict[{}]" msg_2 = " Values can be a list of lists of ints," msg_3 = " not lists of lists of lists of ints." total_msg = msg.format(key) + msg_2 + msg_3 raise ValueError(total_msg) elif group_item not in unique_alternatives: msg_1 = "{} in {} in specification_dict[{}]" msg_2 = " is not in long_format[alt_id_col]" total_msg = (msg_1.format(group_item, group, key) + msg_2) raise ValueError(total_msg) else: if group not in unique_alternatives: msg_1 = "{} in specification_dict[{}]" msg_2 = " is not in long_format[alt_id_col]" raise ValueError(msg_1.format(group, key) + msg_2) else: msg = "specification_dict[{}] must be 'all_same', 'all_diff', or" msg_2 = " a list." raise TypeError(msg.format(key) + msg_2) return None
Verifies that the values of specification_dict have the correct type, have the correct structure, and have valid values (i.e. are actually in the set of possible alternatives). Will raise various errors if / when appropriate. Parameters ---------- specification_dict : OrderedDict. Keys are a proper subset of the columns in `long_form_df`. Values are either a list or a single string, `"all_diff"` or `"all_same"`. If a list, the elements should be: - single objects that are within the alternative ID column of `long_form_df` - lists of objects that are within the alternative ID column of `long_form_df`. For each single object in the list, a unique column will be created (i.e. there will be a unique coefficient for that variable in the corresponding utility equation of the corresponding alternative). For lists within the `specification_dict` values, a single column will be created for all the alternatives within iterable (i.e. there will be one common coefficient for the variables in the iterable). unique_alternatives : 1D ndarray. Should contain the possible alternative id's for this dataset. Returns ------- None.
def fit(self, X, y=None): """Fits the GraphLasso covariance model to X. Closely follows sklearn.covariance.graph_lasso.GraphLassoCV. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate """ # quic-specific outputs self.opt_ = None self.cputime_ = None self.iters_ = None self.duality_gap_ = None # these must be updated upon self.fit() self.sample_covariance_ = None self.lam_scale_ = None self.is_fitted_ = False # initialize X = check_array(X, ensure_min_features=2, estimator=self) X = as_float_array(X, copy=False, force_all_finite=False) if self.cv is None: cv = (3, 10) elif isinstance(self.cv, int): cv = (self.cv, 10) # upgrade with default number of trials elif isinstance(self.cv, tuple): cv = self.cv cv = RepeatedKFold(n_splits=cv[0], n_repeats=cv[1]) self.init_coefs(X) # get path if isinstance(self.lams, int): n_refinements = self.n_refinements lam_1 = self.lam_scale_ lam_0 = 1e-2 * lam_1 path = np.logspace(np.log10(lam_0), np.log10(lam_1), self.lams)[::-1] else: path = self.lams n_refinements = 1 # run this thing a bunch results = list() t0 = time.time() for rr in range(n_refinements): if self.sc is None: # parallel version this_result = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, backend=self.backend )( delayed(_quic_path)( X[train], path, X_test=X[test], lam=self.lam, tol=self.tol, max_iter=self.max_iter, Theta0=self.Theta0, Sigma0=self.Sigma0, method=self.method, verbose=self.verbose, score_metric=self.score_metric, init_method=self.init_method, ) for train, test in cv.split(X) ) else: # parallel via spark train_test_grid = [(train, test) for (train, test) in cv.split(X)] indexed_param_grid = list( zip(range(len(train_test_grid)), train_test_grid) ) par_param_grid = self.sc.parallelize(indexed_param_grid) X_bc = self.sc.broadcast(X) # wrap function parameters so we dont pick whole self object quic_path = partial( _quic_path, path=path, lam=self.lam, tol=self.tol, max_iter=self.max_iter, Theta0=self.Theta0, Sigma0=self.Sigma0, method=self.method, verbose=self.verbose, score_metric=self.score_metric, init_method=self.init_method, ) indexed_results = dict( par_param_grid.map( partial(_quic_path_spark, quic_path=quic_path, X_bc=X_bc) ).collect() ) this_result = [ indexed_results[idx] for idx in range(len(train_test_grid)) ] X_bc.unpersist() # Little dance to transform the list in what we need covs, _, scores = zip(*this_result) covs = zip(*covs) scores = zip(*scores) results.extend(zip(path, scores, covs)) results = sorted(results, key=operator.itemgetter(0), reverse=True) # Find the maximum (avoid using built in 'max' function to # have a fully-reproducible selection of the smallest alpha # in case of equality) best_score = -np.inf last_finite_idx = 0 best_index = 0 for index, (lam, scores, _) in enumerate(results): # sometimes we get -np.inf in the result (in kl-loss) scores = [s for s in scores if not np.isinf(s)] if len(scores) == 0: this_score = -np.inf else: this_score = np.mean(scores) if this_score >= .1 / np.finfo(np.float64).eps: this_score = np.nan if np.isfinite(this_score): last_finite_idx = index if this_score >= best_score: best_score = this_score best_index = index # Refine the grid if best_index == 0: # We do not need to go back: we have chosen # the highest value of lambda for which there are # non-zero coefficients lam_1 = results[0][0] lam_0 = results[1][0] elif best_index == last_finite_idx and not best_index == len(results) - 1: # We have non-converged models on the upper bound of the # grid, we need to refine the grid there lam_1 = results[best_index][0] lam_0 = results[best_index + 1][0] elif best_index == len(results) - 1: lam_1 = results[best_index][0] lam_0 = 0.01 * results[best_index][0] else: lam_1 = results[best_index - 1][0] lam_0 = results[best_index + 1][0] if isinstance(self.lams, int): path = np.logspace(np.log10(lam_1), np.log10(lam_0), self.lams + 2) path = path[1:-1] if self.verbose and n_refinements > 1: print( "[GraphLassoCV] Done refinement % 2i out of %i: % 3is" % (rr + 1, n_refinements, time.time() - t0) ) results = list(zip(*results)) grid_scores_ = list(results[1]) lams = list(results[0]) # Finally, compute the score with lambda = 0 lams.append(0) grid_scores_.append( cross_val_score(EmpiricalCovariance(), X, cv=cv, n_jobs=self.n_jobs) ) self.grid_scores_ = np.array(grid_scores_) self.lam_ = self.lam * lams[best_index] self.cv_lams_ = [self.lam * l for l in lams] # Finally fit the model with the selected lambda if self.method == "quic": ( self.precision_, self.covariance_, self.opt_, self.cputime_, self.iters_, self.duality_gap_, ) = quic( self.sample_covariance_, self.lam_, mode="default", tol=self.tol, max_iter=self.max_iter, Theta0=self.Theta0, Sigma0=self.Sigma0, path=None, msg=self.verbose, ) else: raise NotImplementedError("Only method='quic' has been implemented.") self.is_fitted_ = True return self
Fits the GraphLasso covariance model to X. Closely follows sklearn.covariance.graph_lasso.GraphLassoCV. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate
def com_google_fonts_check_fstype(ttFont): """Checking OS/2 fsType. Fonts must have their fsType field set to zero. This setting is known as Installable Embedding, meaning that none of the DRM restrictions are enabled on the fonts. More info available at: https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype """ value = ttFont['OS/2'].fsType if value != 0: FSTYPE_RESTRICTIONS = { 0x0002: ("* The font must not be modified, embedded or exchanged in" " any manner without first obtaining permission of" " the legal owner."), 0x0004: ("The font may be embedded, and temporarily loaded on the" " remote system, but documents that use it must" " not be editable."), 0x0008: ("The font may be embedded but must only be installed" " temporarily on other systems."), 0x0100: ("The font may not be subsetted prior to embedding."), 0x0200: ("Only bitmaps contained in the font may be embedded." " No outline data may be embedded.") } restrictions = "" for bit_mask in FSTYPE_RESTRICTIONS.keys(): if value & bit_mask: restrictions += FSTYPE_RESTRICTIONS[bit_mask] if value & 0b1111110011110001: restrictions += ("* There are reserved bits set," " which indicates an invalid setting.") yield FAIL, ("OS/2 fsType is a legacy DRM-related field.\n" "In this font it is set to {} meaning that:\n" "{}\n" "No such DRM restrictions can be enabled on the" " Google Fonts collection, so the fsType field" " must be set to zero (Installable Embedding) instead.\n" "Fonts with this setting indicate that they may be embedded" " and permanently installed on the remote system" " by an application.\n\n" " More detailed info is available at:\n" " https://docs.microsoft.com/en-us" "/typography/opentype/spec/os2#fstype" "").format(value, restrictions) else: yield PASS, ("OS/2 fsType is properly set to zero.")
Checking OS/2 fsType. Fonts must have their fsType field set to zero. This setting is known as Installable Embedding, meaning that none of the DRM restrictions are enabled on the fonts. More info available at: https://docs.microsoft.com/en-us/typography/opentype/spec/os2#fstype
def _parse_hparams(hparams): """Split hparams, based on key prefixes. Args: hparams: hyperparameters Returns: Tuple of hparams for respectably: agent, optimizer, runner, replay_buffer. """ prefixes = ["agent_", "optimizer_", "runner_", "replay_buffer_"] ret = [] for prefix in prefixes: ret_dict = {} for key in hparams.values(): if prefix in key: par_name = key[len(prefix):] ret_dict[par_name] = hparams.get(key) ret.append(ret_dict) return ret
Split hparams, based on key prefixes. Args: hparams: hyperparameters Returns: Tuple of hparams for respectably: agent, optimizer, runner, replay_buffer.
def generate(env): """Add Builders and construction variables for gnulink to an Environment.""" link.generate(env) if env['PLATFORM'] == 'hpux': env['SHLINKFLAGS'] = SCons.Util.CLVar('$LINKFLAGS -shared -fPIC') # __RPATH is set to $_RPATH in the platform specification if that # platform supports it. env['RPATHPREFIX'] = '-Wl,-rpath=' env['RPATHSUFFIX'] = '' env['_RPATH'] = '${_concat(RPATHPREFIX, RPATH, RPATHSUFFIX, __env__)}' # OpenBSD doesn't usually use SONAME for libraries use_soname = not sys.platform.startswith('openbsd') link._setup_versioned_lib_variables(env, tool = 'gnulink', use_soname = use_soname) env['LINKCALLBACKS'] = link._versioned_lib_callbacks() # For backward-compatibility with older SCons versions env['SHLIBVERSIONFLAGS'] = SCons.Util.CLVar('-Wl,-Bsymbolic')
Add Builders and construction variables for gnulink to an Environment.
def get_data_length(self): # type: () -> int ''' A method to get the length of the data that this Directory Record points to. Parameters: None. Returns: The length of the data that this Directory Record points to. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('Directory Record not yet initialized') if self.inode is not None: return self.inode.get_data_length() return self.data_length
A method to get the length of the data that this Directory Record points to. Parameters: None. Returns: The length of the data that this Directory Record points to.
def ProbGreater(self, x): """Probability that a sample from this Pmf exceeds x. x: number returns: float probability """ t = [prob for (val, prob) in self.d.iteritems() if val > x] return sum(t)
Probability that a sample from this Pmf exceeds x. x: number returns: float probability
def pack(self, remaining_size): """Pack data of part into binary format""" arguments_count, payload = self.pack_data(remaining_size - self.header_size) payload_length = len(payload) # align payload length to multiple of 8 if payload_length % 8 != 0: payload += b"\x00" * (8 - payload_length % 8) self.header = PartHeader(self.kind, self.attribute, arguments_count, self.bigargumentcount, payload_length, remaining_size) hdr = self.header_struct.pack(*self.header) if pyhdb.tracing: self.trace_header = humanhexlify(hdr, 30) self.trace_payload = humanhexlify(payload, 30) return hdr + payload
Pack data of part into binary format
def decrypt_subtitle(self, subtitle): """Decrypt encrypted subtitle data in high level model object @param crunchyroll.models.Subtitle subtitle @return str """ return self.decrypt(self._build_encryption_key(int(subtitle.id)), subtitle['iv'][0].text.decode('base64'), subtitle['data'][0].text.decode('base64'))
Decrypt encrypted subtitle data in high level model object @param crunchyroll.models.Subtitle subtitle @return str
def clinvar_submission_header(submission_objs, csv_type): """Determine which fields to include in csv header by checking a list of submission objects Args: submission_objs(list): a list of objects (variants or casedata) to include in a csv file csv_type(str) : 'variant_data' or 'case_data' Returns: custom_header(dict): A dictionary with the fields required in the csv header. Keys and values are specified in CLINVAR_HEADER and CASEDATA_HEADER """ complete_header = {} # header containing all available fields custom_header = {} # header reflecting the real data included in the submission objects if csv_type == 'variant_data' : complete_header = CLINVAR_HEADER else: complete_header = CASEDATA_HEADER for header_key, header_value in complete_header.items(): # loop over the info fields provided in each submission object for clinvar_obj in submission_objs: # loop over the submission objects for key, value in clinvar_obj.items(): # loop over the keys and values of the clinvar objects if not header_key in custom_header and header_key == key: # add to custom header if missing and specified in submission object custom_header[header_key] = header_value return custom_header
Determine which fields to include in csv header by checking a list of submission objects Args: submission_objs(list): a list of objects (variants or casedata) to include in a csv file csv_type(str) : 'variant_data' or 'case_data' Returns: custom_header(dict): A dictionary with the fields required in the csv header. Keys and values are specified in CLINVAR_HEADER and CASEDATA_HEADER
def https_connection(self): """Return an https connection to this Connection's endpoint. Returns a 3-tuple containing:: 1. The :class:`HTTPSConnection` instance 2. Dictionary of auth headers to be used with the connection 3. The root url path (str) to be used for requests. """ endpoint = self.endpoint host, remainder = endpoint.split(':', 1) port = remainder if '/' in remainder: port, _ = remainder.split('/', 1) conn = HTTPSConnection( host, int(port), context=self._get_ssl(self.cacert), ) path = ( "/model/{}".format(self.uuid) if self.uuid else "" ) return conn, self._http_headers(), path
Return an https connection to this Connection's endpoint. Returns a 3-tuple containing:: 1. The :class:`HTTPSConnection` instance 2. Dictionary of auth headers to be used with the connection 3. The root url path (str) to be used for requests.
def add_number_widget(self, ref, x=1, value=1): """ Add Number Widget """ if ref not in self.widgets: widget = widgets.NumberWidget(screen=self, ref=ref, x=x, value=value) self.widgets[ref] = widget return self.widgets[ref]
Add Number Widget
def _handle_ticker(self, dtype, data, ts): """Adds received ticker data to self.tickers dict, filed under its channel id. :param dtype: :param data: :param ts: :return: """ self.log.debug("_handle_ticker: %s - %s - %s", dtype, data, ts) channel_id, *data = data channel_identifier = self.channel_directory[channel_id] entry = (data, ts) self.tickers[channel_identifier].put(entry)
Adds received ticker data to self.tickers dict, filed under its channel id. :param dtype: :param data: :param ts: :return:
def singularity_build(script=None, src=None, dest=None, **kwargs): '''docker build command. By default a script is sent to the docker build command but you can also specify different parameters defined inu//docker-py.readthedocs.org/en/stable/api/#build ''' singularity = SoS_SingularityClient() singularity.build(script, src, dest, **kwargs) return 0
docker build command. By default a script is sent to the docker build command but you can also specify different parameters defined inu//docker-py.readthedocs.org/en/stable/api/#build
def _normalized_keys(self, section, items): # type: (str, Iterable[Tuple[str, Any]]) -> Dict[str, Any] """Normalizes items to construct a dictionary with normalized keys. This routine is where the names become keys and are made the same regardless of source - configuration files or environment. """ normalized = {} for name, val in items: key = section + "." + _normalize_name(name) normalized[key] = val return normalized
Normalizes items to construct a dictionary with normalized keys. This routine is where the names become keys and are made the same regardless of source - configuration files or environment.
def _make_publisher(catalog_or_dataset): """De estar presentes las claves necesarias, genera el diccionario "publisher" a nivel catálogo o dataset.""" level = catalog_or_dataset keys = [k for k in ["publisher_name", "publisher_mbox"] if k in level] if keys: level["publisher"] = { key.replace("publisher_", ""): level.pop(key) for key in keys } return level
De estar presentes las claves necesarias, genera el diccionario "publisher" a nivel catálogo o dataset.
def transitions_for(self, roles=None, actor=None, anchors=[]): """ For use on :class:`~coaster.sqlalchemy.mixins.RoleMixin` classes: returns currently available transitions for the specified roles or actor as a dictionary of name: :class:`StateTransitionWrapper`. """ proxy = self.obj.access_for(roles, actor, anchors) return {name: transition for name, transition in self.transitions(current=False).items() if name in proxy}
For use on :class:`~coaster.sqlalchemy.mixins.RoleMixin` classes: returns currently available transitions for the specified roles or actor as a dictionary of name: :class:`StateTransitionWrapper`.
def strftime(dt, fmt): ''' `strftime` implementation working before 1900 ''' if _illegal_s.search(fmt): raise TypeError("This strftime implementation does not handle %s") if dt.year > 1900: return dt.strftime(fmt) fmt = fmt.replace('%c', '%a %b %d %H:%M:%S %Y')\ .replace('%Y', str(dt.year))\ .replace('%y', '{:04}'.format(dt.year)[-2:]) year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6*(delta // 100 + delta // 400) year = year + off # Move to around the year 2000 year = year + ((2000 - year)//28)*28 timetuple = dt.timetuple() return time.strftime(fmt, (year,) + timetuple[1:])
`strftime` implementation working before 1900
def parse_options_header(value, multiple=False): """Parse a ``Content-Type`` like header into a tuple with the content type and the options: >>> parse_options_header('text/html; charset=utf8') ('text/html', {'charset': 'utf8'}) This should not be used to parse ``Cache-Control`` like headers that use a slightly different format. For these headers use the :func:`parse_dict_header` function. .. versionchanged:: 0.15 :rfc:`2231` parameter continuations are handled. .. versionadded:: 0.5 :param value: the header to parse. :param multiple: Whether try to parse and return multiple MIME types :return: (mimetype, options) or (mimetype, options, mimetype, options, …) if multiple=True """ if not value: return "", {} result = [] value = "," + value.replace("\n", ",") while value: match = _option_header_start_mime_type.match(value) if not match: break result.append(match.group(1)) # mimetype options = {} # Parse options rest = match.group(2) continued_encoding = None while rest: optmatch = _option_header_piece_re.match(rest) if not optmatch: break option, count, encoding, language, option_value = optmatch.groups() # Continuations don't have to supply the encoding after the # first line. If we're in a continuation, track the current # encoding to use for subsequent lines. Reset it when the # continuation ends. if not count: continued_encoding = None else: if not encoding: encoding = continued_encoding continued_encoding = encoding option = unquote_header_value(option) if option_value is not None: option_value = unquote_header_value(option_value, option == "filename") if encoding is not None: option_value = _unquote(option_value).decode(encoding) if count: # Continuations append to the existing value. For # simplicity, this ignores the possibility of # out-of-order indices, which shouldn't happen anyway. options[option] = options.get(option, "") + option_value else: options[option] = option_value rest = rest[optmatch.end() :] result.append(options) if multiple is False: return tuple(result) value = rest return tuple(result) if result else ("", {})
Parse a ``Content-Type`` like header into a tuple with the content type and the options: >>> parse_options_header('text/html; charset=utf8') ('text/html', {'charset': 'utf8'}) This should not be used to parse ``Cache-Control`` like headers that use a slightly different format. For these headers use the :func:`parse_dict_header` function. .. versionchanged:: 0.15 :rfc:`2231` parameter continuations are handled. .. versionadded:: 0.5 :param value: the header to parse. :param multiple: Whether try to parse and return multiple MIME types :return: (mimetype, options) or (mimetype, options, mimetype, options, …) if multiple=True
def rename_ligand(self,ligand_name,mol_file): """ Get an atom selection for the selected from both topology and trajectory. Rename the ligand LIG to help with ligand names that are not standard, e.g. contain numbers. Takes: * ligand_name * - MDAnalysis atom selection for the ligand selected by user Output: * self.ligand * - renamed ligand with resname LIG, * self.ligand_noH * - renamed ligand with resname LIG and without H atoms (these are not present in the final 2D representation and are therefore excluded from some analysis scripts.) """ self.universe.ligand = self.universe.select_atoms(ligand_name) #Both resname and resnames options need to be reset in order for complete renaming. self.universe.ligand.residues.resnames = "LIG" self.universe.ligand.resname = "LIG" if mol_file is None: self.universe.ligand.write("lig.pdb") os.system("babel -ipdb lig.pdb -omol lig.mol ")
Get an atom selection for the selected from both topology and trajectory. Rename the ligand LIG to help with ligand names that are not standard, e.g. contain numbers. Takes: * ligand_name * - MDAnalysis atom selection for the ligand selected by user Output: * self.ligand * - renamed ligand with resname LIG, * self.ligand_noH * - renamed ligand with resname LIG and without H atoms (these are not present in the final 2D representation and are therefore excluded from some analysis scripts.)
def _optimize_with_progs(format_module, filename, image_format): """ Use the correct optimizing functions in sequence. And report back statistics. """ filesize_in = os.stat(filename).st_size report_stats = None for func in format_module.PROGRAMS: if not getattr(Settings, func.__name__): continue report_stats = _optimize_image_external( filename, func, image_format, format_module.OUT_EXT) filename = report_stats.final_filename if format_module.BEST_ONLY: break if report_stats is not None: report_stats.bytes_in = filesize_in else: report_stats = stats.skip(image_format, filename) return report_stats
Use the correct optimizing functions in sequence. And report back statistics.
def push(self, item): ''' Push an item ''' self.server.lpush(self.key, self._encode_item(item))
Push an item
def get_prep_value(self, value): '''The psycopg adaptor returns Python objects, but we also have to handle conversion ourselves ''' if isinstance(value, JSON.JsonDict): return json.dumps(value, cls=JSON.Encoder) if isinstance(value, JSON.JsonList): return value.json_string if isinstance(value, JSON.JsonString): return json.dumps(value) return value
The psycopg adaptor returns Python objects, but we also have to handle conversion ourselves
def convert_radian(coord, *variables): """Convert the given coordinate from radian to degree Parameters ---------- coord: xr.Variable The variable to transform ``*variables`` The variables that are on the same unit. Returns ------- xr.Variable The transformed variable if one of the given `variables` has units in radian""" if any(v.attrs.get('units') == 'radian' for v in variables): return coord * 180. / np.pi return coord
Convert the given coordinate from radian to degree Parameters ---------- coord: xr.Variable The variable to transform ``*variables`` The variables that are on the same unit. Returns ------- xr.Variable The transformed variable if one of the given `variables` has units in radian
def _print_foreign_playlist_message(self): """ reset previous message """ self.operation_mode = self.window_mode = NORMAL_MODE self.refreshBody() """ display new message """ txt='''A playlist by this name: __"|{0}|" already exists in the config directory. This playlist was saved as: __"|{1}|" '''.format(self._cnf.foreign_filename_only_no_extension, self._cnf.stations_filename_only_no_extension) self._show_help(txt, FOREIGN_PLAYLIST_MESSAGE_MODE, caption = ' Foreign playlist ', prompt = ' Press any key ', is_message=True)
reset previous message
def observe(matcher): """ Internal decorator to trigger operator hooks before/after matcher execution. """ @functools.wraps(matcher) def observer(self, subject, *expected, **kw): # Trigger before hook, if present if hasattr(self, 'before'): self.before(subject, *expected, **kw) # Trigger matcher method result = matcher(self, subject, *expected, **kw) # After error hook if result is not True and hasattr(self, 'after_error'): self.after_error(result, subject, *expected, **kw) # After success hook if result is True and hasattr(self, 'after_success'): self.after_success(subject, *expected, **kw) # Enable diff comparison on error, if needed if not hasattr(self, 'show_diff'): self.show_diff = all([ isinstance(subject, six.string_types), all([isinstance(x, six.string_types) for x in expected]), ]) return result return observer
Internal decorator to trigger operator hooks before/after matcher execution.
def trace( data, name, format='png', datarange=(None, None), suffix='', path='./', rows=1, columns=1, num=1, last=True, fontmap = None, verbose=1): """ Generates trace plot from an array of data. :Arguments: data: array or list Usually a trace from an MCMC sample. name: string The name of the trace. datarange: tuple or list Preferred y-range of trace (defaults to (None,None)). format (optional): string Graphic output format (defaults to png). suffix (optional): string Filename suffix. path (optional): string Specifies location for saving plots (defaults to local directory). fontmap (optional): dict Font map for plot. """ if fontmap is None: fontmap = {1: 10, 2: 8, 3: 6, 4: 5, 5: 4} # Stand-alone plot or subplot? standalone = rows == 1 and columns == 1 and num == 1 if standalone: if verbose > 0: print_('Plotting', name) figure() subplot(rows, columns, num) pyplot(data.tolist()) ylim(datarange) # Plot options title('\n\n %s trace' % name, x=0., y=1., ha='left', va='top', fontsize='small') # Smaller tick labels tlabels = gca().get_xticklabels() setp(tlabels, 'fontsize', fontmap[max(rows / 2, 1)]) tlabels = gca().get_yticklabels() setp(tlabels, 'fontsize', fontmap[max(rows / 2, 1)]) if standalone: if not os.path.exists(path): os.mkdir(path) if not path.endswith('/'): path += '/' # Save to file savefig("%s%s%s.%s" % (path, name, suffix, format))
Generates trace plot from an array of data. :Arguments: data: array or list Usually a trace from an MCMC sample. name: string The name of the trace. datarange: tuple or list Preferred y-range of trace (defaults to (None,None)). format (optional): string Graphic output format (defaults to png). suffix (optional): string Filename suffix. path (optional): string Specifies location for saving plots (defaults to local directory). fontmap (optional): dict Font map for plot.
def formatMessageForBuildResults(self, mode, buildername, buildset, build, master, previous_results, blamelist): """Generate a buildbot mail message and return a dictionary containing the message body, type and subject.""" ss_list = buildset['sourcestamps'] results = build['results'] ctx = dict(results=build['results'], mode=mode, buildername=buildername, workername=build['properties'].get( 'workername', ["<unknown>"])[0], buildset=buildset, build=build, projects=self.getProjects(ss_list, master), previous_results=previous_results, status_detected=self.getDetectedStatus( mode, results, previous_results), build_url=utils.getURLForBuild( master, build['builder']['builderid'], build['number']), buildbot_url=master.config.buildbotURL, blamelist=blamelist, summary=self.messageSummary(build, results), sourcestamps=self.messageSourceStamps(ss_list) ) yield self.buildAdditionalContext(master, ctx) msgdict = self.renderMessage(ctx) return msgdict
Generate a buildbot mail message and return a dictionary containing the message body, type and subject.
def update_user(resource_root, user): """ Update a user. Replaces the user's details with those provided. @param resource_root: The root Resource object @param user: An ApiUser object @return: An ApiUser object """ return call(resource_root.put, '%s/%s' % (USERS_PATH, user.name), ApiUser, data=user)
Update a user. Replaces the user's details with those provided. @param resource_root: The root Resource object @param user: An ApiUser object @return: An ApiUser object
def Clouds(name=None, deterministic=False, random_state=None): """ Augmenter to draw clouds in images. This is a wrapper around ``CloudLayer``. It executes 1 to 2 layers per image, leading to varying densities and frequency patterns of clouds. This augmenter seems to be fairly robust w.r.t. the image size. Tested with ``96x128``, ``192x256`` and ``960x1280``. dtype support:: * ``uint8``: yes; tested * ``uint16``: no (1) * ``uint32``: no (1) * ``uint64``: no (1) * ``int8``: no (1) * ``int16``: no (1) * ``int32``: no (1) * ``int64``: no (1) * ``float16``: no (1) * ``float32``: no (1) * ``float64``: no (1) * ``float128``: no (1) * ``bool``: no (1) - (1) Parameters of this augmenter are optimized for the value range of uint8. While other dtypes may be accepted, they will lead to images augmented in ways inappropriate for the respective dtype. Parameters ---------- name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> aug = iaa.Clouds() Creates an augmenter that adds clouds to images. """ if name is None: name = "Unnamed%s" % (ia.caller_name(),) return meta.SomeOf((1, 2), children=[ CloudLayer( intensity_mean=(196, 255), intensity_freq_exponent=(-2.5, -2.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.25, 0.75), alpha_size_px_max=(2, 8), alpha_freq_exponent=(-2.5, -2.0), sparsity=(0.8, 1.0), density_multiplier=(0.5, 1.0) ), CloudLayer( intensity_mean=(196, 255), intensity_freq_exponent=(-2.0, -1.0), intensity_coarse_scale=10, alpha_min=0, alpha_multiplier=(0.5, 1.0), alpha_size_px_max=(64, 128), alpha_freq_exponent=(-2.0, -1.0), sparsity=(1.0, 1.4), density_multiplier=(0.8, 1.5) ) ], random_order=False, name=name, deterministic=deterministic, random_state=random_state)
Augmenter to draw clouds in images. This is a wrapper around ``CloudLayer``. It executes 1 to 2 layers per image, leading to varying densities and frequency patterns of clouds. This augmenter seems to be fairly robust w.r.t. the image size. Tested with ``96x128``, ``192x256`` and ``960x1280``. dtype support:: * ``uint8``: yes; tested * ``uint16``: no (1) * ``uint32``: no (1) * ``uint64``: no (1) * ``int8``: no (1) * ``int16``: no (1) * ``int32``: no (1) * ``int64``: no (1) * ``float16``: no (1) * ``float32``: no (1) * ``float64``: no (1) * ``float128``: no (1) * ``bool``: no (1) - (1) Parameters of this augmenter are optimized for the value range of uint8. While other dtypes may be accepted, they will lead to images augmented in ways inappropriate for the respective dtype. Parameters ---------- name : None or str, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. deterministic : bool, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. random_state : None or int or numpy.random.RandomState, optional See :func:`imgaug.augmenters.meta.Augmenter.__init__`. Examples -------- >>> aug = iaa.Clouds() Creates an augmenter that adds clouds to images.
def points(self, points): """ set points without copying """ if not isinstance(points, np.ndarray): raise TypeError('Points must be a numpy array') # get the unique coordinates along each axial direction x = np.unique(points[:,0]) y = np.unique(points[:,1]) z = np.unique(points[:,2]) nx, ny, nz = len(x), len(y), len(z) # TODO: this needs to be tested (unique might return a tuple) dx, dy, dz = np.unique(np.diff(x)), np.unique(np.diff(y)), np.unique(np.diff(z)) ox, oy, oz = np.min(x), np.min(y), np.min(z) # Build the vtk object self._from_specs((nx,ny,nz), (dx,dy,dz), (ox,oy,oz)) #self._point_ref = points self.Modified()
set points without copying
def encode(in_bytes): """Encode a string using Consistent Overhead Byte Stuffing (COBS). Input is any byte string. Output is also a byte string. Encoding guarantees no zero bytes in the output. The output string will be expanded slightly, by a predictable amount. An empty string is encoded to '\\x01'""" final_zero = True out_bytes = [] idx = 0 search_start_idx = 0 for in_char in in_bytes: if in_char == '\x00': final_zero = True out_bytes.append(chr(idx - search_start_idx + 1)) out_bytes.append(in_bytes[search_start_idx:idx]) search_start_idx = idx + 1 else: if idx - search_start_idx == 0xFD: final_zero = False out_bytes.append('\xFF') out_bytes.append(in_bytes[search_start_idx:idx+1]) search_start_idx = idx + 1 idx += 1 if idx != search_start_idx or final_zero: out_bytes.append(chr(idx - search_start_idx + 1)) out_bytes.append(in_bytes[search_start_idx:idx]) return ''.join(out_bytes)
Encode a string using Consistent Overhead Byte Stuffing (COBS). Input is any byte string. Output is also a byte string. Encoding guarantees no zero bytes in the output. The output string will be expanded slightly, by a predictable amount. An empty string is encoded to '\\x01
def run(self): """ Run a Quil program on the QVM multiple times and return the values stored in the classical registers designated by the classical_addresses parameter. :return: An array of bitstrings of shape ``(trials, len(classical_addresses))`` """ super().run() if not isinstance(self._executable, Program): # This should really never happen # unless a user monkeys with `self.status` and `self._executable`. raise ValueError("Please `load` an appropriate executable.") quil_program = self._executable trials = quil_program.num_shots classical_addresses = get_classical_addresses_from_program(quil_program) if self.noise_model is not None: quil_program = apply_noise_model(quil_program, self.noise_model) quil_program = self.augment_program_with_memory_values(quil_program) try: self._bitstrings = self.connection._qvm_run(quil_program=quil_program, classical_addresses=classical_addresses, trials=trials, measurement_noise=self.measurement_noise, gate_noise=self.gate_noise, random_seed=self.random_seed)['ro'] except KeyError: warnings.warn("You are running a QVM program with no MEASURE instructions. " "The result of this program will always be an empty array. Are " "you sure you didn't mean to measure some of your qubits?") self._bitstrings = np.zeros((trials, 0), dtype=np.int64) return self
Run a Quil program on the QVM multiple times and return the values stored in the classical registers designated by the classical_addresses parameter. :return: An array of bitstrings of shape ``(trials, len(classical_addresses))``