code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def insertBefore(self, child: Node, ref_node: Node) -> Node: """Insert new child node before the reference child node. If the reference node is not a child of this node, raise ValueError. If this instance is connected to the node on browser, the child node is also added to it. """ if self.connected: self._insert_before_web(child, ref_node) return self._insert_before(child, ref_node)
Insert new child node before the reference child node. If the reference node is not a child of this node, raise ValueError. If this instance is connected to the node on browser, the child node is also added to it.
def buglist(self, from_date=DEFAULT_DATETIME): """Get a summary of bugs in CSV format. :param from_date: retrieve bugs that where updated from that date """ if not self.version: self.version = self.__fetch_version() if self.version in self.OLD_STYLE_VERSIONS: order = 'Last+Changed' else: order = 'changeddate' date = from_date.strftime("%Y-%m-%d %H:%M:%S") params = { self.PCHFIELD_FROM: date, self.PCTYPE: self.CTYPE_CSV, self.PLIMIT: self.max_bugs_csv, self.PORDER: order } response = self.call(self.CGI_BUGLIST, params) return response
Get a summary of bugs in CSV format. :param from_date: retrieve bugs that where updated from that date
def get_ports(self, id_or_uri, start=0, count=-1): """ Gets all interconnect ports. Args: id_or_uri: Can be either the interconnect id or the interconnect uri. start: The first item to return, using 0-based indexing. If not specified, the default is 0 - start with the first available item. count: The number of resources to return. A count of -1 requests all items. The actual number of items in the response might differ from the requested count if the sum of start and count exceeds the total number of items. Returns: list: All interconnect ports. """ uri = self._client.build_subresource_uri(resource_id_or_uri=id_or_uri, subresource_path="ports") return self._client.get_all(start, count, uri=uri)
Gets all interconnect ports. Args: id_or_uri: Can be either the interconnect id or the interconnect uri. start: The first item to return, using 0-based indexing. If not specified, the default is 0 - start with the first available item. count: The number of resources to return. A count of -1 requests all items. The actual number of items in the response might differ from the requested count if the sum of start and count exceeds the total number of items. Returns: list: All interconnect ports.
def _update_console(self, value=None): """ Update the progress bar to the given value (out of the total given to the constructor). """ if self._total == 0: frac = 1.0 else: frac = float(value) / float(self._total) file = self._file write = file.write if frac > 1: bar_fill = int(self._bar_length) else: bar_fill = int(float(self._bar_length) * frac) write('\r|') color_print('=' * bar_fill, 'blue', file=file, end='') if bar_fill < self._bar_length: color_print('>', 'green', file=file, end='') write('-' * (self._bar_length - bar_fill - 1)) write('|') if value >= self._total: t = time.time() - self._start_time prefix = ' ' elif value <= 0: t = None prefix = '' else: t = ((time.time() - self._start_time) * (1.0 - frac)) / frac prefix = ' ETA ' write(' {0:>4s}/{1:>4s}'.format( human_file_size(value), self._human_total)) write(' ({0:>6s}%)'.format('{0:.2f}'.format(frac * 100.0))) write(prefix) if t is not None: write(human_time(t)) self._file.flush()
Update the progress bar to the given value (out of the total given to the constructor).
def contains_non_repeat_actions(self): ''' Because repeating repeat actions can get ugly real fast ''' for action in self.actions: if not isinstance(action, (int, dynamic.RepeatCommand)): return True return False
Because repeating repeat actions can get ugly real fast
def udf(f=None, returnType=StringType()): """Creates a user defined function (UDF). .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. :param f: python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ """ # The following table shows most of Python data and SQL type conversions in normal UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-25666's PR to see the codes in order to generate the table below. # # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)|1(long)| a(str)| a(unicode)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)| ABC(bytearray)| 1(Decimal)|{'a': 1}(dict)|Row(kwargs=1)(Row)|Row(namedtuple=1)(Row)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | tinyint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | smallint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | int| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | bigint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | string| None| u'true'| u'1'| u'1'| u'a'| u'a'|u'java.util.Grego...| u'java.util.Grego...| u'1.0'| u'[I@24a83055'| u'[1]'|u'[Ljava.lang.Obj...| u'[B@49093632'| u'1'| u'{a=1}'| X| X| # noqa # | date| None| X| X| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| X| X| # noqa # | float| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | double| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | array<int>| None| None| None| None| None| None| None| None| None| [1]| [1]| [1]| [65, 66, 67]| None| None| X| X| # noqa # | binary| None| None| None| None|bytearray(b'a')|bytearray(b'a')| None| None| None| None| None| None|bytearray(b'ABC')| None| None| X| X| # noqa # | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| X| X| # noqa # | map<string,int>| None| None| None| None| None| None| None| None| None| None| None| None| None| None| {u'a': 1}| X| X| # noqa # | struct<_1:int>| None| X| X| X| X| X| X| X| X| X|Row(_1=1)| Row(_1=1)| X| X| Row(_1=None)| Row(_1=1)| Row(_1=1)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: Python 2 is used to generate this table since it is used to check the backward # compatibility often in practice. # Note: 'X' means it throws an exception during the conversion. # decorator @udf, @udf(), @udf(dataType()) if f is None or isinstance(f, (str, DataType)): # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType return functools.partial(_create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF)
Creates a user defined function (UDF). .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. :param f: python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+
def _cmp(self, other): """ Comparator function for two :class:`~pywbem.CIMParameter` objects. The comparison is based on their public attributes, in descending precedence: * `name` * `type` * `reference_class` * `is_array` * `array_size` * `qualifiers` * `value` * `embedded_object` The comparison takes into account any case insensitivities described for these attributes. Raises `TypeError', if the `other` object is not a :class:`~pywbem.CIMParameter` object. """ if self is other: return 0 try: assert isinstance(other, CIMParameter) except AssertionError: raise TypeError( _format("other must be CIMParameter, but is: {0}", type(other))) return (cmpname(self.name, other.name) or cmpitem(self.type, other.type) or cmpname(self.reference_class, other.reference_class) or cmpitem(self.is_array, other.is_array) or cmpitem(self.array_size, other.array_size) or cmpdict(self.qualifiers, other.qualifiers) or cmpitem(self.value, other.value) or cmpitem(self.embedded_object, other.embedded_object))
Comparator function for two :class:`~pywbem.CIMParameter` objects. The comparison is based on their public attributes, in descending precedence: * `name` * `type` * `reference_class` * `is_array` * `array_size` * `qualifiers` * `value` * `embedded_object` The comparison takes into account any case insensitivities described for these attributes. Raises `TypeError', if the `other` object is not a :class:`~pywbem.CIMParameter` object.
def zip(self, *items): """ Zip the collection together with one or more arrays. :param items: The items to zip :type items: list :rtype: Collection """ return self.__class__(list(zip(self.items, *items)))
Zip the collection together with one or more arrays. :param items: The items to zip :type items: list :rtype: Collection
def funnel_rebuild(psg_trm_spec): """Rebuilds a model and compares it to a reference model. Parameters ---------- psg_trm: (([float], float, int), AMPAL, specification) A tuple containing the parameters, score and generation for a model as well as a model of the best scoring parameters. Returns ------- energy_rmsd_gen: (float, float, int) A triple containing the BUFF score, RMSD to the top model and generation of a model generated during the minimisation. """ param_score_gen, top_result_model, specification = psg_trm_spec params, score, gen = param_score_gen model = specification(*params) rmsd = top_result_model.rmsd(model) return rmsd, score, gen
Rebuilds a model and compares it to a reference model. Parameters ---------- psg_trm: (([float], float, int), AMPAL, specification) A tuple containing the parameters, score and generation for a model as well as a model of the best scoring parameters. Returns ------- energy_rmsd_gen: (float, float, int) A triple containing the BUFF score, RMSD to the top model and generation of a model generated during the minimisation.
def most_recent_common_ancestor(self, *ts): """Find the MRCA of some tax_ids. Returns the MRCA of the specified tax_ids, or raises ``NoAncestor`` if no ancestor of the specified tax_ids could be found. """ if len(ts) > 200: res = self._large_mrca(ts) else: res = self._small_mrca(ts) if res: (res,), = res else: raise NoAncestor() return res
Find the MRCA of some tax_ids. Returns the MRCA of the specified tax_ids, or raises ``NoAncestor`` if no ancestor of the specified tax_ids could be found.
def build_sdk_span(self, span): """ Takes a BasicSpan and converts into an SDK type JsonSpan """ custom_data = CustomData(tags=span.tags, logs=self.collect_logs(span)) sdk_data = SDKData(name=span.operation_name, custom=custom_data, Type=self.get_span_kind_as_string(span)) if "arguments" in span.tags: sdk_data.arguments = span.tags["arguments"] if "return" in span.tags: sdk_data.Return = span.tags["return"] data = Data(service=instana.singletons.agent.sensor.options.service_name, sdk=sdk_data) entity_from = {'e': instana.singletons.agent.from_.pid, 'h': instana.singletons.agent.from_.agentUuid} json_span = JsonSpan( t=span.context.trace_id, p=span.parent_id, s=span.context.span_id, ts=int(round(span.start_time * 1000)), d=int(round(span.duration * 1000)), k=self.get_span_kind_as_int(span), n="sdk", f=entity_from, data=data) error = span.tags.pop("error", False) ec = span.tags.pop("ec", None) if error and ec: json_span.error = error json_span.ec = ec return json_span
Takes a BasicSpan and converts into an SDK type JsonSpan
def _load_github_repo(): """ Loads the GitHub repository from the users config. """ if 'TRAVIS' in os.environ: raise RuntimeError('Detected that we are running in Travis. ' 'Stopping to prevent infinite loops.') try: with open(os.path.join(config_dir, 'repo'), 'r') as f: return f.read() except (OSError, IOError): raise RuntimeError('Could not find your repository. ' 'Have you ran `trytravis --repo`?')
Loads the GitHub repository from the users config.
def get(self): """ Get a JSON-ready representation of this OpenTracking. :returns: This OpenTracking, ready for use in a request body. :rtype: dict """ open_tracking = {} if self.enable is not None: open_tracking["enable"] = self.enable if self.substitution_tag is not None: open_tracking["substitution_tag"] = self.substitution_tag.get() return open_tracking
Get a JSON-ready representation of this OpenTracking. :returns: This OpenTracking, ready for use in a request body. :rtype: dict
def handle(client, request): """ Handle format request request struct: { 'data': 'data_need_format', 'formaters': [ { 'name': 'formater_name', 'config': {} # None or dict }, ... # formaters ] } if no formaters, use autopep8 formater and it's default config """ formaters = request.get('formaters', None) if not formaters: formaters = [{'name': 'autopep8'}] logging.debug('formaters: ' + json.dumps(formaters, indent=4)) data = request.get('data', None) if not isinstance(data, str): return send(client, 'invalid data', None) max_line_length = None for formater in formaters: max_line_length = formater.get('config', {}).get('max_line_length') if max_line_length: break for formater in formaters: name = formater.get('name', None) config = formater.get('config', {}) if name not in FORMATERS: return send(client, 'formater {} not support'.format(name), None) formater = FORMATERS[name] if formater is None: return send(client, 'formater {} not installed'.format(name), None) if name == 'isort' and max_line_length: config.setdefault('line_length', max_line_length) data = formater(data, **config) return send(client, None, data)
Handle format request request struct: { 'data': 'data_need_format', 'formaters': [ { 'name': 'formater_name', 'config': {} # None or dict }, ... # formaters ] } if no formaters, use autopep8 formater and it's default config
def has_perm(self, user_obj, perm, obj=None): """ Check if user have permission of himself If the user_obj is not authenticated, it return ``False``. If no object is specified, it return ``True`` when the corresponding permission was specified to ``True`` (changed from v0.7.0). This behavior is based on the django system. https://code.djangoproject.com/wiki/RowLevelPermissions If an object is specified, it will return ``True`` if the object is the user. So users can change or delete themselves (you can change this behavior to set ``any_permission``, ``change_permissino`` or ``delete_permission`` attributes of this instance). Parameters ---------- user_obj : django user model instance A django user model instance which be checked perm : string `app_label.codename` formatted permission string obj : None or django model instance None or django model instance for object permission Returns ------- boolean Whether the specified user have specified permission (of specified object). """ if not is_authenticated(user_obj): return False # construct the permission full name change_permission = self.get_full_permission_string('change') delete_permission = self.get_full_permission_string('delete') # check if the user is authenticated if obj is None: # object permission without obj should return True # Ref: https://code.djangoproject.com/wiki/RowLevelPermissions if self.any_permission: return True if self.change_permission and perm == change_permission: return True if self.delete_permission and perm == delete_permission: return True return False elif user_obj.is_active: # check if the user trying to interact with himself if obj == user_obj: if self.any_permission: # have any kind of permissions to himself return True if (self.change_permission and perm == change_permission): return True if (self.delete_permission and perm == delete_permission): return True return False
Check if user have permission of himself If the user_obj is not authenticated, it return ``False``. If no object is specified, it return ``True`` when the corresponding permission was specified to ``True`` (changed from v0.7.0). This behavior is based on the django system. https://code.djangoproject.com/wiki/RowLevelPermissions If an object is specified, it will return ``True`` if the object is the user. So users can change or delete themselves (you can change this behavior to set ``any_permission``, ``change_permissino`` or ``delete_permission`` attributes of this instance). Parameters ---------- user_obj : django user model instance A django user model instance which be checked perm : string `app_label.codename` formatted permission string obj : None or django model instance None or django model instance for object permission Returns ------- boolean Whether the specified user have specified permission (of specified object).
def get(zpool, prop=None, show_source=False, parsable=True): ''' .. versionadded:: 2016.3.0 Retrieves the given list of properties zpool : string Name of storage pool prop : string Optional name of property to retrieve show_source : boolean Show source of property parsable : boolean Display numbers in parsable (exact) values .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' zpool.get myzpool ''' ret = OrderedDict() value_properties = ['name', 'property', 'value', 'source'] ## collect get output res = __salt__['cmd.run_all']( __utils__['zfs.zpool_command']( command='get', flags=['-H'], property_name=prop if prop else 'all', target=zpool, ), python_shell=False, ) if res['retcode'] != 0: return __utils__['zfs.parse_command_result'](res) # NOTE: command output for reference # ======================================================================== # ... # data mountpoint /data local # data compression off default # ... # ========================================================================= # parse get output for line in res['stdout'].splitlines(): # NOTE: transform data into dict prop_data = OrderedDict(list(zip( value_properties, [x for x in line.strip().split('\t') if x not in ['']], ))) # NOTE: older zfs does not have -o, fall back to manually stipping the name field del prop_data['name'] # NOTE: normalize values if parsable: # NOTE: raw numbers and pythonic types prop_data['value'] = __utils__['zfs.from_auto'](prop_data['property'], prop_data['value']) else: # NOTE: human readable zfs types prop_data['value'] = __utils__['zfs.to_auto'](prop_data['property'], prop_data['value']) # NOTE: show source if requested if show_source: ret[prop_data['property']] = prop_data del ret[prop_data['property']]['property'] else: ret[prop_data['property']] = prop_data['value'] return ret
.. versionadded:: 2016.3.0 Retrieves the given list of properties zpool : string Name of storage pool prop : string Optional name of property to retrieve show_source : boolean Show source of property parsable : boolean Display numbers in parsable (exact) values .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' zpool.get myzpool
def cluster_application_attempts(self, application_id): """ With the application attempts API, you can obtain a collection of resources that represent an application attempt. :param str application_id: The application id :returns: API response object with JSON data :rtype: :py:class:`yarn_api_client.base.Response` """ path = '/ws/v1/cluster/apps/{appid}/appattempts'.format( appid=application_id) return self.request(path)
With the application attempts API, you can obtain a collection of resources that represent an application attempt. :param str application_id: The application id :returns: API response object with JSON data :rtype: :py:class:`yarn_api_client.base.Response`
def page(self, course, task, submission): """ Get all data and display the page """ submission = self.submission_manager.get_input_from_submission(submission) submission = self.submission_manager.get_feedback_from_submission( submission, show_everything=True, translation=self.app._translations.get(self.user_manager.session_language(), gettext.NullTranslations()) ) to_display = { problem.get_id(): { "id": problem.get_id(), "name": problem.get_name(self.user_manager.session_language()), "defined": True } for problem in task.get_problems() } to_display.update({ pid: { "id": pid, "name": pid, "defined": False } for pid in (set(submission["input"]) - set(to_display)) }) return self.template_helper.get_renderer().course_admin.submission(course, task, submission, to_display.values())
Get all data and display the page
def graph_loads(graph_json): ''' Load graph ''' layers = [] for layer in graph_json['layers']: layer_info = Layer(layer['type'], layer['input'], layer['output'], layer['size']) layer_info.is_delete = layer['is_delete'] layers.append(layer_info) graph = Graph(graph_json['max_layer_num'], [], [], []) graph.layers = layers return graph
Load graph
def _decompose_vectorized_indexer(indexer, shape, indexing_support): """ Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray. """ assert isinstance(indexer, VectorizedIndexer) if indexing_support is IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) backend_indexer = [] np_indexer = [] # convert negative indices indexer = [np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k for k, s in zip(indexer.tuple, shape)] for k, s in zip(indexer, shape): if isinstance(k, slice): # If it is a slice, then we will slice it as-is # (but make its step positive) in the backend, # and then use all of it (slice(None)) for the in-memory portion. bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) else: # If it is a (multidimensional) np.ndarray, just pickup the used # keys without duplication and store them as a 1d-np.ndarray. oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) backend_indexer = OuterIndexer(tuple(backend_indexer)) np_indexer = VectorizedIndexer(tuple(np_indexer)) if indexing_support is IndexingSupport.OUTER: return backend_indexer, np_indexer # If the backend does not support outer indexing, # backend_indexer (OuterIndexer) is also decomposed. backend_indexer, np_indexer1 = _decompose_outer_indexer( backend_indexer, shape, indexing_support) np_indexer = _combine_indexers(np_indexer1, shape, np_indexer) return backend_indexer, np_indexer
Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray.
def log(self, text, level=logging.INFO): """ convenience wrapper for :func:`fileStore.logToMaster` """ self._fileStore.logToMaster(text, level)
convenience wrapper for :func:`fileStore.logToMaster`
def desired_destination(self, network, edge): """Returns the agents next destination given their current location on the network. An ``Agent`` chooses one of the out edges at random. The probability that the ``Agent`` will travel along a specific edge is specified in the :class:`QueueNetwork's<.QueueNetwork>` transition matrix. Parameters ---------- network : :class:`.QueueNetwork` The :class:`.QueueNetwork` where the Agent resides. edge : tuple A 4-tuple indicating which edge this agent is located at. The first two slots indicate the current edge's source and target vertices, while the third slot indicates this edges ``edge_index``. The last slot indicates the edge type of that edge Returns ------- out : int Returns an the edge index corresponding to the agents next edge to visit in the network. See Also -------- :meth:`.transitions` : :class:`QueueNetwork's<.QueueNetwork>` method that returns the transition probabilities for each edge in the graph. """ n = len(network.out_edges[edge[1]]) if n <= 1: return network.out_edges[edge[1]][0] u = uniform() pr = network._route_probs[edge[1]] k = _choice(pr, u, n) # _choice returns an integer between 0 and n-1 where the # probability of k being selected is equal to pr[k]. return network.out_edges[edge[1]][k]
Returns the agents next destination given their current location on the network. An ``Agent`` chooses one of the out edges at random. The probability that the ``Agent`` will travel along a specific edge is specified in the :class:`QueueNetwork's<.QueueNetwork>` transition matrix. Parameters ---------- network : :class:`.QueueNetwork` The :class:`.QueueNetwork` where the Agent resides. edge : tuple A 4-tuple indicating which edge this agent is located at. The first two slots indicate the current edge's source and target vertices, while the third slot indicates this edges ``edge_index``. The last slot indicates the edge type of that edge Returns ------- out : int Returns an the edge index corresponding to the agents next edge to visit in the network. See Also -------- :meth:`.transitions` : :class:`QueueNetwork's<.QueueNetwork>` method that returns the transition probabilities for each edge in the graph.
def com_google_fonts_check_family_equal_glyph_names(ttFonts): """Fonts have equal glyph names?""" fonts = list(ttFonts) all_glyphnames = set() for ttFont in fonts: all_glyphnames |= set(ttFont["glyf"].glyphs.keys()) missing = {} available = {} for glyphname in all_glyphnames: missing[glyphname] = [] available[glyphname] = [] failed = False for ttFont in fonts: fontname = ttFont.reader.file.name these_ones = set(ttFont["glyf"].glyphs.keys()) for glyphname in all_glyphnames: if glyphname not in these_ones: failed = True missing[glyphname].append(fontname) else: available[glyphname].append(fontname) for gn in missing.keys(): if missing[gn]: available_styles = [style(k) for k in available[gn]] missing_styles = [style(k) for k in missing[gn]] if None not in available_styles + missing_styles: # if possible, use stylenames in the log messages. avail = ', '.join(available_styles) miss = ', '.join(missing_styles) else: # otherwise, print filenames: avail = ', '.join(available[gn]) miss = ', '.join(missing[gn]) yield FAIL, (f"Glyphname '{gn}' is defined on {avail}" f" but is missing on {miss}.") if not failed: yield PASS, "All font files have identical glyph names."
Fonts have equal glyph names?
def write_data(self, variable_id, value): """ write values to the device """ i = 0 j = 0 while i < 10: try: self.inst.query('*IDN?') # logger.info("Visa-AFG1022-Write-variable_id : %s et value : %s" %(variable_id, value)) i = 12 j = 1 except: self.connect() time.sleep(1) i += 1 logger.error("AFG1022 connect error i : %s" %i) if j == 0: logger.error("AFG1022-Instrument not connected") return None if variable_id == 'init_BODE': # N try: N = int(RecordedData.objects.last_element(variable_id=Variable.objects.get(name='BODE_n').id).value()) except: N = 0 logger.error('AFG1022 cannot load N') if N == 0: # Set N to 1 cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='BODE_n').id, value=1, start=time.time()) cwt.save() # ReCall init GBF cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Init_BODE_GBF').id, value=1, start=time.time()) cwt.save() return None elif N == 1: self.inst.read_termination = '\n' # Récup de Ve Vepp = RecordedData.objects.last_element(variable_id=Variable.objects.get(name='BODE_Vpp').id).value() # Fmin Fmin = RecordedData.objects.last_element(variable_id=Variable.objects.get(name='BODE_Fmin').id).value() # Call Range MM cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Set_AC_Range_and_Resolution_and_Measure_MM').id, value=Vepp, start=time.time()) cwt.save() # Call Init Osc cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Init_BODE_Osc').id, value=1, start=time.time()) cwt.save() # Reset GBF CMD = str('*RST;OUTPut1:STATe ON;OUTP1:IMP MAX;SOUR1:AM:STAT OFF;SOUR1:FUNC:SHAP SIN;SOUR1:VOLT:LEV:IMM:AMPL '+str(Vepp)+'Vpp') self.inst.write(CMD) # self.inst.write('*CLS') # Set F value cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='BODE_F').id, value=Fmin, start=time.time()) cwt.save() # Call Set Freq GBF # cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Set_Freq_GBF').id, value=Fmin, start=time.time()) # cwt.save() self.write_data("set_freq", Fmin) return True else: cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Init_BODE_GBF').id, value=1, start=time.time()) cwt.save() logger.info("Init GBF - N : %s" %N) return False return None elif variable_id == 'set_freq': # Define Freq self.inst.write('SOUR1:FREQ:FIX '+str(value)) # Call Read MM cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Read_MM_acual_value').id, value=1, start=time.time()) cwt.save() return self.parse_value(value) elif variable_id == 'set_tension': # Define tension self.inst.write('SOUR1:VOLT:LEV:IMM:AMPL '+str(value)+'Vpp') # F = Fmin F = RecordedData.objects.last_element(variable_id=Variable.objects.get(name='BODE_Fmin').id).value() # Set F value cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='BODE_F').id, value=F, start=time.time()) cwt.save() # Call Set Freq GBF cwt = DeviceWriteTask(variable_id=Variable.objects.get(name='Set_Freq_GBF').id, value=F, start=time.time()) cwt.save() return self.parse_value(value) elif variable_id == 'return_value': return self.parse_value(value) elif variable_id == 'reboot': import os os.system('sudo reboot') return 1 else: return self.parse_value(self.inst.query(str(variable_id)+' '+str(value))) return None
write values to the device
def purge_db(self): """ Clear all matching our user_id. """ with self.engine.begin() as db: purge_user(db, self.user_id)
Clear all matching our user_id.
def get_projects(session, query): """ Get one or more projects """ # GET /api/projects/0.1/projects response = make_get_request(session, 'projects', params_data=query) json_data = response.json() if response.status_code == 200: return json_data['result'] else: raise ProjectsNotFoundException( message=json_data['message'], error_code=json_data['error_code'], request_id=json_data['request_id'])
Get one or more projects
def get_area_def(self, dsid): """Get the area definition of the dataset.""" geocoding = self.root.find('.//Tile_Geocoding') epsg = geocoding.find('HORIZONTAL_CS_CODE').text rows = int(geocoding.find('Size[@resolution="' + str(dsid.resolution) + '"]/NROWS').text) cols = int(geocoding.find('Size[@resolution="' + str(dsid.resolution) + '"]/NCOLS').text) geoposition = geocoding.find('Geoposition[@resolution="' + str(dsid.resolution) + '"]') ulx = float(geoposition.find('ULX').text) uly = float(geoposition.find('ULY').text) xdim = float(geoposition.find('XDIM').text) ydim = float(geoposition.find('YDIM').text) area_extent = (ulx, uly + rows * ydim, ulx + cols * xdim, uly) area = geometry.AreaDefinition( self.tile, "On-the-fly area", self.tile, {'init': epsg}, cols, rows, area_extent) return area
Get the area definition of the dataset.
def extant_item(arg, arg_type): """Determine if parser argument is an existing file or directory. This technique comes from http://stackoverflow.com/a/11541450/95592 and from http://stackoverflow.com/a/11541495/95592 Args: arg: parser argument containing filename to be checked arg_type: string of either "file" or "directory" Returns: If the file exists, return the filename or directory. Raises: If the file does not exist, raise a parser error. """ if arg_type == "file": if not os.path.isfile(arg): raise argparse.ArgumentError( None, "The file {arg} does not exist.".format(arg=arg)) else: # File exists so return the filename return arg elif arg_type == "directory": if not os.path.isdir(arg): raise argparse.ArgumentError( None, "The directory {arg} does not exist.".format(arg=arg)) else: # Directory exists so return the directory name return arg
Determine if parser argument is an existing file or directory. This technique comes from http://stackoverflow.com/a/11541450/95592 and from http://stackoverflow.com/a/11541495/95592 Args: arg: parser argument containing filename to be checked arg_type: string of either "file" or "directory" Returns: If the file exists, return the filename or directory. Raises: If the file does not exist, raise a parser error.
def validate_slice_increment(dicoms): """ Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms """ first_image_position = numpy.array(dicoms[0].ImagePositionPatient) previous_image_position = numpy.array(dicoms[1].ImagePositionPatient) increment = first_image_position - previous_image_position for dicom_ in dicoms[2:]: current_image_position = numpy.array(dicom_.ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): logger.warning('Slice increment not consistent through all slices') logger.warning('---------------------------------------------------------') logger.warning('%s %s' % (previous_image_position, increment)) logger.warning('%s %s' % (current_image_position, current_increment)) if 'InstanceNumber' in dicom_: logger.warning('Instance Number: %s' % dicom_.InstanceNumber) logger.warning('---------------------------------------------------------') raise ConversionValidationError('SLICE_INCREMENT_INCONSISTENT') previous_image_position = current_image_position
Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms
def hot(self, limit=None): """GETs hot links from this subreddit. Calls :meth:`narwal.Reddit.hot`. :param limit: max number of links to return """ return self._reddit.hot(self.display_name, limit=limit)
GETs hot links from this subreddit. Calls :meth:`narwal.Reddit.hot`. :param limit: max number of links to return
def copy(self): """ Copy the instance and make sure not to use a reference """ return self.__class__( amount=self["amount"], asset=self["asset"].copy(), blockchain_instance=self.blockchain, )
Copy the instance and make sure not to use a reference
def score_group(group_name=None): ''' Warning this is deprecated as of Compliance Checker v3.2! Please do not using scoring groups and update your plugins if necessary ''' warnings.warn('Score_group is deprecated as of Compliance Checker v3.2.') def _inner(func): def _dec(s, ds): ret_val = func(s, ds) """ if group_name != None and not isinstance(ret_val[0], tuple): return tuple([(group_name, ret_val[0])] + list(ret_val[1:])) """ # multiple returns if not isinstance(ret_val, list): ret_val = [ret_val] def dogroup(r): cur_grouping = r.name if isinstance(cur_grouping, tuple): cur_grouping = list(cur_grouping) elif not isinstance(cur_grouping, list): cur_grouping = [cur_grouping] cur_grouping.insert(0, group_name) return Result(r.weight, r.value, tuple(cur_grouping), r.msgs) ret_val = [fix_return_value(x, func.__name__, func, s) for x in ret_val] ret_val = list(map(dogroup, ret_val)) return ret_val return wraps(func)(_dec) return _inner
Warning this is deprecated as of Compliance Checker v3.2! Please do not using scoring groups and update your plugins if necessary
def inst_matches(self, start, end, instr, target=None, include_beyond_target=False): """ Find all `instr` in the block from start to end. `instr` is a Python opcode or a list of opcodes If `instr` is an opcode with a target (like a jump), a target destination can be specified which must match precisely. Return a list with indexes to them or [] if none found. """ try: None in instr except: instr = [instr] first = self.offset2inst_index[start] result = [] for inst in self.insts[first:]: if inst.opcode in instr: if target is None: result.append(inst.offset) else: t = self.get_target(inst.offset) if include_beyond_target and t >= target: result.append(inst.offset) elif t == target: result.append(inst.offset) pass pass pass if inst.offset >= end: break pass # FIXME: put in a test # check = self.all_instr(start, end, instr, target, include_beyond_target) # assert result == check return result
Find all `instr` in the block from start to end. `instr` is a Python opcode or a list of opcodes If `instr` is an opcode with a target (like a jump), a target destination can be specified which must match precisely. Return a list with indexes to them or [] if none found.
def fit_general(xy, uv): """ Performs a simple fit for the shift only between matched lists of positions 'xy' and 'uv'. Output: (same as for fit_arrays) ================================= DEVELOPMENT NOTE: Checks need to be put in place to verify that enough objects are available for a fit. ================================= """ # Set up products used for computing the fit gxy = uv.astype(ndfloat128) guv = xy.astype(ndfloat128) Sx = gxy[:,0].sum() Sy = gxy[:,1].sum() Su = guv[:,0].sum() Sv = guv[:,1].sum() Sux = np.dot(guv[:,0], gxy[:,0]) Svx = np.dot(guv[:,1], gxy[:,0]) Suy = np.dot(guv[:,0], gxy[:,1]) Svy = np.dot(guv[:,1], gxy[:,1]) Sxx = np.dot(gxy[:,0], gxy[:,0]) Syy = np.dot(gxy[:,1], gxy[:,1]) Sxy = np.dot(gxy[:,0], gxy[:,1]) n = len(xy[:,0]) M = np.array([[Sx, Sy, n], [Sxx, Sxy, Sx], [Sxy, Syy, Sy]]) U = np.array([Su, Sux, Suy]) V = np.array([Sv, Svx, Svy]) # The fit solutioN... # where # u = P0 + P1*x + P2*y # v = Q0 + Q1*x + Q2*y # try: invM = np.linalg.inv(M.astype(np.float64)) except np.linalg.LinAlgError: raise SingularMatrixError( "Singular matrix: suspected colinear points." ) P = np.dot(invM, U).astype(np.float64) Q = np.dot(invM, V).astype(np.float64) if not (np.all(np.isfinite(P)) and np.all(np.isfinite(Q))): raise ArithmeticError('Singular matrix.') # Return the shift, rotation, and scale changes result = build_fit(P, Q, 'general') resids = xy - np.dot(uv, result['fit_matrix']) - result['offset'] result['rms'] = resids.std(axis=0) result['resids'] = resids result['rmse'] = float(np.sqrt(np.mean(2 * resids**2))) result['mae'] = float(np.mean(np.linalg.norm(resids, axis=1))) return result
Performs a simple fit for the shift only between matched lists of positions 'xy' and 'uv'. Output: (same as for fit_arrays) ================================= DEVELOPMENT NOTE: Checks need to be put in place to verify that enough objects are available for a fit. =================================
def even_even(self): """ Selects even-even nuclei from the table """ return self.select(lambda Z, N: not(Z % 2) and not(N % 2), name=self.name)
Selects even-even nuclei from the table
def copy_path(self): """Return a copy of the current path. :returns: A list of ``(path_operation, coordinates)`` tuples of a :ref:`PATH_OPERATION` string and a tuple of floats coordinates whose content depends on the operation type: * :obj:`MOVE_TO <PATH_MOVE_TO>`: 1 point ``(x, y)`` * :obj:`LINE_TO <PATH_LINE_TO>`: 1 point ``(x, y)`` * :obj:`CURVE_TO <PATH_CURVE_TO>`: 3 points ``(x1, y1, x2, y2, x3, y3)`` * :obj:`CLOSE_PATH <PATH_CLOSE_PATH>` 0 points ``()`` (empty tuple) """ path = cairo.cairo_copy_path(self._pointer) result = list(_iter_path(path)) cairo.cairo_path_destroy(path) return result
Return a copy of the current path. :returns: A list of ``(path_operation, coordinates)`` tuples of a :ref:`PATH_OPERATION` string and a tuple of floats coordinates whose content depends on the operation type: * :obj:`MOVE_TO <PATH_MOVE_TO>`: 1 point ``(x, y)`` * :obj:`LINE_TO <PATH_LINE_TO>`: 1 point ``(x, y)`` * :obj:`CURVE_TO <PATH_CURVE_TO>`: 3 points ``(x1, y1, x2, y2, x3, y3)`` * :obj:`CLOSE_PATH <PATH_CLOSE_PATH>` 0 points ``()`` (empty tuple)
def plot_latent(self, labels=None, which_indices=None, resolution=60, legend=True, plot_limits=None, updates=False, kern=None, marker='<>^vsd', num_samples=1000, projection='2d', predict_kwargs={}, scatter_kwargs=None, **imshow_kwargs): """ see plotting.matplot_dep.dim_reduction_plots.plot_latent if predict_kwargs is None, will plot latent spaces for 0th dataset (and kernel), otherwise give predict_kwargs=dict(Yindex='index') for plotting only the latent space of dataset with 'index'. """ from ..plotting.gpy_plot.latent_plots import plot_latent if "Yindex" not in predict_kwargs: predict_kwargs['Yindex'] = 0 Yindex = predict_kwargs['Yindex'] self.kern = self.bgplvms[Yindex].kern self.likelihood = self.bgplvms[Yindex].likelihood return plot_latent(self, labels, which_indices, resolution, legend, plot_limits, updates, kern, marker, num_samples, projection, scatter_kwargs)
see plotting.matplot_dep.dim_reduction_plots.plot_latent if predict_kwargs is None, will plot latent spaces for 0th dataset (and kernel), otherwise give predict_kwargs=dict(Yindex='index') for plotting only the latent space of dataset with 'index'.
def order_by(self, *field_names): """ Mark the filter as being ordered if search has occurred. """ if not self._search_ordered: self._search_ordered = len(self._search_terms) > 0 return super(SearchableQuerySet, self).order_by(*field_names)
Mark the filter as being ordered if search has occurred.
def _process_response(response, save_to): """ Given a response object, prepare it to be handed over to the external caller. Preparation steps include: * detect if the response has error status, and convert it to an appropriate exception; * detect Content-Type, and based on that either parse the response as JSON or return as plain text. """ status_code = response.status_code if status_code == 200 and save_to: if save_to.startswith("~"): save_to = os.path.expanduser(save_to) if os.path.isdir(save_to) or save_to.endswith(os.path.sep): dirname = os.path.abspath(save_to) filename = H2OConnection._find_file_name(response) else: dirname, filename = os.path.split(os.path.abspath(save_to)) fullname = os.path.join(dirname, filename) try: if not os.path.exists(dirname): os.makedirs(dirname) with open(fullname, "wb") as f: for chunk in response.iter_content(chunk_size=65536): if chunk: # Empty chunks may occasionally happen f.write(chunk) except OSError as e: raise H2OValueError("Cannot write to file %s: %s" % (fullname, e)) return fullname content_type = response.headers.get("Content-Type", "") if ";" in content_type: # Remove a ";charset=..." part content_type = content_type[:content_type.index(";")] # Auto-detect response type by its content-type. Decode JSON, all other responses pass as-is. if content_type == "application/json": try: data = response.json(object_pairs_hook=H2OResponse) except (JSONDecodeError, requests.exceptions.ContentDecodingError) as e: raise H2OServerError("Malformed JSON from server (%s):\n%s" % (str(e), response.text)) else: data = response.text # Success (200 = "Ok", 201 = "Created", 202 = "Accepted", 204 = "No Content") if status_code in {200, 201, 202, 204}: return data # Client errors (400 = "Bad Request", 404 = "Not Found", 412 = "Precondition Failed") if status_code in {400, 404, 412} and isinstance(data, (H2OErrorV3, H2OModelBuilderErrorV3)): raise H2OResponseError(data) # Server errors (notably 500 = "Server Error") # Note that it is possible to receive valid H2OErrorV3 object in this case, however it merely means the server # did not provide the correct status code. raise H2OServerError("HTTP %d %s:\n%r" % (status_code, response.reason, data))
Given a response object, prepare it to be handed over to the external caller. Preparation steps include: * detect if the response has error status, and convert it to an appropriate exception; * detect Content-Type, and based on that either parse the response as JSON or return as plain text.
def save(self, *objs, condition=None, atomic=False): """Save one or more objects. :param objs: objects to save. :param condition: only perform each save if this condition holds. :param bool atomic: only perform each save if the local and DynamoDB versions of the object match. :raises bloop.exceptions.ConstraintViolation: if the condition (or atomic) is not met. """ objs = set(objs) validate_not_abstract(*objs) for obj in objs: self.session.save_item({ "TableName": self._compute_table_name(obj.__class__), "Key": dump_key(self, obj), **render(self, obj=obj, atomic=atomic, condition=condition, update=True) }) object_saved.send(self, engine=self, obj=obj) logger.info("successfully saved {} objects".format(len(objs)))
Save one or more objects. :param objs: objects to save. :param condition: only perform each save if this condition holds. :param bool atomic: only perform each save if the local and DynamoDB versions of the object match. :raises bloop.exceptions.ConstraintViolation: if the condition (or atomic) is not met.
def _read_mode_tsopt(self, size, kind): """Read Timestamps option. Positional arguments: * size - int, length of option * kind - int, 8 (Timestamps) Returns: * dict -- extracted Timestamps (TS) option Structure of TCP TSopt [RFC 7323]: +-------+-------+---------------------+---------------------+ |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)| +-------+-------+---------------------+---------------------+ 1 1 4 4 Octets Bits Name Description 0 0 tcp.ts.kind Kind (8) 1 8 tcp.ts.length Length (10) 2 16 tcp.ts.val Timestamp Value 6 48 tcp.ts.ecr Timestamps Echo Reply """ temp = struct.unpack('>II', self._read_fileng(size)) data = dict( kind=kind, length=size, val=temp[0], ecr=temp[1], ) return data
Read Timestamps option. Positional arguments: * size - int, length of option * kind - int, 8 (Timestamps) Returns: * dict -- extracted Timestamps (TS) option Structure of TCP TSopt [RFC 7323]: +-------+-------+---------------------+---------------------+ |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)| +-------+-------+---------------------+---------------------+ 1 1 4 4 Octets Bits Name Description 0 0 tcp.ts.kind Kind (8) 1 8 tcp.ts.length Length (10) 2 16 tcp.ts.val Timestamp Value 6 48 tcp.ts.ecr Timestamps Echo Reply
def entry_detail(request, slug, template='djournal/entry_detail.html'): '''Returns a response of an individual entry, for the given slug.''' entry = get_object_or_404(Entry.public, slug=slug) context = { 'entry': entry, } return render_to_response( template, context, context_instance=RequestContext(request), )
Returns a response of an individual entry, for the given slug.
def multi_send(self, template, emails, _vars=None, evars=None, schedule_time=None, options=None): """ Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion """ _vars = _vars or {} evars = evars or {} options = options or {} data = {'template': template, 'email': ','.join(emails) if isinstance(emails, list) else emails, 'vars': _vars.copy(), 'evars': evars.copy(), 'options': options.copy()} if schedule_time is not None: data['schedule_time'] = schedule_time return self.api_post('send', data)
Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion
def draft_context(cls): """Set the context to draft""" previous_state = g.get('draft') try: g.draft = True yield finally: g.draft = previous_state
Set the context to draft
def checkedItems( self ): """ Returns the checked items for this combobox. :return [<str>, ..] """ if not self.isCheckable(): return [] return [nativestring(self.itemText(i)) for i in self.checkedIndexes()]
Returns the checked items for this combobox. :return [<str>, ..]
def load_var_files(opt, p_obj=None): """Load variable files, merge, return contents""" obj = {} if p_obj: obj = p_obj for var_file in opt.extra_vars_file: LOG.debug("loading vars from %s", var_file) obj = merge_dicts(obj.copy(), load_var_file(var_file, obj)) return obj
Load variable files, merge, return contents
def interpolate(values, color_map=None, dtype=np.uint8): """ Given a 1D list of values, return interpolated colors for the range. Parameters --------------- values : (n, ) float Values to be interpolated over color_map : None, or str Key to a colormap contained in: matplotlib.pyplot.colormaps() e.g: 'viridis' Returns ------------- interpolated : (n, 4) dtype Interpolated RGBA colors """ # get a color interpolation function if color_map is None: cmap = linear_color_map else: from matplotlib.pyplot import get_cmap cmap = get_cmap(color_map) # make input always float values = np.asanyarray(values, dtype=np.float64).ravel() # scale values to 0.0 - 1.0 and get colors colors = cmap((values - values.min()) / values.ptp()) # convert to 0-255 RGBA rgba = to_rgba(colors, dtype=dtype) return rgba
Given a 1D list of values, return interpolated colors for the range. Parameters --------------- values : (n, ) float Values to be interpolated over color_map : None, or str Key to a colormap contained in: matplotlib.pyplot.colormaps() e.g: 'viridis' Returns ------------- interpolated : (n, 4) dtype Interpolated RGBA colors
def received_message(self, msg): """ Handle receiving a message by checking whether it is in response to a command or unsolicited, and dispatching it to the appropriate object method. """ logger.debug("Received message: %s", msg) if msg.is_binary: raise ValueError("Binary messages not supported") resps = json.loads(msg.data) cmd_group = _get_cmds_id(*resps) if cmd_group: (cmds, promise) = self._cmd_groups[cmd_group] promise.fulfill((cmds, resps)) else: try: self.received_unsolicited(resps) except: logger.exception("Error in unsolicited msg handler") raise
Handle receiving a message by checking whether it is in response to a command or unsolicited, and dispatching it to the appropriate object method.
def ge(self, other): """ Greater than or overlaps. Returns True if no part of this Interval extends lower than other. :raises ValueError: if either self or other is a null Interval :param other: Interval or point :return: True or False :rtype: bool """ self._raise_if_null(other) return self.begin >= getattr(other, 'begin', other)
Greater than or overlaps. Returns True if no part of this Interval extends lower than other. :raises ValueError: if either self or other is a null Interval :param other: Interval or point :return: True or False :rtype: bool
def shard_data(self, region): """ Get League of Legends status for the given shard. Requests to this API are not counted against the application Rate Limits. :param string region: the region to execute this request on :returns: ShardStatus """ url, query = LolStatusApiV3Urls.shard_data(region=region) return self._raw_request(self.shard_data.__name__, region, url, query)
Get League of Legends status for the given shard. Requests to this API are not counted against the application Rate Limits. :param string region: the region to execute this request on :returns: ShardStatus
def remove_tiers(self, tiers): """Remove multiple tiers, note that this is a lot faster then removing them individually because of the delayed cleaning of timeslots. :param list tiers: Names of the tier to remove. :raises KeyError: If a tier is non existent. """ for a in tiers: self.remove_tier(a, clean=False) self.clean_time_slots()
Remove multiple tiers, note that this is a lot faster then removing them individually because of the delayed cleaning of timeslots. :param list tiers: Names of the tier to remove. :raises KeyError: If a tier is non existent.
def close(self): """Close all connections """ keys = set(self._conns.keys()) for key in keys: self.stop_socket(key) self._conns = {}
Close all connections
def _do_packet_out(self, datapath, data, in_port, actions): """send a packet.""" ofproto = datapath.ofproto parser = datapath.ofproto_parser out = parser.OFPPacketOut( datapath=datapath, buffer_id=ofproto.OFP_NO_BUFFER, data=data, in_port=in_port, actions=actions) datapath.send_msg(out)
send a packet.
def t384(args): """ %prog t384 Print out a table converting between 96 well to 384 well """ p = OptionParser(t384.__doc__) opts, args = p.parse_args(args) plate, splate = get_plate() fw = sys.stdout for i in plate: for j, p in enumerate(i): if j != 0: fw.write('|') fw.write(p) fw.write('\n')
%prog t384 Print out a table converting between 96 well to 384 well
def read_adjacency_matrix(file_path, separator): """ Reads an edge list in csv format and returns the adjacency matrix in SciPy Sparse COOrdinate format. Inputs: - file_path: The path where the adjacency matrix is stored. - separator: The delimiter among values (e.g. ",", "\t", " ") Outputs: - adjacency_matrix: The adjacency matrix in SciPy Sparse COOrdinate format. """ # Open file file_row_generator = get_file_row_generator(file_path, separator) # Initialize lists for row and column sparse matrix arguments row = list() col = list() append_row = row.append append_col = col.append # Read all file rows for file_row in file_row_generator: source_node = np.int64(file_row[0]) target_node = np.int64(file_row[1]) # Add edge append_row(source_node) append_col(target_node) # Since this is an undirected network also add the reciprocal edge append_row(target_node) append_col(source_node) row = np.array(row, dtype=np.int64) col = np.array(col, dtype=np.int64) data = np.ones_like(row, dtype=np.float64) number_of_nodes = np.max(row) # I assume that there are no missing nodes at the end. # Array count should start from 0. row -= 1 col -= 1 # Form sparse adjacency matrix adjacency_matrix = sparse.coo_matrix((data, (row, col)), shape=(number_of_nodes, number_of_nodes)) return adjacency_matrix
Reads an edge list in csv format and returns the adjacency matrix in SciPy Sparse COOrdinate format. Inputs: - file_path: The path where the adjacency matrix is stored. - separator: The delimiter among values (e.g. ",", "\t", " ") Outputs: - adjacency_matrix: The adjacency matrix in SciPy Sparse COOrdinate format.
def reload_list(self): '''Press R in home view to retrieve quiz list''' self.leetcode.load() if self.leetcode.quizzes and len(self.leetcode.quizzes) > 0: self.home_view = self.make_listview(self.leetcode.quizzes) self.view_stack = [] self.goto_view(self.home_view)
Press R in home view to retrieve quiz list
def _salt_send_event(opaque, conn, data): ''' Convenience function adding common data to the event and sending it on the salt event bus. :param opaque: the opaque data that is passed to the callback. This is a dict with 'prefix', 'object' and 'event' keys. :param conn: libvirt connection :param data: additional event data dict to send ''' tag_prefix = opaque['prefix'] object_type = opaque['object'] event_type = opaque['event'] # Prepare the connection URI to fit in the tag # qemu+ssh://user@host:1234/system -> qemu+ssh/user@host:1234/system uri = urlparse(conn.getURI()) uri_tag = [uri.scheme] if uri.netloc: uri_tag.append(uri.netloc) path = uri.path.strip('/') if path: uri_tag.append(path) uri_str = "/".join(uri_tag) # Append some common data all_data = { 'uri': conn.getURI() } all_data.update(data) tag = '/'.join((tag_prefix, uri_str, object_type, event_type)) # Actually send the event in salt if __opts__.get('__role') == 'master': salt.utils.event.get_master_event( __opts__, __opts__['sock_dir']).fire_event(all_data, tag) else: __salt__['event.send'](tag, all_data)
Convenience function adding common data to the event and sending it on the salt event bus. :param opaque: the opaque data that is passed to the callback. This is a dict with 'prefix', 'object' and 'event' keys. :param conn: libvirt connection :param data: additional event data dict to send
def set_context_suffix(self, name, suffix): """Set a context's suffix. This will be applied to all wrappers for the tools in this context. For example, a tool called 'foo' would appear as 'foo<suffix>' in the suite's bin path. Args: name (str): Name of the context to suffix. suffix (str): Suffix to apply to tools. """ data = self._context(name) data["suffix"] = suffix self._flush_tools()
Set a context's suffix. This will be applied to all wrappers for the tools in this context. For example, a tool called 'foo' would appear as 'foo<suffix>' in the suite's bin path. Args: name (str): Name of the context to suffix. suffix (str): Suffix to apply to tools.
def _get_course_content(course_id, course_url, sailthru_client, site_code, config): """Get course information using the Sailthru content api or from cache. If there is an error, just return with an empty response. Arguments: course_id (str): course key of the course course_url (str): LMS url for course info page. sailthru_client (object): SailthruClient site_code (str): site code config (dict): config options Returns: course information from Sailthru """ # check cache first cache_key = "{}:{}".format(site_code, course_url) response = cache.get(cache_key) if not response: try: sailthru_response = sailthru_client.api_get("content", {"id": course_url}) if not sailthru_response.is_ok(): response = {} else: response = sailthru_response.json cache.set(cache_key, response, config.get('SAILTHRU_CACHE_TTL_SECONDS')) except SailthruClientError: response = {} if not response: logger.error('Could not get course data from Sailthru on enroll/purchase event. ' 'Calling Ecommerce Course API to get course info for enrollment confirmation email') response = _get_course_content_from_ecommerce(course_id, site_code=site_code) if response: cache.set(cache_key, response, config.get('SAILTHRU_CACHE_TTL_SECONDS')) return response
Get course information using the Sailthru content api or from cache. If there is an error, just return with an empty response. Arguments: course_id (str): course key of the course course_url (str): LMS url for course info page. sailthru_client (object): SailthruClient site_code (str): site code config (dict): config options Returns: course information from Sailthru
def convert_epoch_to_timestamp(cls, timestamp, tsformat): """Converts the given float representing UNIX-epochs into an actual timestamp. :param float timestamp: Timestamp as UNIX-epochs. :param string tsformat: Format of the given timestamp. This is used to convert the timestamp from UNIX epochs. For valid examples take a look into the :py:func:`time.strptime` documentation. :return: Returns the timestamp as defined in format. :rtype: string """ return time.strftime(tsformat, time.gmtime(timestamp))
Converts the given float representing UNIX-epochs into an actual timestamp. :param float timestamp: Timestamp as UNIX-epochs. :param string tsformat: Format of the given timestamp. This is used to convert the timestamp from UNIX epochs. For valid examples take a look into the :py:func:`time.strptime` documentation. :return: Returns the timestamp as defined in format. :rtype: string
def DbGetHostServersInfo(self, argin): """ Get info about all servers running on specified host, name, mode and level :param argin: Host name :type: tango.DevString :return: Server info for all servers running on specified host :rtype: tango.DevVarStringArray """ self._log.debug("In DbGetHostServersInfo()") argin = replace_wildcard(argin) return self.db.get_host_servers_info(argin)
Get info about all servers running on specified host, name, mode and level :param argin: Host name :type: tango.DevString :return: Server info for all servers running on specified host :rtype: tango.DevVarStringArray
def rename_file(db, user_id, old_api_path, new_api_path): """ Rename a file. """ # Overwriting existing files is disallowed. if file_exists(db, user_id, new_api_path): raise FileExists(new_api_path) old_dir, old_name = split_api_filepath(old_api_path) new_dir, new_name = split_api_filepath(new_api_path) if old_dir != new_dir: raise ValueError( dedent( """ Can't rename object to new directory. Old Path: {old_api_path} New Path: {new_api_path} """.format( old_api_path=old_api_path, new_api_path=new_api_path ) ) ) db.execute( files.update().where( _file_where(user_id, old_api_path), ).values( name=new_name, created_at=func.now(), ) )
Rename a file.
def generate_hash(data, algorithm='chd_ph', hash_fns=(), chd_keys_per_bin=1, chd_load_factor=None, fch_bits_per_key=None, num_graph_vertices=None, brz_memory_size=8, brz_temp_dir=None, brz_max_keys_per_bucket=128, bdz_precomputed_rank=7, chd_avg_keys_per_bucket=4): """ Generates a new Minimal Perfect Hash (MPH) Parameters ---------- data : list, array-like, file-like The input that is used to generate the minimal perfect hash. Be aware, in most cases the input is expected to be distinct, and many of the algorithms benefit from the input being sorted. algorithm : string, optional {chd_ph (default), chd, bmz, bmz8, chm, brz, fch, bdz, bdz_ph} The algorithm to use in generating MPH's, choice of: chd / chd_ph - Compress Hash and Displace (default) (http://cmph.sourceforge.net/chd.html) - It is the fastest algorithm to build PHFs and MPHFs in linear time. - It generates the most compact PHFs and MPHFs we know of. - It can generate PHFs with a load factor up to 99 %. - It can be used to generate t-perfect hash functions. A t-perfect hash function allows at most t collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks. - It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter b in the range [1,32]. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets. - It can generate MPHFs that can be stored in approximately 2.07 bits per key. - For a load factor equal to the maximum one that is achieved by the BDZ algorithm (81 %), the resulting PHFs are stored in approximately 1.40 bits per key. bdz - BDZ / BPZ algorithm (http://cmph.sourceforge.net/bdz.html) - It is very simple and efficient. It outperforms all others except CHD. - It constructs both PHFs and MPHFs in linear time. - The maximum load factor one can achieve for a PHF is 1/1.23. - It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored in only (2 + x)cn bits, where c should be larger than or equal to 1.23 and x is a constant larger than 0 (actually, x = 1/b and b is a parameter that should be larger than 2). For c = 1.23 and b = 8, the resulting functions are stored in approximately 2.6 bits per key. - For its maximum load factor (81 %), the resulting PHFs are stored in approximately 1.95 bits per key. bmz - Botelho, Menoti and Ziviani algorithm: (http://cmph.sourceforge.net/bdz.html) - Constructs MPHFs in linear time. - It is based on cyclic random graphs. This makes it faster than the CHM algorithm. - The resulting MPHFs are not order preserving. - The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in 4cn bytes, where c is in the range [0.93,1.15]. brz - BRZ algorithm: (http://cmph.sourceforge.net/brz.html) - A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys. - It works in linear time. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored using less than 8.0 bits per key. chm - Czech, Havas and Majewski algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal MPHFs in linear time. - It is based on acyclic random graphs - The resulting MPHFs are order preserving. - The resulting MPHFs are stored in 4cn bytes, where c is greater than 2. fch - Fox, Chen and Heath algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal perfect hash functions that require less than 4 bits per key to be stored. - The resulting MPHFs are very compact and very efficient at evaluation time - The algorithm is only efficient for small sets. - It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6. hash_fns : list {jenkins (default), count} optional Internal hash functions to use inside MPH generation functions, can be multiple fns as a list. chd_keys_per_bin : int [1 to 128], optional Set the number of keys per bin for a t-perfect hashing function. A t-perfect hash function allows at most t collisions in a given bin. This parameter applies only to the `chd` and `chd_ph` algorithms. Its value should be an integer in the range [1, 128]. Default is 1 chd_load_factor : float, optional The load factor used in the `chd_ph` algorithm fch_bits_per_key : int, optional The number of bits per key required in the FCH algorithm num_graph_vertices : int, optional The number of vertices in the graph for the algorithms BMZ and CHM brz_memory_size : int (default 8), optional Main memory availability (in MB) used in BRZ algorithm Default is 8Mb brz_temp_dir : string, optional Temporary directory used in BRZ algorithm brz_max_keys_per_bucket : int [64 to 175] (default 128), optional Used to make the maximal number of keys in a bucket lower than 256. In this case its value should be an integer in the range [64,175]. Default is 128. bdz_precomputed_rank : int [3 to 10] (default 7), optional For BDZ it is used to determine the size of some precomputed rank information and its value should be an integer in the range [3,10]. Default is 7. The larger is this value, the more compact are the resulting functions and the slower are them at evaluation time. chd_avg_keys_per_bucket : int [1 to 32] (default 4), optional For CHD and CHD_PH it is used to set the average number of keys per bucket and its value should be an integer in the range [1,32]. Default is 4. The larger is this value, the slower is the construction of the functions. Returns ------- MPH A wrapper object that represents a minimal perfect hash in memory Raises ------ ValueError If arguments presented are incomplete, or incompatable RuntimeError If the MPH generation fails """ cfg = _cfg(algorithm, hash_fns, chd_keys_per_bin, chd_load_factor, fch_bits_per_key, num_graph_vertices, brz_memory_size, brz_temp_dir, brz_max_keys_per_bucket, bdz_precomputed_rank, chd_avg_keys_per_bucket) with create_adapter(_cmph, ffi, data) as source: with _create_config(source, cfg) as config: _mph = _cmph.cmph_new(config) if not _mph: raise RuntimeError("MPH generation failed") return MPH(_mph)
Generates a new Minimal Perfect Hash (MPH) Parameters ---------- data : list, array-like, file-like The input that is used to generate the minimal perfect hash. Be aware, in most cases the input is expected to be distinct, and many of the algorithms benefit from the input being sorted. algorithm : string, optional {chd_ph (default), chd, bmz, bmz8, chm, brz, fch, bdz, bdz_ph} The algorithm to use in generating MPH's, choice of: chd / chd_ph - Compress Hash and Displace (default) (http://cmph.sourceforge.net/chd.html) - It is the fastest algorithm to build PHFs and MPHFs in linear time. - It generates the most compact PHFs and MPHFs we know of. - It can generate PHFs with a load factor up to 99 %. - It can be used to generate t-perfect hash functions. A t-perfect hash function allows at most t collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks. - It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter b in the range [1,32]. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets. - It can generate MPHFs that can be stored in approximately 2.07 bits per key. - For a load factor equal to the maximum one that is achieved by the BDZ algorithm (81 %), the resulting PHFs are stored in approximately 1.40 bits per key. bdz - BDZ / BPZ algorithm (http://cmph.sourceforge.net/bdz.html) - It is very simple and efficient. It outperforms all others except CHD. - It constructs both PHFs and MPHFs in linear time. - The maximum load factor one can achieve for a PHF is 1/1.23. - It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored in only (2 + x)cn bits, where c should be larger than or equal to 1.23 and x is a constant larger than 0 (actually, x = 1/b and b is a parameter that should be larger than 2). For c = 1.23 and b = 8, the resulting functions are stored in approximately 2.6 bits per key. - For its maximum load factor (81 %), the resulting PHFs are stored in approximately 1.95 bits per key. bmz - Botelho, Menoti and Ziviani algorithm: (http://cmph.sourceforge.net/bdz.html) - Constructs MPHFs in linear time. - It is based on cyclic random graphs. This makes it faster than the CHM algorithm. - The resulting MPHFs are not order preserving. - The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in 4cn bytes, where c is in the range [0.93,1.15]. brz - BRZ algorithm: (http://cmph.sourceforge.net/brz.html) - A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys. - It works in linear time. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored using less than 8.0 bits per key. chm - Czech, Havas and Majewski algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal MPHFs in linear time. - It is based on acyclic random graphs - The resulting MPHFs are order preserving. - The resulting MPHFs are stored in 4cn bytes, where c is greater than 2. fch - Fox, Chen and Heath algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal perfect hash functions that require less than 4 bits per key to be stored. - The resulting MPHFs are very compact and very efficient at evaluation time - The algorithm is only efficient for small sets. - It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6. hash_fns : list {jenkins (default), count} optional Internal hash functions to use inside MPH generation functions, can be multiple fns as a list. chd_keys_per_bin : int [1 to 128], optional Set the number of keys per bin for a t-perfect hashing function. A t-perfect hash function allows at most t collisions in a given bin. This parameter applies only to the `chd` and `chd_ph` algorithms. Its value should be an integer in the range [1, 128]. Default is 1 chd_load_factor : float, optional The load factor used in the `chd_ph` algorithm fch_bits_per_key : int, optional The number of bits per key required in the FCH algorithm num_graph_vertices : int, optional The number of vertices in the graph for the algorithms BMZ and CHM brz_memory_size : int (default 8), optional Main memory availability (in MB) used in BRZ algorithm Default is 8Mb brz_temp_dir : string, optional Temporary directory used in BRZ algorithm brz_max_keys_per_bucket : int [64 to 175] (default 128), optional Used to make the maximal number of keys in a bucket lower than 256. In this case its value should be an integer in the range [64,175]. Default is 128. bdz_precomputed_rank : int [3 to 10] (default 7), optional For BDZ it is used to determine the size of some precomputed rank information and its value should be an integer in the range [3,10]. Default is 7. The larger is this value, the more compact are the resulting functions and the slower are them at evaluation time. chd_avg_keys_per_bucket : int [1 to 32] (default 4), optional For CHD and CHD_PH it is used to set the average number of keys per bucket and its value should be an integer in the range [1,32]. Default is 4. The larger is this value, the slower is the construction of the functions. Returns ------- MPH A wrapper object that represents a minimal perfect hash in memory Raises ------ ValueError If arguments presented are incomplete, or incompatable RuntimeError If the MPH generation fails
def save(self, dolist=0): """Return .par format string for this parameter If dolist is set, returns fields as a list of strings. Default is to return a single string appropriate for writing to a file. """ quoted = not dolist array_size = 1 for d in self.shape: array_size = d*array_size ndim = len(self.shape) fields = (7+2*ndim+len(self.value))*[""] fields[0] = self.name fields[1] = self.type fields[2] = self.mode fields[3] = str(ndim) next = 4 for d in self.shape: fields[next] = str(d); next += 1 fields[next] = '1'; next += 1 nvstart = 7+2*ndim if self.choice is not None: schoice = list(map(self.toString, self.choice)) schoice.insert(0,'') schoice.append('') fields[nvstart-3] = repr('|'.join(schoice)) elif self.min not in [None,INDEF]: fields[nvstart-3] = self.toString(self.min,quoted=quoted) # insert an escaped line break before min field if quoted: fields[nvstart-3] = '\\\n' + fields[nvstart-3] if self.max not in [None,INDEF]: fields[nvstart-2] = self.toString(self.max,quoted=quoted) if self.prompt: if quoted: sprompt = repr(self.prompt) else: sprompt = self.prompt # prompt can have embedded newlines (which are printed) sprompt = sprompt.replace(r'\012', '\n') sprompt = sprompt.replace(r'\n', '\n') fields[nvstart-1] = sprompt for i in range(len(self.value)): fields[nvstart+i] = self.toString(self.value[i],quoted=quoted) # insert an escaped line break before value fields if dolist: return fields else: fields[nvstart] = '\\\n' + fields[nvstart] return ','.join(fields)
Return .par format string for this parameter If dolist is set, returns fields as a list of strings. Default is to return a single string appropriate for writing to a file.
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray: """ Returns an array of inputs generated from the wake word audio that shouldn't cause an activation """ def samp(x): return int(pr.sample_rate * x) inputs = [] for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)): if len(audio) - offset < samp(pr.buffer_t / 2.): break inputs.append(vectorize(audio[:-offset])) return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
Returns an array of inputs generated from the wake word audio that shouldn't cause an activation
def get_definition(self, stmt: Statement, sctx: SchemaContext) -> Tuple[Statement, SchemaContext]: """Find the statement defining a grouping or derived type. Args: stmt: YANG "uses" or "type" statement. sctx: Schema context where the definition is used. Returns: A tuple consisting of the definition statement ('grouping' or 'typedef') and schema context of the definition. Raises: ValueError: If `stmt` is neither "uses" nor "type" statement. ModuleNotRegistered: If `mid` is not registered in the data model. UnknownPrefix: If the prefix specified in the argument of `stmt` is not declared. DefinitionNotFound: If the corresponding definition is not found. """ if stmt.keyword == "uses": kw = "grouping" elif stmt.keyword == "type": kw = "typedef" else: raise ValueError("not a 'uses' or 'type' statement") loc, did = self.resolve_pname(stmt.argument, sctx.text_mid) if did == sctx.text_mid: dstmt = stmt.get_definition(loc, kw) if dstmt: return (dstmt, sctx) else: dstmt = self.modules[did].statement.find1(kw, loc) if dstmt: return (dstmt, SchemaContext(sctx.schema_data, sctx.default_ns, did)) for sid in self.modules[did].submodules: dstmt = self.modules[sid].statement.find1(kw, loc) if dstmt: return ( dstmt, SchemaContext(sctx.schema_data, sctx.default_ns, sid)) raise DefinitionNotFound(kw, stmt.argument)
Find the statement defining a grouping or derived type. Args: stmt: YANG "uses" or "type" statement. sctx: Schema context where the definition is used. Returns: A tuple consisting of the definition statement ('grouping' or 'typedef') and schema context of the definition. Raises: ValueError: If `stmt` is neither "uses" nor "type" statement. ModuleNotRegistered: If `mid` is not registered in the data model. UnknownPrefix: If the prefix specified in the argument of `stmt` is not declared. DefinitionNotFound: If the corresponding definition is not found.
def clear_file(self): """stub""" if (self.get_file_metadata().is_read_only() or self.get_file_metadata().is_required()): raise NoAccess() if 'assetId' in self.my_osid_object_form._my_map['fileId']: rm = self.my_osid_object_form._get_provider_manager('REPOSITORY') catalog_id_str = '' if 'assignedBankIds' in self.my_osid_object_form._my_map: catalog_id_str = self.my_osid_object_form._my_map['assignedBankIds'][0] elif 'assignedRepositoryIds' in self.my_osid_object_form._my_map: catalog_id_str = self.my_osid_object_form._my_map['assignedRepositoryIds'][0] try: try: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str), self.my_osid_object_form._proxy) except NullArgument: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str)) except AttributeError: # for update forms try: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str), self.my_osid_object_form._proxy) except NullArgument: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str)) aas.delete_asset(Id(self.my_osid_object_form._my_map['fileId']['assetId'])) self.my_osid_object_form._my_map['fileId'] = \ dict(self.get_file_metadata().get_default_object_values()[0])
stub
def availabledirs(self) -> Folder2Path: """Names and paths of the available working directories. Available working directories are those beeing stored in the base directory of the respective |FileManager| subclass. Folders with names starting with an underscore are ignored (use this for directories handling additional data files, if you like). Zipped directories, which can be unpacked on the fly, do also count as available directories: >>> from hydpy.core.filetools import FileManager >>> filemanager = FileManager() >>> filemanager.BASEDIR = 'basename' >>> filemanager.projectdir = 'projectname' >>> import os >>> from hydpy import repr_, TestIO >>> TestIO.clear() >>> with TestIO(): ... os.makedirs('projectname/basename/folder1') ... os.makedirs('projectname/basename/folder2') ... open('projectname/basename/folder3.zip', 'w').close() ... os.makedirs('projectname/basename/_folder4') ... open('projectname/basename/folder5.tar', 'w').close() ... filemanager.availabledirs # doctest: +ELLIPSIS Folder2Path(folder1=.../projectname/basename/folder1, folder2=.../projectname/basename/folder2, folder3=.../projectname/basename/folder3.zip) """ directories = Folder2Path() for directory in os.listdir(self.basepath): if not directory.startswith('_'): path = os.path.join(self.basepath, directory) if os.path.isdir(path): directories.add(directory, path) elif directory.endswith('.zip'): directories.add(directory[:-4], path) return directories
Names and paths of the available working directories. Available working directories are those beeing stored in the base directory of the respective |FileManager| subclass. Folders with names starting with an underscore are ignored (use this for directories handling additional data files, if you like). Zipped directories, which can be unpacked on the fly, do also count as available directories: >>> from hydpy.core.filetools import FileManager >>> filemanager = FileManager() >>> filemanager.BASEDIR = 'basename' >>> filemanager.projectdir = 'projectname' >>> import os >>> from hydpy import repr_, TestIO >>> TestIO.clear() >>> with TestIO(): ... os.makedirs('projectname/basename/folder1') ... os.makedirs('projectname/basename/folder2') ... open('projectname/basename/folder3.zip', 'w').close() ... os.makedirs('projectname/basename/_folder4') ... open('projectname/basename/folder5.tar', 'w').close() ... filemanager.availabledirs # doctest: +ELLIPSIS Folder2Path(folder1=.../projectname/basename/folder1, folder2=.../projectname/basename/folder2, folder3=.../projectname/basename/folder3.zip)
def _extract_secrets_from_file(self, f, filename): """Extract secrets from a given file object. :type f: File object :type filename: string """ try: log.info("Checking file: %s", filename) for results, plugin in self._results_accumulator(filename): results.update(plugin.analyze(f, filename)) f.seek(0) except UnicodeDecodeError: log.warning("%s failed to load.", filename)
Extract secrets from a given file object. :type f: File object :type filename: string
def add_parent(self,node): """ Add a parent to this node. This node will not be executed until the parent node has run sucessfully. @param node: CondorDAGNode to add as a parent. """ if not isinstance(node, (CondorDAGNode,CondorDAGManNode) ): raise CondorDAGNodeError, "Parent must be a CondorDAGNode or a CondorDAGManNode" self.__parents.append( node )
Add a parent to this node. This node will not be executed until the parent node has run sucessfully. @param node: CondorDAGNode to add as a parent.
def get_all_children(self): """Return all children GO IDs.""" all_children = set() for parent in self.children: all_children.add(parent.item_id) all_children |= parent.get_all_children() return all_children
Return all children GO IDs.
def is_valid_catalog(self, catalog=None): """Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Si no se pasa, valida este catálogo. Returns: bool: True si el data.json cumple con el schema, sino False. """ catalog = catalog or self return validation.is_valid_catalog(catalog, validator=self.validator)
Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Si no se pasa, valida este catálogo. Returns: bool: True si el data.json cumple con el schema, sino False.
def projects(self): """ Returns a set of all projects in this list. """ result = set() for todo in self._todos: projects = todo.projects() result = result.union(projects) return result
Returns a set of all projects in this list.
def get_instance_status(self): """Get the status the instance for this Streaming Analytics service. Returns: dict: JSON response for the instance status operation. """ status_url = self._get_url('status_path') res = self.rest_client.session.get(status_url) _handle_http_errors(res) return res.json()
Get the status the instance for this Streaming Analytics service. Returns: dict: JSON response for the instance status operation.
def _retry(self, context, backoff): ''' A function which determines whether and how to retry. :param ~azure.storage.models.RetryContext context: The retry context. This contains the request, response, and other data which can be used to determine whether or not to retry. :param function() backoff: A function which returns the backoff time if a retry is to be performed. :return: An integer indicating how long to wait before retrying the request, or None to indicate no retry should be performed. :rtype: int or None ''' # If the context does not contain a count parameter, this request has not # been retried yet. Add the count parameter to track the number of retries. if not hasattr(context, 'count'): context.count = 0 # Determine whether to retry, and if so increment the count, modify the # request as desired, and return the backoff. if self._should_retry(context): backoff_interval = backoff(context) context.count += 1 # If retry to secondary is enabled, attempt to change the host if the # request allows it if self.retry_to_secondary: self._set_next_host_location(context) # rewind the request body if it is a stream if hasattr(context.request.body, 'read'): # no position was saved, then retry would not work if context.body_position is None: return None else: try: # attempt to rewind the body to the initial position context.request.body.seek(context.body_position, SEEK_SET) except UnsupportedOperation: # if body is not seekable, then retry would not work return None return backoff_interval return None
A function which determines whether and how to retry. :param ~azure.storage.models.RetryContext context: The retry context. This contains the request, response, and other data which can be used to determine whether or not to retry. :param function() backoff: A function which returns the backoff time if a retry is to be performed. :return: An integer indicating how long to wait before retrying the request, or None to indicate no retry should be performed. :rtype: int or None
def recent(self, with_catalog=True, with_date=True): ''' List posts that recent edited. ''' kwd = { 'pager': '', 'title': 'Recent posts.', 'with_catalog': with_catalog, 'with_date': with_date, } self.render('list/post_list.html', kwd=kwd, view=MPost.query_recent(num=20), postrecs=MPost.query_recent(num=2), format_date=tools.format_date, userinfo=self.userinfo, cfg=CMS_CFG, )
List posts that recent edited.
def create(self, throw_on_exists=False): """ Creates a database defined by the current database object, if it does not already exist and raises a CloudantException if the operation fails. If the database already exists then this method call is a no-op. :param bool throw_on_exists: Boolean flag dictating whether or not to throw a CloudantDatabaseException when attempting to create a database that already exists. :returns: The database object """ if not throw_on_exists and self.exists(): return self resp = self.r_session.put(self.database_url, params={ 'partitioned': TYPE_CONVERTERS.get(bool)(self._partitioned) }) if resp.status_code == 201 or resp.status_code == 202: return self raise CloudantDatabaseException( resp.status_code, self.database_url, resp.text )
Creates a database defined by the current database object, if it does not already exist and raises a CloudantException if the operation fails. If the database already exists then this method call is a no-op. :param bool throw_on_exists: Boolean flag dictating whether or not to throw a CloudantDatabaseException when attempting to create a database that already exists. :returns: The database object
def before(method_name): """ Run the given method prior to the decorated view. If you return anything besides ``None`` from the given method, its return values will replace the arguments of the decorated view. If you return an instance of ``HttpResponse`` from the given method, Respite will return it immediately without delegating the request to the decorated view. Example usage:: class ArticleViews(Views): @before('_load') def show(self, request, article): return self._render( request = request, template = 'show', context = { 'article': article } ) def _load(self, request, id): try: return request, Article.objects.get(id=id) except Article.DoesNotExist: return self._error(request, 404, message='The article could not be found.') :param method: A string describing a class method. """ def decorator(function): @wraps(function) def wrapper(self, *args, **kwargs): returns = getattr(self, method_name)(*args, **kwargs) if returns is None: return function(self, *args, **kwargs) else: if isinstance(returns, HttpResponse): return returns else: return function(self, *returns) return wrapper return decorator
Run the given method prior to the decorated view. If you return anything besides ``None`` from the given method, its return values will replace the arguments of the decorated view. If you return an instance of ``HttpResponse`` from the given method, Respite will return it immediately without delegating the request to the decorated view. Example usage:: class ArticleViews(Views): @before('_load') def show(self, request, article): return self._render( request = request, template = 'show', context = { 'article': article } ) def _load(self, request, id): try: return request, Article.objects.get(id=id) except Article.DoesNotExist: return self._error(request, 404, message='The article could not be found.') :param method: A string describing a class method.
def to_report_json(self): """ Generate a summary in json format """ return self.reporter.json(self.n_lines, self.n_assocs, self.skipped)
Generate a summary in json format
def execute(self, fn, *args, **kwargs): """Execute an operation and return the result.""" if self.in_executor_context(): corofn = asyncio.coroutine(lambda: fn(*args, **kwargs)) return corofn() future = self.submit(fn, *args, **kwargs) return future.result()
Execute an operation and return the result.
def _gen_exclusion_paths(): """ Generate file paths to be excluded for namespace packages (bytecode cache files). """ # always exclude the package module itself yield '__init__.py' yield '__init__.pyc' yield '__init__.pyo' if not hasattr(imp, 'get_tag'): return base = os.path.join('__pycache__', '__init__.' + imp.get_tag()) yield base + '.pyc' yield base + '.pyo' yield base + '.opt-1.pyc' yield base + '.opt-2.pyc'
Generate file paths to be excluded for namespace packages (bytecode cache files).
def autoencoder_residual_text(): """Residual autoencoder model for text.""" hparams = autoencoder_residual() hparams.bottleneck_bits = 32 hparams.batch_size = 1024 hparams.hidden_size = 64 hparams.max_hidden_size = 512 hparams.bottleneck_noise = 0.0 hparams.bottom = { "inputs": modalities.identity_bottom, "targets": modalities.identity_bottom, } hparams.top = { "targets": modalities.identity_top, } hparams.autoregressive_mode = "none" hparams.sample_width = 1 return hparams
Residual autoencoder model for text.
def setDesigns(self, F, A): """ set fixed effect designs """ F = to_list(F) A = to_list(A) assert len(A) == len(F), 'MeanKronSum: A and F must have same length!' n_terms = len(F) n_covs = 0 k = 0 l = 0 for ti in range(n_terms): assert F[ti].shape[0] == self._N, 'MeanKronSum: Dimension mismatch' assert A[ti].shape[1] == self._P, 'MeanKronSum: Dimension mismatch' n_covs += F[ti].shape[1] * A[ti].shape[0] k += F[ti].shape[1] l += A[ti].shape[0] self._n_terms = n_terms self._n_covs = n_covs self._k = k self._l = l self._F = F self._A = A self._b = sp.zeros((n_covs, 1)) self.clear_cache('predict_in_sample', 'Yres', 'designs') self._notify('designs') self._notify()
set fixed effect designs
def create_mod_site(self, mc): """Create modification site for the BaseAgent from a ModCondition.""" site_name = get_mod_site_name(mc) (unmod_site_state, mod_site_state) = states[mc.mod_type] self.create_site(site_name, (unmod_site_state, mod_site_state)) site_anns = [Annotation((site_name, mod_site_state), mc.mod_type, 'is_modification')] if mc.residue: site_anns.append(Annotation(site_name, mc.residue, 'is_residue')) if mc.position: site_anns.append(Annotation(site_name, mc.position, 'is_position')) self.site_annotations += site_anns
Create modification site for the BaseAgent from a ModCondition.
def shortname(inputid): # type: (Text) -> Text """Returns the last segment of the provided fragment or path.""" parsed_id = urllib.parse.urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split(u"/")[-1] return parsed_id.path.split(u"/")[-1]
Returns the last segment of the provided fragment or path.
def maps_get_rules_output_rules_value(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") maps_get_rules = ET.Element("maps_get_rules") config = maps_get_rules output = ET.SubElement(maps_get_rules, "output") rules = ET.SubElement(output, "rules") value = ET.SubElement(rules, "value") value.text = kwargs.pop('value') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def cross_validation(scheme_class, num_examples, num_folds, strict=True, **kwargs): """Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set. """ if strict and num_examples % num_folds != 0: raise ValueError(("{} examples are not divisible in {} evenly-sized " + "folds. To allow this, have a look at the " + "`strict` argument.").format(num_examples, num_folds)) for i in xrange(num_folds): begin = num_examples * i // num_folds end = num_examples * (i+1) // num_folds train = scheme_class(list(chain(xrange(0, begin), xrange(end, num_examples))), **kwargs) valid = scheme_class(xrange(begin, end), **kwargs) if strict: yield (train, valid) else: yield (train, valid, end - begin)
Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set.
def request_response(self): """Verify that a card is still present and get its operating mode. The Request Response command returns the current operating state of the card. The operating state changes with the authentication process, a card is in Mode 0 after power-up or a Polling command, transitions to Mode 1 with Authentication1, to Mode 2 with Authentication2, and Mode 3 with any of the card issuance commands. The :meth:`request_response` method returns the mode as an integer. Command execution errors raise :exc:`~nfc.tag.TagCommandError`. """ a, b, e = self.pmm[3] & 7, self.pmm[3] >> 3 & 7, self.pmm[3] >> 6 timeout = 302E-6 * (b + 1 + a + 1) * 4**e data = self.send_cmd_recv_rsp(0x04, '', timeout, check_status=False) if len(data) != 1: log.debug("insufficient data received from tag") raise tt3.Type3TagCommandError(tt3.DATA_SIZE_ERROR) return data[0]
Verify that a card is still present and get its operating mode. The Request Response command returns the current operating state of the card. The operating state changes with the authentication process, a card is in Mode 0 after power-up or a Polling command, transitions to Mode 1 with Authentication1, to Mode 2 with Authentication2, and Mode 3 with any of the card issuance commands. The :meth:`request_response` method returns the mode as an integer. Command execution errors raise :exc:`~nfc.tag.TagCommandError`.
def compute_batch(self, duplicate_manager=None, context_manager=None): """ Computes the elements of the batch sequentially by penalizing the acquisition. """ from ...acquisitions import AcquisitionLP assert isinstance(self.acquisition, AcquisitionLP) self.acquisition.update_batches(None,None,None) # --- GET first element in the batch X_batch = self.acquisition.optimize()[0] k=1 if self.batch_size >1: # ---------- Approximate the constants of the the method L = estimate_L(self.acquisition.model.model,self.acquisition.space.get_bounds()) Min = self.acquisition.model.model.Y.min() # --- GET the remaining elements while k<self.batch_size: self.acquisition.update_batches(X_batch,L,Min) new_sample = self.acquisition.optimize()[0] X_batch = np.vstack((X_batch,new_sample)) k +=1 # --- Back to the non-penalized acquisition self.acquisition.update_batches(None,None,None) return X_batch
Computes the elements of the batch sequentially by penalizing the acquisition.
def filter_incomplete_spectra(self, flimit=1000, percAccept=85): """Remove all data points that belong to spectra that did not retain at least **percAccept** percent of the number of data points. ..warning:: This function does not honor additional dimensions (e.g., timesteps) yet! """ assert percAccept > 0 and percAccept < 100 def _retain_only_complete_spectra(item, fmax, acceptN): """Function called using pd.filter, applied to all spectra in the data set. Return true if the number of data points <= **fmax** in item is equal, or larger, than **acceptN**. Parameters ---------- item : :py:class:`pandas.DataFrame` dataframe containing one spectrum fmax : float maximum frequency up to which data points are counted acceptN : int the number of data points required to pass this test Returns ------- true : bool if enough data points are present false : bool if not enough data points are present """ frequencies = item['frequency'].loc[item['frequency'] < fmax] fN = frequencies.size if fN >= acceptN: return True return False group_abmn = self.data.groupby(['a', 'b', 'm', 'n']) frequencies = np.array( list(sorted(self.data.groupby('frequency').groups.keys())) ) assert flimit >= frequencies.min() and flimit <= frequencies.max() Nlimit = len(np.where(frequencies <= flimit)[0]) Naccept = np.ceil(Nlimit * percAccept / 100.0) self.data = group_abmn.filter( _retain_only_complete_spectra, fmax=flimit, acceptN=Naccept ).copy()
Remove all data points that belong to spectra that did not retain at least **percAccept** percent of the number of data points. ..warning:: This function does not honor additional dimensions (e.g., timesteps) yet!
def ExportClientsByKeywords(keywords, filename, token=None): r"""A script to export clients summaries selected by a keyword search. This script does a client search for machines matching all of keywords and writes a .csv summary of the results to filename. Multi-value fields are '\n' separated. Args: keywords: a list of keywords to search for filename: the name of the file to write to, will be replaced if already present token: datastore token. """ index = client_index.CreateClientIndex(token=token) client_list = index.LookupClients(keywords) logging.info("found %d clients", len(client_list)) if not client_list: return writer = csv.DictWriter([ u"client_id", u"hostname", u"last_seen", u"os", u"os_release", u"os_version", u"users", u"ips", u"macs", ]) writer.WriteHeader() for client in aff4.FACTORY.MultiOpen(client_list, token=token): s = client.Schema writer.WriteRow({ u"client_id": client.urn.Basename(), u"hostname": client.Get(s.HOSTNAME), u"os": client.Get(s.SYSTEM), u"os_release": client.Get(s.OS_RELEASE), u"os_version": client.Get(s.OS_VERSION), u"ips": client.Get(s.HOST_IPS), u"macs": client.Get(s.MAC_ADDRESS), u"users": "\n".join(client.Get(s.USERNAMES, [])), u"last_seen": client.Get(s.PING), }) with io.open(filename, "w") as csv_out: csv_out.write(writer.Content())
r"""A script to export clients summaries selected by a keyword search. This script does a client search for machines matching all of keywords and writes a .csv summary of the results to filename. Multi-value fields are '\n' separated. Args: keywords: a list of keywords to search for filename: the name of the file to write to, will be replaced if already present token: datastore token.
def on_exception(wait_gen, exception, max_tries=None, jitter=full_jitter, giveup=lambda e: False, on_success=None, on_backoff=None, on_giveup=None, **wait_gen_kwargs): """Returns decorator for backoff and retry triggered by exception. Args: wait_gen: A generator yielding successive wait times in seconds. exception: An exception type (or tuple of types) which triggers backoff. max_tries: The maximum number of attempts to make before giving up. Once exhausted, the exception will be allowed to escape. The default value of None means their is no limit to the number of tries. If a callable is passed, it will be evaluated at runtime and its return value used. jitter: A function of the value yielded by wait_gen returning the actual time to wait. This distributes wait times stochastically in order to avoid timing collisions across concurrent clients. Wait times are jittered by default using the full_jitter function. Jittering may be disabled altogether by passing jitter=None. giveup: Function accepting an exception instance and returning whether or not to give up. Optional. The default is to always continue. on_success: Callable (or iterable of callables) with a unary signature to be called in the event of success. The parameter is a dict containing details about the invocation. on_backoff: Callable (or iterable of callables) with a unary signature to be called in the event of a backoff. The parameter is a dict containing details about the invocation. on_giveup: Callable (or iterable of callables) with a unary signature to be called in the event that max_tries is exceeded. The parameter is a dict containing details about the invocation. **wait_gen_kwargs: Any additional keyword args specified will be passed to wait_gen when it is initialized. Any callable args will first be evaluated and their return values passed. This is useful for runtime configuration. """ success_hdlrs = _handlers(on_success) backoff_hdlrs = _handlers(on_backoff, _log_backoff) giveup_hdlrs = _handlers(on_giveup, _log_giveup) def decorate(target): @functools.wraps(target) def retry(*args, **kwargs): # change names because python 2.x doesn't have nonlocal max_tries_ = _maybe_call(max_tries) # there are no dictionary comprehensions in python 2.6 wait = wait_gen(**dict((k, _maybe_call(v)) for k, v in wait_gen_kwargs.items())) tries = 0 while True: try: tries += 1 ret = target(*args, **kwargs) except exception as e: if giveup(e) or tries == max_tries_: for hdlr in giveup_hdlrs: hdlr({'target': target, 'args': args, 'kwargs': kwargs, 'tries': tries}) raise value = next(wait) try: if jitter is not None: seconds = jitter(value) else: seconds = value except TypeError: # support deprecated nullary jitter function signature # which returns a delta rather than a jittered value seconds = value + jitter() for hdlr in backoff_hdlrs: hdlr({'target': target, 'args': args, 'kwargs': kwargs, 'tries': tries, 'wait': seconds}) time.sleep(seconds) else: for hdlr in success_hdlrs: hdlr({'target': target, 'args': args, 'kwargs': kwargs, 'tries': tries}) return ret return retry # Return a function which decorates a target with a retry loop. return decorate
Returns decorator for backoff and retry triggered by exception. Args: wait_gen: A generator yielding successive wait times in seconds. exception: An exception type (or tuple of types) which triggers backoff. max_tries: The maximum number of attempts to make before giving up. Once exhausted, the exception will be allowed to escape. The default value of None means their is no limit to the number of tries. If a callable is passed, it will be evaluated at runtime and its return value used. jitter: A function of the value yielded by wait_gen returning the actual time to wait. This distributes wait times stochastically in order to avoid timing collisions across concurrent clients. Wait times are jittered by default using the full_jitter function. Jittering may be disabled altogether by passing jitter=None. giveup: Function accepting an exception instance and returning whether or not to give up. Optional. The default is to always continue. on_success: Callable (or iterable of callables) with a unary signature to be called in the event of success. The parameter is a dict containing details about the invocation. on_backoff: Callable (or iterable of callables) with a unary signature to be called in the event of a backoff. The parameter is a dict containing details about the invocation. on_giveup: Callable (or iterable of callables) with a unary signature to be called in the event that max_tries is exceeded. The parameter is a dict containing details about the invocation. **wait_gen_kwargs: Any additional keyword args specified will be passed to wait_gen when it is initialized. Any callable args will first be evaluated and their return values passed. This is useful for runtime configuration.
def randbetween(lower: int, upper: int) -> int: """Return a random int in the range [lower, upper]. Raises ValueError if any is lower than 0, and TypeError if any is not an integer. """ if not isinstance(lower, int) or not isinstance(upper, int): raise TypeError('lower and upper must be integers') if lower < 0 or upper <= 0: raise ValueError('lower and upper must be greater than zero') return randbelow(upper - lower + 1) + lower
Return a random int in the range [lower, upper]. Raises ValueError if any is lower than 0, and TypeError if any is not an integer.
def read_frames(self, nframes, dtype=np.float64): """Read nframes frames of the file. :Parameters: nframes : int number of frames to read. dtype : numpy dtype dtype of the returned array containing read data (see note). Notes ----- - read_frames updates the read pointer. - One column is one channel (one row per channel after 0.9) - if float are requested when the file contains integer data, you will get normalized data (that is the max possible integer will be 1.0, and the minimal possible value -1.0). - if integers are requested when the file contains floating point data, it may give wrong results because there is an ambiguity: if the floating data are normalized, you can get a file with only 0 ! Getting integer data from files encoded in normalized floating point is not supported (yet: sndfile supports it).""" return self._sndfile.read_frames(nframes, dtype)
Read nframes frames of the file. :Parameters: nframes : int number of frames to read. dtype : numpy dtype dtype of the returned array containing read data (see note). Notes ----- - read_frames updates the read pointer. - One column is one channel (one row per channel after 0.9) - if float are requested when the file contains integer data, you will get normalized data (that is the max possible integer will be 1.0, and the minimal possible value -1.0). - if integers are requested when the file contains floating point data, it may give wrong results because there is an ambiguity: if the floating data are normalized, you can get a file with only 0 ! Getting integer data from files encoded in normalized floating point is not supported (yet: sndfile supports it).
def restore_catalog_to_ckan(catalog, origin_portal_url, destination_portal_url, apikey, download_strategy=None, generate_new_access_url=None): """Restaura los datasets de un catálogo original al portal pasado por parámetro. Si hay temas presentes en el DataJson que no están en el portal de CKAN, los genera. Args: catalog (DataJson): El catálogo de origen que se restaura. origin_portal_url (str): La URL del portal CKAN de origen. destination_portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar el dataset. download_strategy(callable): Una función (catálogo, distribución)-> bool. Sobre las distribuciones que evalúa True, descarga el recurso en el downloadURL y lo sube al portal de destino. Por default no sube ninguna distribución. generate_new_access_url(list): Se pasan los ids de las distribuciones cuyo accessURL se regenerar en el portal de destino. Para el resto, el portal debe mantiene el valor pasado en el DataJson. Returns: dict: Diccionario con key organización y value la lista de ids de datasets subidos a esa organización """ catalog['homepage'] = catalog.get('homepage') or origin_portal_url res = {} origin_portal = RemoteCKAN(origin_portal_url) try: org_list = origin_portal.action.organization_list() except CKANAPIError as e: logger.exception( 'Ocurrió un error buscando las organizaciones del portal {}: {}' .format(origin_portal_url, str(e))) print(e) return res for org in org_list: print("Restaurando organizacion {}".format(org)) response = origin_portal.action.organization_show( id=org, include_datasets=True) datasets = [package['id'] for package in response['packages']] pushed_datasets = restore_organization_to_ckan( catalog, org, destination_portal_url, apikey, dataset_list=datasets, download_strategy=download_strategy, generate_new_access_url=generate_new_access_url ) res[org] = pushed_datasets return res
Restaura los datasets de un catálogo original al portal pasado por parámetro. Si hay temas presentes en el DataJson que no están en el portal de CKAN, los genera. Args: catalog (DataJson): El catálogo de origen que se restaura. origin_portal_url (str): La URL del portal CKAN de origen. destination_portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar el dataset. download_strategy(callable): Una función (catálogo, distribución)-> bool. Sobre las distribuciones que evalúa True, descarga el recurso en el downloadURL y lo sube al portal de destino. Por default no sube ninguna distribución. generate_new_access_url(list): Se pasan los ids de las distribuciones cuyo accessURL se regenerar en el portal de destino. Para el resto, el portal debe mantiene el valor pasado en el DataJson. Returns: dict: Diccionario con key organización y value la lista de ids de datasets subidos a esa organización
def set_uint_info(self, field, data): """Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array ofdata to be set """ _check_call(_LIB.XGDMatrixSetUIntInfo(self.handle, c_str(field), c_array(ctypes.c_uint, data), len(data)))
Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array ofdata to be set
def resizeEvent(self, event): """ Reimplements the :meth:`QWidget.resizeEvent` method. :param event: QEvent. :type event: QEvent """ LOGGER.debug("> Application resize event accepted!") self.size_changed.emit(event) event.accept()
Reimplements the :meth:`QWidget.resizeEvent` method. :param event: QEvent. :type event: QEvent
def build(self, js_path): super(Script, self).build() """ :param js_path: Javascript source code. """ self.source = js_path
:param js_path: Javascript source code.
def PublishMultipleEvents(cls, events, token=None): """Publishes multiple messages at once. Args: events: A dict with keys being event names and values being lists of messages. token: ACL token. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage. """ event_name_map = registry.EventRegistry.EVENT_NAME_MAP for event_name, messages in iteritems(events): if not isinstance(event_name, string_types): raise ValueError( "Event names should be string, got: %s" % type(event_name)) for msg in messages: if not isinstance(msg, rdfvalue.RDFValue): raise ValueError("Can only publish RDFValue instances.") for event_cls in event_name_map.get(event_name, []): event_cls().ProcessMessages(messages, token=token)
Publishes multiple messages at once. Args: events: A dict with keys being event names and values being lists of messages. token: ACL token. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage.
def isinstance(self, instance, class_name): """Check if a BaseNode is an instance of a registered dynamic class""" if isinstance(instance, BaseNode): klass = self.dynamic_node_classes.get(class_name, None) if klass: return isinstance(instance, klass) # Not an instance of a class in the registry return False else: raise TypeError("This function can only be used for BaseNode objects")
Check if a BaseNode is an instance of a registered dynamic class