code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
def handle_truncated_response(callback, params, entities): """ Handle truncated responses :param callback: :param params: :param entities: :return: """ results = {} for entity in entities: results[entity] = [] while True: try: marker_found = False response = callback(**params) for entity in entities: if entity in response: results[entity] = results[entity] + response[entity] for marker_name in ['NextToken', 'Marker', 'PaginationToken']: if marker_name in response and response[marker_name]: params[marker_name] = response[marker_name] marker_found = True if not marker_found: break except Exception as e: if is_throttled(e): time.sleep(1) else: raise e return results
Handle truncated responses :param callback: :param params: :param entities: :return:
def parse_cctop_full(infile): """Parse a CCTOP XML results file and return a list of the consensus TM domains in the format:: [(1, inside_outside_or_tm), (2, inside_outside_or_tm), ...] Where the first value of a tuple is the sequence residue number, and the second is the predicted location with the values 'I' (inside), 'O' (outside), or 'M' (membrane). Args: infile (str): Path to CCTOP XML file Returns: list: List of tuples in the format described above """ parser = etree.XMLParser(ns_clean=True) with open(infile, 'r') as f: tree = etree.fromstring(f.read(), parser) all_info = [] if tree.find('Topology') is not None: for r in tree.find('Topology').findall('Region'): region_start = int(r.attrib['from']) region_end = int(r.attrib['to']) region = r.attrib['loc'] for i in range(region_start, region_end + 1): all_info.append((i, region)) return all_info
Parse a CCTOP XML results file and return a list of the consensus TM domains in the format:: [(1, inside_outside_or_tm), (2, inside_outside_or_tm), ...] Where the first value of a tuple is the sequence residue number, and the second is the predicted location with the values 'I' (inside), 'O' (outside), or 'M' (membrane). Args: infile (str): Path to CCTOP XML file Returns: list: List of tuples in the format described above
def unsubscribe(self, tag, match_type=None): ''' Un-subscribe to events matching the passed tag. ''' if tag is None: return match_func = self._get_match_func(match_type) self.pending_tags.remove([tag, match_func]) old_events = self.pending_events self.pending_events = [] for evt in old_events: if any(pmatch_func(evt['tag'], ptag) for ptag, pmatch_func in self.pending_tags): self.pending_events.append(evt)
Un-subscribe to events matching the passed tag.
def _get_files(extension, path): """ Returns a sorted list of all of the files having the same extension under the same directory :param extension: the extension of the data files such as 'gdm' :param path: path to the folder containing the files :return: sorted list of files """ # retrieves the files sharing the same extension files = [] for file in os.listdir(path): if file.endswith(extension): files.append(os.path.join(path, file)) return sorted(files)
Returns a sorted list of all of the files having the same extension under the same directory :param extension: the extension of the data files such as 'gdm' :param path: path to the folder containing the files :return: sorted list of files
def serialize_to_string( root_processor, # type: RootProcessor value, # type: Any indent=None # type: Optional[Text] ): # type: (...) -> Text """ Serialize the value to an XML string using the root processor. :return: The serialized XML string. See also :func:`declxml.serialize_to_file` """ if not _is_valid_root_processor(root_processor): raise InvalidRootProcessor('Invalid root processor') state = _ProcessorState() state.push_location(root_processor.element_path) root = root_processor.serialize(value, state) state.pop_location() # Always encode to UTF-8 because element tree does not support other # encodings in earlier Python versions. See: https://bugs.python.org/issue1767933 serialized_value = ET.tostring(root, encoding='utf-8') # Since element tree does not support pretty printing XML, we use minidom to do the pretty # printing if indent: serialized_value = minidom.parseString(serialized_value).toprettyxml( indent=indent, encoding='utf-8' ) return serialized_value.decode('utf-8')
Serialize the value to an XML string using the root processor. :return: The serialized XML string. See also :func:`declxml.serialize_to_file`
def write_to_file(self): """ Writes the weeks with associated commits to file. """ with open('../github_stats_output/last_year_commits.csv', 'w+') as output: output.write('date,organization,repos,members,teams,' + 'unique_contributors,total_contributors,forks,' + 'stargazers,pull_requests,open_issues,has_readme,' + 'has_license,pull_requests_open,pull_requests_closed,' + 'commits\n') #no reverse this time to print oldest first previous_commits = 0 for week in self.sorted_weeks: if str(self.commits[week]) != previous_commits:#delete dups week_formatted = datetime.datetime.utcfromtimestamp( week ).strftime('%Y-%m-%d') output.write(week_formatted + ',llnl,0,0,0,0,0,0,0,0,0,0,0,0,0,' + str(self.commits[week]) + '\n') previous_commits = str(self.commits[week])
Writes the weeks with associated commits to file.
def infer_namespace(ac): """Infer the single namespace of the given accession This function is convenience wrapper around infer_namespaces(). Returns: * None if no namespaces are inferred * The (single) namespace if only one namespace is inferred * Raises an exception if more than one namespace is inferred >>> infer_namespace("ENST00000530893.6") 'ensembl' >>> infer_namespace("NM_01234.5") 'refseq' >>> infer_namespace("A2BC19") 'uniprot' N.B. The following test is disabled because Python 2 and Python 3 handle doctest exceptions differently. :-( X>>> infer_namespace("P12345") Traceback (most recent call last): ... bioutils.exceptions.BioutilsError: Multiple namespaces possible for P12345 >>> infer_namespace("BOGUS99") is None True """ namespaces = infer_namespaces(ac) if not namespaces: return None if len(namespaces) > 1: raise BioutilsError("Multiple namespaces possible for {}".format(ac)) return namespaces[0]
Infer the single namespace of the given accession This function is convenience wrapper around infer_namespaces(). Returns: * None if no namespaces are inferred * The (single) namespace if only one namespace is inferred * Raises an exception if more than one namespace is inferred >>> infer_namespace("ENST00000530893.6") 'ensembl' >>> infer_namespace("NM_01234.5") 'refseq' >>> infer_namespace("A2BC19") 'uniprot' N.B. The following test is disabled because Python 2 and Python 3 handle doctest exceptions differently. :-( X>>> infer_namespace("P12345") Traceback (most recent call last): ... bioutils.exceptions.BioutilsError: Multiple namespaces possible for P12345 >>> infer_namespace("BOGUS99") is None True
def get_id(self): """ get unique identifier of this container :return: str """ if self._id is None: # FIXME: provide a better error message when key is not defined self._id = self.inspect(refresh=False)["Id"] return self._id
get unique identifier of this container :return: str
def update_contents(self, contents, mime_type): """Update the contents and set the hash and modification time""" import hashlib import time new_size = len(contents) self.mime_type = mime_type if mime_type == 'text/plain': self.contents = contents.encode('utf-8') else: self.contents = contents old_hash = self.hash self.hash = hashlib.md5(self.contents).hexdigest() if self.size and (old_hash != self.hash): self.modified = int(time.time()) self.size = new_size
Update the contents and set the hash and modification time
def gaussian_filter(self, sigma=2, order=0): """ Spatially smooth images with a gaussian filter. Filtering will be applied to every image in the collection. Parameters ---------- sigma : scalar or sequence of scalars, default = 2 Size of the filter size as standard deviation in pixels. A sequence is interpreted as the standard deviation for each axis. A single scalar is applied equally to all axes. order : choice of 0 / 1 / 2 / 3 or sequence from same set, optional, default = 0 Order of the gaussian kernel, 0 is a gaussian, higher numbers correspond to derivatives of a gaussian. """ from scipy.ndimage.filters import gaussian_filter return self.map(lambda v: gaussian_filter(v, sigma, order), value_shape=self.value_shape)
Spatially smooth images with a gaussian filter. Filtering will be applied to every image in the collection. Parameters ---------- sigma : scalar or sequence of scalars, default = 2 Size of the filter size as standard deviation in pixels. A sequence is interpreted as the standard deviation for each axis. A single scalar is applied equally to all axes. order : choice of 0 / 1 / 2 / 3 or sequence from same set, optional, default = 0 Order of the gaussian kernel, 0 is a gaussian, higher numbers correspond to derivatives of a gaussian.
def tokens_required(scopes='', new=False): """ Decorator for views to request an ESI Token. Accepts required scopes as a space-delimited string or list of strings of scope names. Can require a new token to be retrieved by SSO. Returns a QueryDict of Tokens. """ def decorator(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): # if we're coming back from SSO for a new token, return it token = _check_callback(request) if token and new: tokens = Token.objects.filter(pk=token.pk) logger.debug("Returning new token.") return view_func(request, tokens, *args, **kwargs) if not new: # ensure user logged in to check existing tokens if not request.user.is_authenticated: logger.debug( "Session {0} is not logged in. Redirecting to login.".format(request.session.session_key[:5])) from django.contrib.auth.views import redirect_to_login return redirect_to_login(request.get_full_path()) # collect tokens in db, check if still valid, return if any tokens = Token.objects.filter(user__pk=request.user.pk).require_scopes(scopes).require_valid() if tokens.exists(): logger.debug("Retrieved {0} tokens for {1} session {2}".format(tokens.count(), request.user, request.session.session_key[:5])) return view_func(request, tokens, *args, **kwargs) # trigger creation of new token via sso logger.debug("No tokens identified for {0} session {1}. Redirecting to SSO.".format(request.user, request.session.session_key[:5])) from esi.views import sso_redirect return sso_redirect(request, scopes=scopes) return _wrapped_view return decorator
Decorator for views to request an ESI Token. Accepts required scopes as a space-delimited string or list of strings of scope names. Can require a new token to be retrieved by SSO. Returns a QueryDict of Tokens.
def _fetch_access_token(self, url, data): """ The real fetch access token """ logger.info('Fetching component access token') res = self._http.post( url=url, data=data ) try: res.raise_for_status() except requests.RequestException as reqe: raise WeChatClientException( errcode=None, errmsg=None, client=self, request=reqe.request, response=reqe.response ) result = res.json() if 'errcode' in result and result['errcode'] != 0: raise WeChatClientException( result['errcode'], result['errmsg'], client=self, request=res.request, response=res ) expires_in = 7200 if 'expires_in' in result: expires_in = result['expires_in'] self.session.set( 'component_access_token', result['component_access_token'], expires_in ) self.expires_at = int(time.time()) + expires_in return result
The real fetch access token
def xtqx(self): """get the normal matrix attribute. Create the attribute if it has not yet been created Returns ------- xtqx : pyemu.Matrix """ if self.__xtqx is None: self.log("xtqx") self.__xtqx = self.jco.T * (self.obscov ** -1) * self.jco self.log("xtqx") return self.__xtqx
get the normal matrix attribute. Create the attribute if it has not yet been created Returns ------- xtqx : pyemu.Matrix
def positions(self, reverse=False): """returns a generator that walks the positions of this tree in DFO""" def Posgen(reverse): if reverse: lastrootsib = self.last_sibling_position(self.root) current = self.last_decendant(lastrootsib) while current is not None: yield current current = self.prev_position(current) else: current = self.root while current is not None: yield current current = self.next_position(current) return Posgen(reverse)
returns a generator that walks the positions of this tree in DFO
def add_init_files(path, zip_handler): """ adds init files to the included folder :param path: str """ paths = path.split('\\') paths = paths[:len(paths) - 1] for sub_path in paths: for root, dirs, files in os.walk(sub_path): for file_to_zip in [x for x in files if '__init__.py' in x]: filename = os.path.join(root, file_to_zip) zip_con = filename.replace('\\', '/') if zip_con in zip_handler.namelist(): continue add_file(filename, zip_handler, False)
adds init files to the included folder :param path: str
def create_volume(self, availability_zone, size=None, snapshot_id=None): """Create a new volume.""" params = {"AvailabilityZone": availability_zone} if ((snapshot_id is None and size is None) or (snapshot_id is not None and size is not None)): raise ValueError("Please provide either size or snapshot_id") if size is not None: params["Size"] = str(size) if snapshot_id is not None: params["SnapshotId"] = snapshot_id query = self.query_factory( action="CreateVolume", creds=self.creds, endpoint=self.endpoint, other_params=params) d = query.submit() return d.addCallback(self.parser.create_volume)
Create a new volume.
def parent(self) -> Optional['CtsReference']: """ Parent of the actual URN, for example, 1.1 for 1.1.1 :rtype: CtsReference """ if self.start.depth == 1 and (self.end is None or self.end.depth <= 1): return None else: if self.start.depth > 1 and (self.end is None or self.end.depth == 0): return CtsReference("{0}{1}".format( ".".join(self.start.list[:-1]), self.start.subreference or "" )) elif self.start.depth > 1 and self.end is not None and self.end.depth > 1: _start = self.start.list[0:-1] _end = self.end.list[0:-1] if _start == _end and \ self.start.subreference is None and \ self.end.subreference is None: return CtsReference( ".".join(_start) ) else: return CtsReference("{0}{1}-{2}{3}".format( ".".join(_start), self.start.subreference or "", ".".join(_end), self.end.subreference or "" ))
Parent of the actual URN, for example, 1.1 for 1.1.1 :rtype: CtsReference
def create_table( self, parent, table_id, table, initial_splits=None, retry=google.api_core.gapic_v1.method.DEFAULT, timeout=google.api_core.gapic_v1.method.DEFAULT, metadata=None, ): """ Creates a new table in the specified instance. The table can be created with a full set of initial column families, specified in the request. Example: >>> from google.cloud import bigtable_admin_v2 >>> >>> client = bigtable_admin_v2.BigtableTableAdminClient() >>> >>> parent = client.instance_path('[PROJECT]', '[INSTANCE]') >>> >>> # TODO: Initialize `table_id`: >>> table_id = '' >>> >>> # TODO: Initialize `table`: >>> table = {} >>> >>> response = client.create_table(parent, table_id, table) Args: parent (str): The unique name of the instance in which to create the table. Values are of the form ``projects/<project>/instances/<instance>``. table_id (str): The name by which the new table should be referred to within the parent instance, e.g., ``foobar`` rather than ``<parent>/tables/foobar``. table (Union[dict, ~google.cloud.bigtable_admin_v2.types.Table]): The Table to create. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_admin_v2.types.Table` initial_splits (list[Union[dict, ~google.cloud.bigtable_admin_v2.types.Split]]): The optional list of row keys that will be used to initially split the table into several tablets (tablets are similar to HBase regions). Given two split keys, ``s1`` and ``s2``, three tablets will be created, spanning the key ranges: ``[, s1), [s1, s2), [s2, )``. Example: - Row keys := ``["a", "apple", "custom", "customer_1", "customer_2",`` ``"other", "zz"]`` - initial\_split\_keys := ``["apple", "customer_1", "customer_2", "other"]`` - Key assignment: - Tablet 1 ``[, apple) => {"a"}.`` - Tablet 2 ``[apple, customer_1) => {"apple", "custom"}.`` - Tablet 3 ``[customer_1, customer_2) => {"customer_1"}.`` - Tablet 4 ``[customer_2, other) => {"customer_2"}.`` - Tablet 5 ``[other, ) => {"other", "zz"}.`` If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_admin_v2.types.Split` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.bigtable_admin_v2.types.Table` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid. """ # Wrap the transport method to add retry and timeout logic. if "create_table" not in self._inner_api_calls: self._inner_api_calls[ "create_table" ] = google.api_core.gapic_v1.method.wrap_method( self.transport.create_table, default_retry=self._method_configs["CreateTable"].retry, default_timeout=self._method_configs["CreateTable"].timeout, client_info=self._client_info, ) request = bigtable_table_admin_pb2.CreateTableRequest( parent=parent, table_id=table_id, table=table, initial_splits=initial_splits ) if metadata is None: metadata = [] metadata = list(metadata) try: routing_header = [("parent", parent)] except AttributeError: pass else: routing_metadata = google.api_core.gapic_v1.routing_header.to_grpc_metadata( routing_header ) metadata.append(routing_metadata) return self._inner_api_calls["create_table"]( request, retry=retry, timeout=timeout, metadata=metadata )
Creates a new table in the specified instance. The table can be created with a full set of initial column families, specified in the request. Example: >>> from google.cloud import bigtable_admin_v2 >>> >>> client = bigtable_admin_v2.BigtableTableAdminClient() >>> >>> parent = client.instance_path('[PROJECT]', '[INSTANCE]') >>> >>> # TODO: Initialize `table_id`: >>> table_id = '' >>> >>> # TODO: Initialize `table`: >>> table = {} >>> >>> response = client.create_table(parent, table_id, table) Args: parent (str): The unique name of the instance in which to create the table. Values are of the form ``projects/<project>/instances/<instance>``. table_id (str): The name by which the new table should be referred to within the parent instance, e.g., ``foobar`` rather than ``<parent>/tables/foobar``. table (Union[dict, ~google.cloud.bigtable_admin_v2.types.Table]): The Table to create. If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_admin_v2.types.Table` initial_splits (list[Union[dict, ~google.cloud.bigtable_admin_v2.types.Split]]): The optional list of row keys that will be used to initially split the table into several tablets (tablets are similar to HBase regions). Given two split keys, ``s1`` and ``s2``, three tablets will be created, spanning the key ranges: ``[, s1), [s1, s2), [s2, )``. Example: - Row keys := ``["a", "apple", "custom", "customer_1", "customer_2",`` ``"other", "zz"]`` - initial\_split\_keys := ``["apple", "customer_1", "customer_2", "other"]`` - Key assignment: - Tablet 1 ``[, apple) => {"a"}.`` - Tablet 2 ``[apple, customer_1) => {"apple", "custom"}.`` - Tablet 3 ``[customer_1, customer_2) => {"customer_1"}.`` - Tablet 4 ``[customer_2, other) => {"customer_2"}.`` - Tablet 5 ``[other, ) => {"other", "zz"}.`` If a dict is provided, it must be of the same form as the protobuf message :class:`~google.cloud.bigtable_admin_v2.types.Split` retry (Optional[google.api_core.retry.Retry]): A retry object used to retry requests. If ``None`` is specified, requests will not be retried. timeout (Optional[float]): The amount of time, in seconds, to wait for the request to complete. Note that if ``retry`` is specified, the timeout applies to each individual attempt. metadata (Optional[Sequence[Tuple[str, str]]]): Additional metadata that is provided to the method. Returns: A :class:`~google.cloud.bigtable_admin_v2.types.Table` instance. Raises: google.api_core.exceptions.GoogleAPICallError: If the request failed for any reason. google.api_core.exceptions.RetryError: If the request failed due to a retryable error and retry attempts failed. ValueError: If the parameters are invalid.
def save(self, record_key, record_data, overwrite=True, secret_key=''): ''' a method to create a record in the collection folder :param record_key: string with name to assign to record (see NOTES below) :param record_data: byte data for record body :param overwrite: [optional] boolean to overwrite records with same name :param secret_key: [optional] string with key to encrypt data :return: string with name of record NOTE: record_key may only contain alphanumeric, /, _, . or - characters and may not begin with the . or / character. NOTE: using one or more / characters splits the key into separate segments. these segments will appear as a sub directories inside the record collection and each segment is used as a separate index for that record when using the list method eg. lab/unittests/1473719695.2165067.json is indexed: [ 'lab', 'unittests', '1473719695.2165067', '.json' ] ''' title = '%s.save' % self.__class__.__name__ # validate inputs input_fields = { 'record_key': record_key, 'secret_key': secret_key } for key, value in input_fields.items(): if value: object_title = '%s(%s=%s)' % (title, key, str(value)) self.fields.validate(value, '.%s' % key, object_title) # validate byte data if not isinstance(record_data, bytes): raise ValueError('%s(record_data=b"...") must be byte data.' % title) # construct and validate file path file_path = os.path.join(self.collection_folder, record_key) file_path = self.fields.validate(file_path, '.record_key_path') file_root, file_name = os.path.split(file_path) self.fields.validate(file_name, '.record_key_comp') while file_root != self.collection_folder: file_root, path_node = os.path.split(file_root) self.fields.validate(path_node, '.record_key_comp') # check overwrite exception from os import path, makedirs if not overwrite: if path.exists(file_path): raise Exception('%s(record_key="%s") already exists. To overwrite, set overwrite=True' % (title, record_key)) # create directories in path to file file_root, file_node = path.split(file_path) if file_root: if not path.exists(file_root): makedirs(file_root) # encrypt data if secret_key: from labpack.encryption import cryptolab record_data, secret_key = cryptolab.encrypt(record_data, secret_key) # save file with open(file_path, 'wb') as f: f.write(record_data) f.close() # erase file date from drep files import re if re.search('\\.drep$', file_name): from os import utime file_time = 1 utime(file_path, times=(file_time, file_time)) return record_key
a method to create a record in the collection folder :param record_key: string with name to assign to record (see NOTES below) :param record_data: byte data for record body :param overwrite: [optional] boolean to overwrite records with same name :param secret_key: [optional] string with key to encrypt data :return: string with name of record NOTE: record_key may only contain alphanumeric, /, _, . or - characters and may not begin with the . or / character. NOTE: using one or more / characters splits the key into separate segments. these segments will appear as a sub directories inside the record collection and each segment is used as a separate index for that record when using the list method eg. lab/unittests/1473719695.2165067.json is indexed: [ 'lab', 'unittests', '1473719695.2165067', '.json' ]
def free_memory(cls, exclude=None): """Free global annotation memory.""" annotations_in_memory = Annotation.__ANNOTATIONS_IN_MEMORY__ exclude = () if exclude is None else exclude for annotation_cls in list(annotations_in_memory.keys()): if issubclass(annotation_cls, exclude): continue if issubclass(annotation_cls, cls): del annotations_in_memory[annotation_cls]
Free global annotation memory.
def load_generated_checkers(cls, args): """ Load checker classes from generator plugins """ for gen in cls._get_generator_plugins(): checkers = gen.get_checkers(args) cls.checkers.update(checkers)
Load checker classes from generator plugins
def logistic_map(x, steps, r=4): r""" Generates a time series of the logistic map. Characteristics and Background: The logistic map is among the simplest examples for a time series that can exhibit chaotic behavior depending on the parameter r. For r between 2 and 3, the series quickly becomes static. At r=3 the first bifurcation point is reached after which the series starts to oscillate. Beginning with r = 3.6 it shows chaotic behavior with a few islands of stability until perfect chaos is achieved at r = 4. Calculating the Lyapunov exponent: To calculate the "true" Lyapunov exponent of the logistic map, we first have to make a few observations for maps in general that are repeated applications of a function to a starting value. If we have two starting values that differ by some infinitesimal :math:`delta_0` then according to the definition of the lyapunov exponent we will have an exponential divergence: .. math:: |\delta_n| = |\delta_0| e^{\lambda n} We can now write that: .. math:: e^{\lambda n} = \lim_{\delta_0 -> 0} |\frac{\delta_n}{\delta_0}| This is the definition of the derivative :math:`\frac{dx_n}{dx_0}` of a point :math:`x_n` in the time series with respect to the starting point :math:`x_0` (or rather the absolute value of that derivative). Now we can use the fact that due to the definition of our map as repetitive application of some f we have: .. math:: f^{n\prime}(x) = f(f(f(...f(x_0)...))) = f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0) with .. math:: e^{\lambda n} = |f^{n\prime}(x)| we now have .. math:: e^{\lambda n} &= |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda n &= \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda &= \frac{1}{n} \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ &= \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)| With this sum we can now calculate the lyapunov exponent for any map. For the logistic map we simply have to calculate :math:`f'(x)` and as we have .. math:: f(x) = r x (1-x) = rx - rx² we now get .. math:: f'(x) = r - 2 rx References: .. [lm_1] https://en.wikipedia.org/wiki/Tent_map .. [lm_2] https://blog.abhranil.net/2015/05/15/lyapunov-exponent-of-the-logistic-map-mathematica-code/ Args: x (float): starting point steps (int): number of steps for which the generator should run Kwargs: r (int): parameter r that controls the behavior of the map Returns: generator object: the generator that creates the time series """ for _ in range(steps): x = r * x * (1 - x) yield x
r""" Generates a time series of the logistic map. Characteristics and Background: The logistic map is among the simplest examples for a time series that can exhibit chaotic behavior depending on the parameter r. For r between 2 and 3, the series quickly becomes static. At r=3 the first bifurcation point is reached after which the series starts to oscillate. Beginning with r = 3.6 it shows chaotic behavior with a few islands of stability until perfect chaos is achieved at r = 4. Calculating the Lyapunov exponent: To calculate the "true" Lyapunov exponent of the logistic map, we first have to make a few observations for maps in general that are repeated applications of a function to a starting value. If we have two starting values that differ by some infinitesimal :math:`delta_0` then according to the definition of the lyapunov exponent we will have an exponential divergence: .. math:: |\delta_n| = |\delta_0| e^{\lambda n} We can now write that: .. math:: e^{\lambda n} = \lim_{\delta_0 -> 0} |\frac{\delta_n}{\delta_0}| This is the definition of the derivative :math:`\frac{dx_n}{dx_0}` of a point :math:`x_n` in the time series with respect to the starting point :math:`x_0` (or rather the absolute value of that derivative). Now we can use the fact that due to the definition of our map as repetitive application of some f we have: .. math:: f^{n\prime}(x) = f(f(f(...f(x_0)...))) = f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0) with .. math:: e^{\lambda n} = |f^{n\prime}(x)| we now have .. math:: e^{\lambda n} &= |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda n &= \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda &= \frac{1}{n} \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ &= \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)| With this sum we can now calculate the lyapunov exponent for any map. For the logistic map we simply have to calculate :math:`f'(x)` and as we have .. math:: f(x) = r x (1-x) = rx - rx² we now get .. math:: f'(x) = r - 2 rx References: .. [lm_1] https://en.wikipedia.org/wiki/Tent_map .. [lm_2] https://blog.abhranil.net/2015/05/15/lyapunov-exponent-of-the-logistic-map-mathematica-code/ Args: x (float): starting point steps (int): number of steps for which the generator should run Kwargs: r (int): parameter r that controls the behavior of the map Returns: generator object: the generator that creates the time series
def main(): '''Main routine.''' # process arguments if len(sys.argv) < 3: usage() rgname = sys.argv[1] vmss = sys.argv[2] # Load Azure app defaults try: with open('azurermconfig.json') as config_file: config_data = json.load(config_file) except FileNotFoundError: sys.exit("Error: Expecting azurermconfig.json in current folder") tenant_id = config_data['tenantId'] app_id = config_data['appId'] app_secret = config_data['appSecret'] sub_id = config_data['subscriptionId'] access_token = azurerm.get_access_token(tenant_id, app_id, app_secret) # get metric definitions provider = 'Microsoft.Compute' resource_type = 'virtualMachineScaleSets' metric_definitions = azurerm.list_metric_defs_for_resource(access_token, sub_id, rgname, provider, resource_type, vmss) print(json.dumps(metric_definitions, sort_keys=False, indent=2, separators=(',', ': '))) metrics = azurerm.get_metrics_for_resource(access_token, sub_id, rgname, provider, resource_type, vmss) print(json.dumps(metrics, sort_keys=False, indent=2, separators=(',', ': ')))
Main routine.
def run(juttle, deployment_name, program_name=None, persist=False, token_manager=None, app_url=defaults.APP_URL): """ run a juttle program through the juttle streaming API and return the various events that are part of running a Juttle program which include: * Initial job status details including information to associate multiple flowgraphs with their individual outputs (sinks): { "status": "ok", "job": { "channel_id": "56bde5f0", "_start_time": "2015-10-03T06:59:49.233Z", "alias": "jut-tools program 1443855588", "_ms_begin": 1443855589233, "user": "0fbbd98d-cf33-4582-8ca1-15a3d3fee510", "timeout": 5, "id": "b973bce6" }, "now": "2015-10-03T06:59:49.230Z", "stats": ... "sinks": [ { "location": { "start": { "column": 17, "line": 1, "offset": 16 }, "end": { "column": 24, "line": 1, "offset": 23 }, "filename": "main" }, "name": "table", "channel": "sink237", "options": { "_jut_time_bounds": [] } }, ... as many sinks as there are flowgrpahs in your program ] } * Each set of points returned along with the indication of which sink they belong to: { "points": [ array of points ], "sink": sink_id } * Error event indicating where in your program the error occurred { "error": true, payload with "info" and "context" explaining exact error } * Warning event indicating where in your program the error occurred { "warning": true, payload with "info" and "context" explaining exact warning } * ... juttle: juttle program to execute deployment_name: the deployment name to execute the program on persist: if set to True then we won't wait for response data and will disconnect from the websocket leaving the program running in the background if it is uses a background output (http://docs.jut.io/juttle-guide/#background_outputs) and therefore becomes a persistent job. token_manager: auth.TokenManager object app_url: optional argument used primarily for internal Jut testing """ headers = token_manager.get_access_token_headers() data_url = get_juttle_data_url(deployment_name, app_url=app_url, token_manager=token_manager) websocket = __wss_connect(data_url, token_manager) data = websocket.recv() channel_id_obj = json.loads(data) if is_debug_enabled(): debug('got channel response %s', json.dumps(channel_id_obj)) channel_id = channel_id_obj['channel_id'] juttle_job = { 'channel_id': channel_id, 'alias': program_name, 'program': juttle } response = requests.post('%s/api/v1/jobs' % data_url, data=json.dumps(juttle_job), headers=headers) if response.status_code != 200: yield { "error": True, "context": response.json() } return job_info = response.json() # yield job_info so the caller to this method can figure out which sinks # correlate to which flowgraphs yield job_info job_id = job_info['job']['id'] if is_debug_enabled(): debug('started job %s', json.dumps(job_info)) for data in connect_job(job_id, deployment_name, token_manager=token_manager, app_url=app_url, persist=persist, websocket=websocket, data_url=data_url): yield data
run a juttle program through the juttle streaming API and return the various events that are part of running a Juttle program which include: * Initial job status details including information to associate multiple flowgraphs with their individual outputs (sinks): { "status": "ok", "job": { "channel_id": "56bde5f0", "_start_time": "2015-10-03T06:59:49.233Z", "alias": "jut-tools program 1443855588", "_ms_begin": 1443855589233, "user": "0fbbd98d-cf33-4582-8ca1-15a3d3fee510", "timeout": 5, "id": "b973bce6" }, "now": "2015-10-03T06:59:49.230Z", "stats": ... "sinks": [ { "location": { "start": { "column": 17, "line": 1, "offset": 16 }, "end": { "column": 24, "line": 1, "offset": 23 }, "filename": "main" }, "name": "table", "channel": "sink237", "options": { "_jut_time_bounds": [] } }, ... as many sinks as there are flowgrpahs in your program ] } * Each set of points returned along with the indication of which sink they belong to: { "points": [ array of points ], "sink": sink_id } * Error event indicating where in your program the error occurred { "error": true, payload with "info" and "context" explaining exact error } * Warning event indicating where in your program the error occurred { "warning": true, payload with "info" and "context" explaining exact warning } * ... juttle: juttle program to execute deployment_name: the deployment name to execute the program on persist: if set to True then we won't wait for response data and will disconnect from the websocket leaving the program running in the background if it is uses a background output (http://docs.jut.io/juttle-guide/#background_outputs) and therefore becomes a persistent job. token_manager: auth.TokenManager object app_url: optional argument used primarily for internal Jut testing
def RdatasetsBM(database,host=rbiomart_host): """ Lists BioMart datasets through a RPY2 connection. :param database: a database listed in RdatabasesBM() :param host: address of the host server, default='www.ensembl.org' :returns: nothing """ biomaRt = importr("biomaRt") ensemblMart=biomaRt.useMart(database, host=host) print(biomaRt.listDatasets(ensemblMart))
Lists BioMart datasets through a RPY2 connection. :param database: a database listed in RdatabasesBM() :param host: address of the host server, default='www.ensembl.org' :returns: nothing
def ls(self): """Return a list of *all* files & dirs in the repo. Think of this as a recursive `ls` command from the root of the repo. """ tree = self.ls_tree() return [t.get('file') for t in tree if t.get('file')]
Return a list of *all* files & dirs in the repo. Think of this as a recursive `ls` command from the root of the repo.
def get_lonlatalt(self, utc_time): """Calculate sublon, sublat and altitude of satellite. http://celestrak.com/columns/v02n03/ """ (pos_x, pos_y, pos_z), (vel_x, vel_y, vel_z) = self.get_position( utc_time, normalize=True) lon = ((np.arctan2(pos_y * XKMPER, pos_x * XKMPER) - astronomy.gmst(utc_time)) % (2 * np.pi)) lon = np.where(lon > np.pi, lon - np.pi * 2, lon) lon = np.where(lon <= -np.pi, lon + np.pi * 2, lon) r = np.sqrt(pos_x ** 2 + pos_y ** 2) lat = np.arctan2(pos_z, r) e2 = F * (2 - F) while True: lat2 = lat c = 1 / (np.sqrt(1 - e2 * (np.sin(lat2) ** 2))) lat = np.arctan2(pos_z + c * e2 * np.sin(lat2), r) if np.all(abs(lat - lat2) < 1e-10): break alt = r / np.cos(lat) - c alt *= A return np.rad2deg(lon), np.rad2deg(lat), alt
Calculate sublon, sublat and altitude of satellite. http://celestrak.com/columns/v02n03/
def visible_object_groups(self): """Return iterator of object group indexes that are set 'visible' :rtype: Iterator """ return (i for (i, l) in enumerate(self.layers) if l.visible and isinstance(l, TiledObjectGroup))
Return iterator of object group indexes that are set 'visible' :rtype: Iterator
def list_joined_groups(self, user_alias=None): """ 已加入的小组列表 :param user_alias: 用户名,默认为当前用户名 :return: 单页列表 """ xml = self.api.xml(API_GROUP_LIST_JOINED_GROUPS % (user_alias or self.api.user_alias)) xml_results = xml.xpath('//div[@class="group-list group-cards"]/ul/li') results = [] for item in xml_results: try: icon = item.xpath('.//img/@src')[0] link = item.xpath('.//div[@class="title"]/a')[0] url = link.get('href') name = link.text alias = url.rstrip('/').rsplit('/', 1)[1] user_count = int(item.xpath('.//span[@class="num"]/text()')[0][1:-1]) results.append({ 'icon': icon, 'alias': alias, 'url': url, 'name': name, 'user_count': user_count, }) except Exception as e: self.api.logger.exception('parse joined groups exception: %s' % e) return build_list_result(results, xml)
已加入的小组列表 :param user_alias: 用户名,默认为当前用户名 :return: 单页列表
def log(self, string): """ appends input string to log file and sends it to log function (self.log_function) Returns: """ self.log_data.append(string) if self.log_function is None: print(string) else: self.log_function(string)
appends input string to log file and sends it to log function (self.log_function) Returns:
def get_name(obj, setting_name='LONG_NAME_FORMAT'): """ Returns the correct order of the name according to the current language. """ nickname = obj.get_nickname() romanized_first_name = obj.get_romanized_first_name() romanized_last_name = obj.get_romanized_last_name() non_romanized_first_name = obj.get_non_romanized_first_name() non_romanized_last_name = obj.get_non_romanized_last_name() non_translated_title = obj.get_title() non_translated_gender = obj.get_gender() # when the title is blank, gettext returns weird header text. So if this # occurs, we will pass it on blank without gettext if non_translated_title: title = gettext(non_translated_title) else: title = non_translated_title if non_translated_gender: gender = gettext(non_translated_gender) else: gender = non_translated_gender format_string = u'{}'.format(get_format(setting_name)) format_kwargs = {} if '{n}' in format_string: format_kwargs.update({'n': nickname}) if '{N}' in format_string: format_kwargs.update({'N': nickname.upper()}) if '{f}' in format_string: format_kwargs.update({'f': romanized_first_name}) if '{F}' in format_string: format_kwargs.update({'F': romanized_first_name.upper()}) if '{l}' in format_string: format_kwargs.update({'l': romanized_last_name}) if '{L}' in format_string: format_kwargs.update({'L': romanized_last_name.upper()}) if '{a}' in format_string: format_kwargs.update({'a': non_romanized_first_name}) if '{A}' in format_string: format_kwargs.update({'A': non_romanized_first_name.upper()}) if '{x}' in format_string: format_kwargs.update({'x': non_romanized_last_name}) if '{X}' in format_string: format_kwargs.update({'X': non_romanized_last_name.upper()}) if '{t}' in format_string: format_kwargs.update({'t': title}) if '{T}' in format_string: format_kwargs.update({'T': title.upper()}) if '{g}' in format_string: format_kwargs.update({'g': gender}) if '{G}' in format_string: format_kwargs.update({'G': gender.upper()}) return format_string.format(**format_kwargs)
Returns the correct order of the name according to the current language.
def serialize_dict(self, attr, dict_type, **kwargs): """Serialize a dictionary of objects. :param dict attr: Object to be serialized. :param str dict_type: Type of object in the dictionary. :param bool required: Whether the objects in the dictionary must not be None or empty. :rtype: dict """ serialization_ctxt = kwargs.get("serialization_ctxt", {}) serialized = {} for key, value in attr.items(): try: serialized[self.serialize_unicode(key)] = self.serialize_data( value, dict_type, **kwargs) except ValueError: serialized[self.serialize_unicode(key)] = None if 'xml' in serialization_ctxt: # XML serialization is more complicated xml_desc = serialization_ctxt['xml'] xml_name = xml_desc['name'] final_result = _create_xml_node( xml_name, xml_desc.get('prefix', None), xml_desc.get('ns', None) ) for key, value in serialized.items(): ET.SubElement(final_result, key).text = value return final_result return serialized
Serialize a dictionary of objects. :param dict attr: Object to be serialized. :param str dict_type: Type of object in the dictionary. :param bool required: Whether the objects in the dictionary must not be None or empty. :rtype: dict
def _build_layers(self, inputs, num_outputs, options): """Process the flattened inputs. Note that dict inputs will be flattened into a vector. To define a model that processes the components separately, use _build_layers_v2(). """ hiddens = options.get("fcnet_hiddens") activation = get_activation_fn(options.get("fcnet_activation")) with tf.name_scope("fc_net"): i = 1 last_layer = inputs for size in hiddens: label = "fc{}".format(i) last_layer = slim.fully_connected( last_layer, size, weights_initializer=normc_initializer(1.0), activation_fn=activation, scope=label) i += 1 label = "fc_out" output = slim.fully_connected( last_layer, num_outputs, weights_initializer=normc_initializer(0.01), activation_fn=None, scope=label) return output, last_layer
Process the flattened inputs. Note that dict inputs will be flattened into a vector. To define a model that processes the components separately, use _build_layers_v2().
def isID(self, elem, attr): """Determine whether an attribute is of type ID. In case we have DTD(s) then this is done if DTD loading has been requested. In the case of HTML documents parsed with the HTML parser, then ID detection is done systematically. """ if elem is None: elem__o = None else: elem__o = elem._o if attr is None: attr__o = None else: attr__o = attr._o ret = libxml2mod.xmlIsID(self._o, elem__o, attr__o) return ret
Determine whether an attribute is of type ID. In case we have DTD(s) then this is done if DTD loading has been requested. In the case of HTML documents parsed with the HTML parser, then ID detection is done systematically.
def _get_encoder_data_shapes(self, bucket_key: int, batch_size: int) -> List[mx.io.DataDesc]: """ Returns data shapes of the encoder module. :param bucket_key: Maximum input length. :param batch_size: Batch size. :return: List of data descriptions. """ return [mx.io.DataDesc(name=C.SOURCE_NAME, shape=(batch_size,) + self.input_size, layout=C.BATCH_MAJOR_IMAGE)]
Returns data shapes of the encoder module. :param bucket_key: Maximum input length. :param batch_size: Batch size. :return: List of data descriptions.
def check_auth(email, password): """Check if a username/password combination is valid. """ try: user = User.get(User.email == email) except User.DoesNotExist: return False return password == user.password
Check if a username/password combination is valid.
def _pip_search(stdout, stderr): """Callback for pip search.""" result = {} lines = to_text_string(stdout).split('\n') while '' in lines: lines.remove('') for line in lines: if ' - ' in line: parts = line.split(' - ') name = parts[0].strip() description = parts[1].strip() result[name] = description return result
Callback for pip search.
def parse_request(self): """Parse a request (internal). The request should be stored in self.raw_requestline; the results are in self.command, self.path, self.request_version and self.headers. Return True for success, False for failure; on failure, an error is sent back. """ self.command = None # set in case of error on the first line self.request_version = version = self.default_request_version self.close_connection = 1 requestline = str(self.raw_requestline, 'iso-8859-1') requestline = requestline.rstrip('\r\n') self.requestline = requestline words = requestline.split() if len(words) == 3: command, path, version = words if version[:5] != 'HTTP/': self.send_error(400, "Bad request version (%r)" % version) return False try: base_version_number = version.split('/', 1)[1] version_number = base_version_number.split(".") # RFC 2145 section 3.1 says there can be only one "." and # - major and minor numbers MUST be treated as # separate integers; # - HTTP/2.4 is a lower version than HTTP/2.13, which in # turn is lower than HTTP/12.3; # - Leading zeros MUST be ignored by recipients. if len(version_number) != 2: raise ValueError version_number = int(version_number[0]), int(version_number[1]) except (ValueError, IndexError): self.send_error(400, "Bad request version (%r)" % version) return False if version_number >= (1, 1) and self.protocol_version >= "HTTP/1.1": self.close_connection = 0 if version_number >= (2, 0): self.send_error(505, "Invalid HTTP Version (%s)" % base_version_number) return False elif len(words) == 2: command, path = words self.close_connection = 1 if command != 'GET': self.send_error(400, "Bad HTTP/0.9 request type (%r)" % command) return False elif not words: return False else: self.send_error(400, "Bad request syntax (%r)" % requestline) return False self.command, self.path, self.request_version = command, path, version # Examine the headers and look for a Connection directive. try: self.headers = http_client.parse_headers(self.rfile, _class=self.MessageClass) except http_client.LineTooLong: self.send_error(400, "Line too long") return False conntype = self.headers.get('Connection', "") if conntype.lower() == 'close': self.close_connection = 1 elif (conntype.lower() == 'keep-alive' and self.protocol_version >= "HTTP/1.1"): self.close_connection = 0 # Examine the headers and look for an Expect directive expect = self.headers.get('Expect', "") if (expect.lower() == "100-continue" and self.protocol_version >= "HTTP/1.1" and self.request_version >= "HTTP/1.1"): if not self.handle_expect_100(): return False return True
Parse a request (internal). The request should be stored in self.raw_requestline; the results are in self.command, self.path, self.request_version and self.headers. Return True for success, False for failure; on failure, an error is sent back.
def get_lsf_status(): """Count and print the number of jobs in various LSF states """ status_count = {'RUN': 0, 'PEND': 0, 'SUSP': 0, 'USUSP': 0, 'NJOB': 0, 'UNKNWN': 0} try: subproc = subprocess.Popen(['bjobs'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) subproc.stderr.close() output = subproc.stdout.readlines() except OSError: return status_count for line in output[1:]: line = line.strip().split() # Protect against format of multiproc jobs if len(line) < 5: continue status_count['NJOB'] += 1 for k in status_count: if line[2] == k: status_count[k] += 1 return status_count
Count and print the number of jobs in various LSF states
def SVGdocument(): "Create default SVG document" import xml.dom.minidom implementation = xml.dom.minidom.getDOMImplementation() doctype = implementation.createDocumentType( "svg", "-//W3C//DTD SVG 1.1//EN", "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd" ) document= implementation.createDocument(None, "svg", doctype) document.documentElement.setAttribute( 'xmlns', 'http://www.w3.org/2000/svg' ) return document
Create default SVG document
def dateof(tag_name, tags): """Given a list of tags, returns the datetime of the tag with the given name; Otherwise None.""" for tag in tags: if tag['name'] == tag_name: commit = read_url(tag['commit']['url']) return parse_timestamp(commit['commit']['committer']['date']) return None
Given a list of tags, returns the datetime of the tag with the given name; Otherwise None.
def register_parser(self, type, parser, **meta): """Registers a parser of a format. :param type: The unique name of the format :param parser: The method to parse data as the format :param meta: The extra information associated with the format """ try: self.registered_formats[type]['parser'] = parser except KeyError: self.registered_formats[type] = {'parser': parser} if meta: self.register_meta(type, **meta)
Registers a parser of a format. :param type: The unique name of the format :param parser: The method to parse data as the format :param meta: The extra information associated with the format
def home_mode_status(self, **kwargs): """Returns the status of Home Mode""" api = self._api_info['home_mode'] payload = dict({ 'api': api['name'], 'method': 'GetInfo', 'version': api['version'], '_sid': self._sid }, **kwargs) response = self._get_json_with_retry(api['url'], payload) return response['data']['on']
Returns the status of Home Mode
def all(cls, client, **kwargs): """ fetch all option positions """ max_date = kwargs['max_date'] if 'max_date' in kwargs else None max_fetches = \ kwargs['max_fetches'] if 'max_fetches' in kwargs else None url = 'https://api.robinhood.com/options/positions/' params = {} data = client.get(url, params=params) results = data["results"] if is_max_date_gt(max_date, results[-1]['updated_at'][0:10]): return results if max_fetches == 1: return results fetches = 1 while data["next"]: fetches = fetches + 1 data = client.get(data["next"]) results.extend(data["results"]) if is_max_date_gt(max_date, results[-1]['updated_at'][0:10]): return results if max_fetches and (fetches >= max_fetches): return results return results
fetch all option positions
def create_object(module_name: str, class_name: str, args: Iterable=(), kwargs: Dict[str, Any]=_EMPTY_DICT): """ Create an object instance of the given class from the given module. Args and kwargs are passed to the constructor. This mimics the following code: .. code-block:: python from module import class return class(*args, **kwargs) :param module_name: module name :param class_name: class name :param args: args to be passed to the object constructor :param kwargs: kwargs to be passed to the object constructor :return: created object instance """ return get_attribute(module_name, class_name)(*args, **kwargs)
Create an object instance of the given class from the given module. Args and kwargs are passed to the constructor. This mimics the following code: .. code-block:: python from module import class return class(*args, **kwargs) :param module_name: module name :param class_name: class name :param args: args to be passed to the object constructor :param kwargs: kwargs to be passed to the object constructor :return: created object instance
def pivot(self,binned=True): """Calculate :ref:`pivot wavelength <pysynphot-formula-pivwv>` of the observation. .. note:: This is the calculation performed when ETC invokes ``calcphot``. Parameters ---------- binned : bool Use binned dataset for calculations. Otherwise, use native dataset. Returns ------- ans : float Pivot wavelength. """ if binned: wave = self.binwave else: wave = self.wave countmulwave = self(wave)*wave countdivwave = self(wave)/wave num = self.trapezoidIntegration(wave,countmulwave) den = self.trapezoidIntegration(wave,countdivwave) if num == 0.0 or den == 0.0: return 0.0 return math.sqrt(num/den)
Calculate :ref:`pivot wavelength <pysynphot-formula-pivwv>` of the observation. .. note:: This is the calculation performed when ETC invokes ``calcphot``. Parameters ---------- binned : bool Use binned dataset for calculations. Otherwise, use native dataset. Returns ------- ans : float Pivot wavelength.
def main(): """Given an input whl file and target version, create a copy of the whl with that version. This is accomplished via string replacement in files matching a list of globs. Pass the optional `--glob` argument to add additional globs: ie `--glob='thing-to-match*.txt'`. """ parser = argparse.ArgumentParser() parser.add_argument('whl_file', help='The input whl file.') parser.add_argument('dest_dir', help='The destination directory for the output whl.') parser.add_argument('target_version', help='The target version of the output whl.') parser.add_argument('--glob', action='append', default=[ '*.dist-info/*', '*-nspkg.pth', ], help='Globs (fnmatch) to rewrite within the whl: may be specified multiple times.') args = parser.parse_args() reversion(args)
Given an input whl file and target version, create a copy of the whl with that version. This is accomplished via string replacement in files matching a list of globs. Pass the optional `--glob` argument to add additional globs: ie `--glob='thing-to-match*.txt'`.
async def main(): """ Main code """ # Create Client from endpoint string in Duniter format client = Client(BMAS_ENDPOINT) # Get the node summary infos to test the connection response = await client(bma.node.summary) print(response) # prompt hidden user entry salt = getpass.getpass("Enter your passphrase (salt): ") # prompt hidden user entry password = getpass.getpass("Enter your password: ") # create keys from credentials key = SigningKey.from_credentials(salt, password) pubkey_from = key.pubkey # prompt entry pubkey_to = input("Enter recipient pubkey: ") # capture current block to get version and currency and blockstamp current_block = await client(bma.blockchain.current) # capture sources of account response = await client(bma.tx.sources, pubkey_from) if len(response['sources']) == 0: print("no sources found for account %s" % pubkey_to) exit(1) # get the first source source = response['sources'][0] # create the transaction document transaction = get_transaction_document(current_block, source, pubkey_from, pubkey_to) # sign document transaction.sign([key]) # send the Transaction document to the node response = await client(bma.tx.process, transaction.signed_raw()) if response.status == 200: print(await response.text()) else: print("Error while publishing transaction: {0}".format(await response.text())) # Close client aiohttp session await client.close()
Main code
def activate_status_output_overall_status(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") activate_status = ET.Element("activate_status") config = activate_status output = ET.SubElement(activate_status, "output") overall_status = ET.SubElement(output, "overall-status") overall_status.text = kwargs.pop('overall_status') callback = kwargs.pop('callback', self._callback) return callback(config)
Auto Generated Code
def parse_time(timestring): """Attepmts to parse an ISO8601 formatted ``timestring``. Returns a ``datetime.datetime`` object. """ timestring = str(timestring).strip() for regex, pattern in TIME_FORMATS: if regex.match(timestring): found = regex.search(timestring).groupdict() dt = datetime.utcnow().strptime(found['matched'], pattern) dt = datetime.combine(date.today(), dt.time()) if 'fraction' in found and found['fraction'] is not None: dt = dt.replace(microsecond=int(found['fraction'][1:])) if 'timezone' in found and found['timezone'] is not None: dt = dt.replace(tzinfo=Timezone(found.get('timezone', ''))) return dt raise ParseError()
Attepmts to parse an ISO8601 formatted ``timestring``. Returns a ``datetime.datetime`` object.
def get_list(self, url=None, callback=None, limit=100, **data): """Get a list of this github component :param url: full url :param Comp: a :class:`.Component` class :param callback: Optional callback :param limit: Optional number of items to retrieve :param data: additional query data :return: a list of ``Comp`` objects with data """ url = url or str(self) data = dict(((k, v) for k, v in data.items() if v)) all_data = [] if limit: data['per_page'] = min(limit, 100) while url: response = self.http.get(url, params=data, auth=self.auth) response.raise_for_status() result = response.json() n = m = len(result) if callback: result = callback(result) m = len(result) all_data.extend(result) if limit and len(all_data) > limit: all_data = all_data[:limit] break elif m == n: data = None next = response.links.get('next', {}) url = next.get('url') else: break return all_data
Get a list of this github component :param url: full url :param Comp: a :class:`.Component` class :param callback: Optional callback :param limit: Optional number of items to retrieve :param data: additional query data :return: a list of ``Comp`` objects with data
def _handle_successor(self, job, successor, successors): """ Returns a new CFGJob instance for further analysis, or None if there is no immediate state to perform the analysis on. :param CFGJob job: The current job. """ state = successor all_successor_states = successors addr = job.addr # The PathWrapper instance to return pw = None job.successor_status[state] = "" new_state = state.copy() suc_jumpkind = state.history.jumpkind suc_exit_stmt_idx = state.scratch.exit_stmt_idx suc_exit_ins_addr = state.scratch.exit_ins_addr if suc_jumpkind in {'Ijk_EmWarn', 'Ijk_NoDecode', 'Ijk_MapFail', 'Ijk_NoRedir', 'Ijk_SigTRAP', 'Ijk_SigSEGV', 'Ijk_ClientReq'}: # Ignore SimExits that are of these jumpkinds job.successor_status[state] = "Skipped" return [ ] call_target = job.extra_info['call_target'] if suc_jumpkind == "Ijk_FakeRet" and call_target is not None: # if the call points to a SimProcedure that doesn't return, we don't follow the fakeret anymore if self.project.is_hooked(call_target): sim_proc = self.project._sim_procedures[call_target] if sim_proc.NO_RET: return [ ] # Get target address try: target_addr = state.solver.eval_one(state.ip) except (SimValueError, SimSolverModeError): # It cannot be concretized currently. Maybe we can handle it later, maybe it just cannot be concretized target_addr = None if suc_jumpkind == "Ijk_Ret": target_addr = job.call_stack.current_return_target if target_addr is not None: new_state.ip = new_state.solver.BVV(target_addr, new_state.arch.bits) if target_addr is None: # Unlucky... return [ ] if state.thumb: # Make sure addresses are always odd. It is important to encode this information in the address for the # time being. target_addr |= 1 # see if the target successor is in our whitelist if self._address_whitelist is not None: if target_addr not in self._address_whitelist: l.debug("Successor %#x is not in the address whitelist. Skip.", target_addr) return [ ] # see if this edge is in the base graph if self._base_graph is not None: # TODO: make it more efficient. the current implementation is half-assed and extremely slow for src_, dst_ in self._base_graph.edges(): if src_.addr == addr and dst_.addr == target_addr: break else: # not found l.debug("Edge (%#x -> %#x) is not found in the base graph. Skip.", addr, target_addr) return [ ] # Fix target_addr for syscalls if suc_jumpkind.startswith("Ijk_Sys"): syscall_proc = self.project.simos.syscall(new_state) if syscall_proc is not None: target_addr = syscall_proc.addr self._pre_handle_successor_state(job.extra_info, suc_jumpkind, target_addr) if suc_jumpkind == "Ijk_FakeRet": if target_addr == job.extra_info['last_call_exit_target']: l.debug("... skipping a fake return exit that has the same target with its call exit.") job.successor_status[state] = "Skipped" return [ ] if job.extra_info['skip_fakeret']: l.debug('... skipping a fake return exit since the function it\'s calling doesn\'t return') job.successor_status[state] = "Skipped - non-returning function 0x%x" % job.extra_info['call_target'] return [ ] # TODO: Make it optional if (suc_jumpkind == 'Ijk_Ret' and self._call_depth is not None and len(job.call_stack) <= 1 ): # We cannot continue anymore since this is the end of the function where we started tracing l.debug('... reaching the end of the starting function, skip.') job.successor_status[state] = "Skipped - reaching the end of the starting function" return [ ] # Create the new call stack of target block new_call_stack = self._create_new_call_stack(addr, all_successor_states, job, target_addr, suc_jumpkind) # Create the callstack suffix new_call_stack_suffix = new_call_stack.stack_suffix(self._context_sensitivity_level) # Tuple that will be used to index this exit new_tpl = self._generate_block_id(new_call_stack_suffix, target_addr, suc_jumpkind.startswith('Ijk_Sys')) # We might have changed the mode for this basic block # before. Make sure it is still running in 'fastpath' mode self._reset_state_mode(new_state, 'fastpath') pw = CFGJob(target_addr, new_state, self._context_sensitivity_level, src_block_id=job.block_id, src_exit_stmt_idx=suc_exit_stmt_idx, src_ins_addr=suc_exit_ins_addr, call_stack=new_call_stack, jumpkind=suc_jumpkind, ) # Special case: If the binary has symbols and the target address is a function, but for some reason (e.g., # a tail-call optimization) the CallStack's function address is still the old function address, we will have to # overwrite it here. if not self._is_call_jumpkind(pw.jumpkind): target_symbol = self.project.loader.find_symbol(target_addr) if target_symbol and target_symbol.is_function: # Force update the function address pw.func_addr = target_addr # Generate new exits if suc_jumpkind == "Ijk_Ret": # This is the real return exit job.successor_status[state] = "Appended" elif suc_jumpkind == "Ijk_FakeRet": # This is the default "fake" retn that generated at each # call. Save them first, but don't process them right # away # st = self.project._simos.prepare_call_state(new_state, initial_state=saved_state) st = new_state self._reset_state_mode(st, 'fastpath') pw = None # clear the job pe = PendingJob(job.func_addr, job.extra_info['call_target'], st, job.block_id, suc_exit_stmt_idx, suc_exit_ins_addr, new_call_stack ) self._pending_jobs[new_tpl] = pe self._register_analysis_job(pe.caller_func_addr, pe) job.successor_status[state] = "Pended" elif self._traced_addrs[new_call_stack_suffix][target_addr] >= 1 and suc_jumpkind == "Ijk_Ret": # This is a corner case for the f****** ARM instruction # like # BLEQ <address> # If we have analyzed the boring exit before returning from that called address, we will lose the link # between the last block of the function being called and the basic block it returns to. We cannot # reanalyze the basic block as we are not flow-sensitive, but we can still record the connection and make # for it afterwards. pass else: job.successor_status[state] = "Appended" if job.extra_info['is_call_jump'] and job.extra_info['call_target'] in self._non_returning_functions: job.extra_info['skip_fakeret'] = True if not pw: return [ ] if self._base_graph is not None: # remove all existing jobs that has the same block ID if next((en for en in self.jobs if en.block_id == pw.block_id), None): # TODO: this is very hackish. Reimplement this logic later self._job_info_queue = [entry for entry in self._job_info_queue if entry.job.block_id != pw.block_id] # register the job self._register_analysis_job(pw.func_addr, pw) return [ pw ]
Returns a new CFGJob instance for further analysis, or None if there is no immediate state to perform the analysis on. :param CFGJob job: The current job.
def getKwAsDict(self, kw): """ return keyword configuration as a dict Usage: rdict = getKwAsDict(kw) """ self.getKw(kw) return self.str2dict(self.confstr)
return keyword configuration as a dict Usage: rdict = getKwAsDict(kw)
def get_order_detail(self, code): """ 查询A股Level 2权限下提供的委托明细 :param code: 股票代码,例如:'HK.02318' :return: (ret, data) ret == RET_OK data为1个dict,包含以下数据 ret != RET_OK data为错误字符串 {‘code’: 股票代码 ‘Ask’:[ order_num, [order_volume1, order_volume2] ] ‘Bid’: [ order_num, [order_volume1, order_volume2] ] } 'Ask':卖盘, 'Bid'买盘。order_num指委托订单数量,order_volume是每笔委托的委托量,当前最多返回前50笔委托的委托数量。即order_num有可能多于后面的order_volume """ if code is None or is_str(code) is False: error_str = ERROR_STR_PREFIX + "the type of code param is wrong" return RET_ERROR, error_str query_processor = self._get_sync_query_processor( OrderDetail.pack_req, OrderDetail.unpack_rsp) kargs = { "code": code, "conn_id": self.get_sync_conn_id() } ret_code, msg, order_detail = query_processor(**kargs) if ret_code == RET_ERROR: return ret_code, msg return RET_OK, order_detail
查询A股Level 2权限下提供的委托明细 :param code: 股票代码,例如:'HK.02318' :return: (ret, data) ret == RET_OK data为1个dict,包含以下数据 ret != RET_OK data为错误字符串 {‘code’: 股票代码 ‘Ask’:[ order_num, [order_volume1, order_volume2] ] ‘Bid’: [ order_num, [order_volume1, order_volume2] ] } 'Ask':卖盘, 'Bid'买盘。order_num指委托订单数量,order_volume是每笔委托的委托量,当前最多返回前50笔委托的委托数量。即order_num有可能多于后面的order_volume
def calculate_rate(phone_number, address_country_code=None, address_exception=None): """ Calculates the VAT rate based on a telephone number :param phone_number: The string phone number, in international format with leading + :param address_country_code: The user's country_code, as detected from billing_address or declared_residence. This prevents an UndefinitiveError from being raised. :param address_exception: The user's exception name, as detected from billing_address or declared_residence. This prevents an UndefinitiveError from being raised. :raises: ValueError - error with phone number provided UndefinitiveError - when no address_country_code and address_exception are provided and the phone number area code matching isn't specific enough :return: A tuple of (Decimal percentage rate, country code, exception name [or None]) """ if not phone_number: raise ValueError('No phone number provided') if not isinstance(phone_number, str_cls): raise ValueError('Phone number is not a string') phone_number = phone_number.strip() phone_number = re.sub('[^+0-9]', '', phone_number) if not phone_number or phone_number[0] != '+': raise ValueError('Phone number is not in international format with a leading +') phone_number = phone_number[1:] if not phone_number: raise ValueError('Phone number does not appear to contain any digits') country_code = _lookup_country_code(phone_number) if not country_code: raise ValueError('Phone number does not appear to be a valid international phone number') if country_code in CALLING_CODE_EXCEPTIONS: for info in CALLING_CODE_EXCEPTIONS[country_code]: if not re.match(info['regex'], phone_number): continue mapped_country = info['country_code'] mapped_name = info['name'] if not info['definitive']: if address_country_code is None: raise UndefinitiveError('It is not possible to determine the users VAT rates based on the information provided') if address_country_code != mapped_country: continue if address_exception != info['name']: continue rate = rates.BY_COUNTRY[mapped_country]['exceptions'][mapped_name] return (rate, mapped_country, mapped_name) if country_code not in rates.BY_COUNTRY: return (Decimal('0.0'), country_code, None) return (rates.BY_COUNTRY[country_code]['rate'], country_code, None)
Calculates the VAT rate based on a telephone number :param phone_number: The string phone number, in international format with leading + :param address_country_code: The user's country_code, as detected from billing_address or declared_residence. This prevents an UndefinitiveError from being raised. :param address_exception: The user's exception name, as detected from billing_address or declared_residence. This prevents an UndefinitiveError from being raised. :raises: ValueError - error with phone number provided UndefinitiveError - when no address_country_code and address_exception are provided and the phone number area code matching isn't specific enough :return: A tuple of (Decimal percentage rate, country code, exception name [or None])
def _Rforce(self, R, z, phi=0, t=0): """ NAME: _Rforce PURPOSE: evaluate the radial force at (R,z, phi) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: radial force at (R,z, phi) HISTORY: 2016-06-06 - Written - Aladdin """ if not self.isNonAxi and phi is None: phi= 0. r, theta, phi = bovy_coords.cyl_to_spher(R,z,phi) #x = R dr_dR = nu.divide(R,r); dtheta_dR = nu.divide(z,r**2); dphi_dR = 0 return self._computeforceArray(dr_dR, dtheta_dR, dphi_dR, R,z,phi)
NAME: _Rforce PURPOSE: evaluate the radial force at (R,z, phi) INPUT: R - Cylindrical Galactocentric radius z - vertical height phi - azimuth t - time OUTPUT: radial force at (R,z, phi) HISTORY: 2016-06-06 - Written - Aladdin
def _set_attributes_on_managed_object(self, managed_object, attributes): """ Given a kmip.pie object and a dictionary of attributes, attempt to set the attribute values on the object. """ for attribute_name, attribute_value in six.iteritems(attributes): object_type = managed_object._object_type if self._attribute_policy.is_attribute_applicable_to_object_type( attribute_name, object_type): self._set_attribute_on_managed_object( managed_object, (attribute_name, attribute_value) ) else: name = object_type.name raise exceptions.InvalidField( "Cannot set {0} attribute on {1} object.".format( attribute_name, ''.join([x.capitalize() for x in name.split('_')]) ) )
Given a kmip.pie object and a dictionary of attributes, attempt to set the attribute values on the object.
def do_capture(parser, token): """ Capture the contents of a tag output. Usage: .. code-block:: html+django {% capture %}..{% endcapture %} # output in {{ capture }} {% capture silent %}..{% endcapture %} # output in {{ capture }} only {% capture as varname %}..{% endcapture %} # output in {{ varname }} {% capture as varname silent %}..{% endcapture %} # output in {{ varname }} only For example: .. code-block:: html+django {# Allow templates to override the page title/description #} <meta name="description" content="{% capture as meta_description %}{% block meta-description %}{% endblock %}{% endcapture %}" /> <title>{% capture as meta_title %}{% block meta-title %}Untitled{% endblock %}{% endcapture %}</title> {# copy the values to the Social Media meta tags #} <meta property="og:description" content="{% block og-description %}{{ meta_description }}{% endblock %}" /> <meta name="twitter:title" content="{% block twitter-title %}{{ meta_title }}{% endblock %}" /> """ bits = token.split_contents() # tokens t_as = 'as' t_silent = 'silent' var = 'capture' silent = False num_bits = len(bits) if len(bits) > 4: raise TemplateSyntaxError("'capture' node supports '[as variable] [silent]' parameters.") elif num_bits == 4: t_name, t_as, var, t_silent = bits silent = True elif num_bits == 3: t_name, t_as, var = bits elif num_bits == 2: t_name, t_silent = bits silent = True else: var = 'capture' silent = False if t_silent != 'silent' or t_as != 'as': raise TemplateSyntaxError("'capture' node expects 'as variable' or 'silent' syntax.") nodelist = parser.parse(('endcapture',)) parser.delete_first_token() return CaptureNode(nodelist, var, silent)
Capture the contents of a tag output. Usage: .. code-block:: html+django {% capture %}..{% endcapture %} # output in {{ capture }} {% capture silent %}..{% endcapture %} # output in {{ capture }} only {% capture as varname %}..{% endcapture %} # output in {{ varname }} {% capture as varname silent %}..{% endcapture %} # output in {{ varname }} only For example: .. code-block:: html+django {# Allow templates to override the page title/description #} <meta name="description" content="{% capture as meta_description %}{% block meta-description %}{% endblock %}{% endcapture %}" /> <title>{% capture as meta_title %}{% block meta-title %}Untitled{% endblock %}{% endcapture %}</title> {# copy the values to the Social Media meta tags #} <meta property="og:description" content="{% block og-description %}{{ meta_description }}{% endblock %}" /> <meta name="twitter:title" content="{% block twitter-title %}{{ meta_title }}{% endblock %}" />
def parameters_to_segments(origins, vectors, parameters): """ Convert a parametric line segment representation to a two point line segment representation Parameters ------------ origins : (n, 3) float Line origin point vectors : (n, 3) float Unit line directions parameters : (n, 2) float Start and end distance pairs for each line Returns -------------- segments : (n, 2, 3) float Line segments defined by start and end points """ # don't copy input origins = np.asanyarray(origins, dtype=np.float64) vectors = np.asanyarray(vectors, dtype=np.float64) parameters = np.asanyarray(parameters, dtype=np.float64) # turn the segments into a reshapable 2D array segments = np.hstack((origins + vectors * parameters[:, :1], origins + vectors * parameters[:, 1:])) return segments.reshape((-1, 2, origins.shape[1]))
Convert a parametric line segment representation to a two point line segment representation Parameters ------------ origins : (n, 3) float Line origin point vectors : (n, 3) float Unit line directions parameters : (n, 2) float Start and end distance pairs for each line Returns -------------- segments : (n, 2, 3) float Line segments defined by start and end points
def _remote_connection(server, opts, argparser_): """Initiate a remote connection, via PyWBEM. Arguments for the request are part of the command line arguments and include user name, password, namespace, etc. """ global CONN # pylint: disable=global-statement if opts.timeout is not None: if opts.timeout < 0 or opts.timeout > 300: argparser_.error('timeout option(%s) out of range' % opts.timeout) # mock only uses the namespace timeout and statistics options from the # original set of options. It ignores the url if opts.mock_server: CONN = FakedWBEMConnection( default_namespace=opts.namespace, timeout=opts.timeout, stats_enabled=opts.statistics) try: build_mock_repository(CONN, opts.mock_server, opts.verbose) except ValueError as ve: argparser_.error('Build Repository failed: %s' % ve) return CONN if server[0] == '/': url = server elif re.match(r"^https{0,1}://", server) is not None: url = server elif re.match(r"^[a-zA-Z0-9]+://", server) is not None: argparser_.error('Invalid scheme on server argument.' ' Use "http" or "https"') else: url = '%s://%s' % ('https', server) creds = None if opts.key_file is not None and opts.cert_file is None: argparser_.error('keyfile option requires certfile option') if opts.user is not None and opts.password is None: opts.password = _getpass.getpass('Enter password for %s: ' % opts.user) if opts.user is not None or opts.password is not None: creds = (opts.user, opts.password) # if client cert and key provided, create dictionary for # wbem connection x509_dict = None if opts.cert_file is not None: x509_dict = {"cert_file": opts.cert_file} if opts.key_file is not None: x509_dict.update({'key_file': opts.key_file}) CONN = WBEMConnection(url, creds, default_namespace=opts.namespace, no_verification=opts.no_verify_cert, x509=x509_dict, ca_certs=opts.ca_certs, timeout=opts.timeout, stats_enabled=opts.statistics) CONN.debug = True return CONN
Initiate a remote connection, via PyWBEM. Arguments for the request are part of the command line arguments and include user name, password, namespace, etc.
def load_vocab(self, vocab_name, **kwargs): """ loads a vocabulary into the defintion triplestore args: vocab_name: the prefix, uri or filename of a vocabulary """ log.setLevel(kwargs.get("log_level", self.log_level)) vocab = self.get_vocab(vocab_name , **kwargs) if vocab['filename'] in self.loaded: if self.loaded_times.get(vocab['filename'], datetime.datetime(2001,1,1)).timestamp() \ < vocab['modified']: self.drop_file(vocab['filename'], **kwargs) else: return conn = kwargs.get("conn", self.conn) conn.load_data(graph=getattr(__NSM__.kdr, vocab['filename']).clean_uri, data=vocab['data'], datatype=vocab['filename'].split(".")[-1], log_level=logging.WARNING) self.__update_time__(vocab['filename'], **kwargs) log.warning("\n\tvocab: '%s' loaded \n\tconn: '%s'", vocab['filename'], conn) self.loaded.append(vocab['filename'])
loads a vocabulary into the defintion triplestore args: vocab_name: the prefix, uri or filename of a vocabulary
def average_precision(truth, recommend): """Average Precision (AP). Args: truth (numpy 1d array): Set of truth samples. recommend (numpy 1d array): Ordered set of recommended samples. Returns: float: AP. """ if len(truth) == 0: if len(recommend) == 0: return 1. return 0. tp = accum = 0. for n in range(recommend.size): if recommend[n] in truth: tp += 1. accum += (tp / (n + 1.)) return accum / truth.size
Average Precision (AP). Args: truth (numpy 1d array): Set of truth samples. recommend (numpy 1d array): Ordered set of recommended samples. Returns: float: AP.
def CaptureFrameLocals(self, frame): """Captures local variables and arguments of the specified frame. Args: frame: frame to capture locals and arguments. Returns: (arguments, locals) tuple. """ # Capture all local variables (including method arguments). variables = {n: self.CaptureNamedVariable(n, v, 1, self.default_capture_limits) for n, v in six.viewitems(frame.f_locals)} # Split between locals and arguments (keeping arguments in the right order). nargs = frame.f_code.co_argcount if frame.f_code.co_flags & inspect.CO_VARARGS: nargs += 1 if frame.f_code.co_flags & inspect.CO_VARKEYWORDS: nargs += 1 frame_arguments = [] for argname in frame.f_code.co_varnames[:nargs]: if argname in variables: frame_arguments.append(variables.pop(argname)) return (frame_arguments, list(six.viewvalues(variables)))
Captures local variables and arguments of the specified frame. Args: frame: frame to capture locals and arguments. Returns: (arguments, locals) tuple.
def __json_strnum_to_bignum(json_object): """ Converts json string numerals to native python bignums. """ for key in ('id', 'week', 'in_reply_to_id', 'in_reply_to_account_id', 'logins', 'registrations', 'statuses'): if (key in json_object and isinstance(json_object[key], six.text_type)): try: json_object[key] = int(json_object[key]) except ValueError: pass return json_object
Converts json string numerals to native python bignums.
def example_lab_to_ipt(): """ This function shows a simple conversion of an XYZ color to an IPT color. """ print("=== Simple Example: XYZ->IPT ===") # Instantiate an XYZ color object with the given values. xyz = XYZColor(0.5, 0.5, 0.5, illuminant='d65') # Show a string representation. print(xyz) # Convert to IPT. ipt = convert_color(xyz, IPTColor) print(ipt) print("=== End Example ===\n")
This function shows a simple conversion of an XYZ color to an IPT color.
def render_tile(cells, ti, tj, render, params, metadata, layout, summary): """ Render each cell in the tile and stitch it into a single image """ image_size = params["cell_size"] * params["n_tile"] tile = Image.new("RGB", (image_size, image_size), (255,255,255)) keys = cells.keys() for i,key in enumerate(keys): print("cell", i+1, "/", len(keys), end='\r') cell_image = render(cells[key], params, metadata, layout, summary) # stitch this rendering into the tile image ci = key[0] % params["n_tile"] cj = key[1] % params["n_tile"] xmin = ci*params["cell_size"] ymin = cj*params["cell_size"] xmax = (ci+1)*params["cell_size"] ymax = (cj+1)*params["cell_size"] if params.get("scale_density", False): density = len(cells[key]["gi"]) # scale = density/summary["max_density"] scale = math.log(density)/(math.log(summary["max_density"]) or 1) owidth = xmax - xmin width = int(round(owidth * scale)) if(width < 1): width = 1 offsetL = int(round((owidth - width)/2)) offsetR = owidth - width - offsetL # handle odd numbers # print("\n") # print("width", width, offsetL, offsetR) box = [xmin + offsetL, ymin + offsetL, xmax - offsetR, ymax - offsetR] resample = params.get("scale_type", Image.NEAREST) cell_image = cell_image.resize(size=(width,width), resample=resample) # print(cell_image) else: box = [xmin, ymin, xmax, ymax] # print("box", box) tile.paste(cell_image, box) print("\n") return tile
Render each cell in the tile and stitch it into a single image
def get_bins_by_query(self, bin_query): """Gets a list of ``Bins`` matching the given bin query. arg: bin_query (osid.resource.BinQuery): the bin query return: (osid.resource.BinList) - the returned ``BinList`` raise: NullArgument - ``bin_query`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - a ``bin_query`` is not of this service *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinQuerySession.get_bins_by_query_template if self._catalog_session is not None: return self._catalog_session.get_catalogs_by_query(bin_query) query_terms = dict(bin_query._query_terms) collection = JSONClientValidated('resource', collection='Bin', runtime=self._runtime) result = collection.find(query_terms).sort('_id', DESCENDING) return objects.BinList(result, runtime=self._runtime)
Gets a list of ``Bins`` matching the given bin query. arg: bin_query (osid.resource.BinQuery): the bin query return: (osid.resource.BinList) - the returned ``BinList`` raise: NullArgument - ``bin_query`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - a ``bin_query`` is not of this service *compliance: mandatory -- This method must be implemented.*
def flattennd(d, levels=0, key_as_tuple=True, delim='.', list_of_dicts=None): """ get nested dict as {key:dict,...}, where key is tuple/string of all-n levels of nested keys Parameters ---------- d : dict levels : int the number of levels to leave unflattened key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flattennd(d,0)) {(1, 2, 3, 'b'): 'B', (1, 2, 3, 'c'): 'C', (1, 2, 4): 'D'} >>> pprint(flattennd(d,1)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flattennd(d,2)) {(1,): {2: {4: 'D'}}, (1, 2): {3: {'b': 'B', 'c': 'C'}}} >>> pprint(flattennd(d,3)) {(): {1: {2: {4: 'D'}}}, (1,): {2: {3: {'b': 'B', 'c': 'C'}}}} >>> pprint(flattennd(d,4)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,5)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,1,key_as_tuple=False,delim='.')) {'1.2': {4: 'D'}, '1.2.3': {'b': 'B', 'c': 'C'}} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=2)) {('a', '__list__0', 'b'): [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}], ('a', '__list__1', 'b'): [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=3)) {('a', '__list__0'): {'b': [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}]}, ('a', '__list__1'): {'b': [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]}} """ # noqa: E501 if levels < 0: raise ValueError('unflattened levels must be greater than 0') new_d = {} flattened = flatten(d, True, delim, list_of_dicts=list_of_dicts) if levels == 0: return flattened for key, value in flattened.items(): if key_as_tuple: new_key = key[: - (levels)] else: new_key = delim.join([str(k) for k in key[:-(levels)]]) new_levels = key[-(levels):] # val_dict = {new_levels: value} # val_dict = unflatten(val_dict, True, delim) if new_key not in new_d: new_d[new_key] = {new_levels: value} else: if new_levels in new_d[new_key]: raise ValueError( "key clash for: {0}; {1}".format(new_key, new_levels)) new_d[new_key][new_levels] = value for nkey, nvalue in new_d.items(): new_d[nkey] = unflatten( nvalue, list_of_dicts=list_of_dicts, deepcopy=False) return new_d
get nested dict as {key:dict,...}, where key is tuple/string of all-n levels of nested keys Parameters ---------- d : dict levels : int the number of levels to leave unflattened key_as_tuple : bool whether keys are list of nested keys or delimited string of nested keys delim : str if key_as_tuple=False, delimiter for keys list_of_dicts: str or None if not None, flatten lists of dicts using this prefix Examples -------- >>> from pprint import pprint >>> d = {1:{2:{3:{'b':'B','c':'C'},4:'D'}}} >>> pprint(flattennd(d,0)) {(1, 2, 3, 'b'): 'B', (1, 2, 3, 'c'): 'C', (1, 2, 4): 'D'} >>> pprint(flattennd(d,1)) {(1, 2): {4: 'D'}, (1, 2, 3): {'b': 'B', 'c': 'C'}} >>> pprint(flattennd(d,2)) {(1,): {2: {4: 'D'}}, (1, 2): {3: {'b': 'B', 'c': 'C'}}} >>> pprint(flattennd(d,3)) {(): {1: {2: {4: 'D'}}}, (1,): {2: {3: {'b': 'B', 'c': 'C'}}}} >>> pprint(flattennd(d,4)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,5)) {(): {1: {2: {3: {'b': 'B', 'c': 'C'}, 4: 'D'}}}} >>> pprint(flattennd(d,1,key_as_tuple=False,delim='.')) {'1.2': {4: 'D'}, '1.2.3': {'b': 'B', 'c': 'C'}} >>> test_dict = {"a":[{"b":[{"c":1, "d": 2}, {"e":3, "f": 4}]}, {"b":[{"c":5, "d": 6}, {"e":7, "f": 8}]}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=2)) {('a', '__list__0', 'b'): [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}], ('a', '__list__1', 'b'): [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]} >>> pprint(flattennd(test_dict, list_of_dicts="__list__", levels=3)) {('a', '__list__0'): {'b': [{'c': 1, 'd': 2}, {'e': 3, 'f': 4}]}, ('a', '__list__1'): {'b': [{'c': 5, 'd': 6}, {'e': 7, 'f': 8}]}}
def display_notes(self): """Display information about scores and raters. """ if self.annot is not None: short_xml_file = short_strings(basename(self.annot.xml_file)) self.idx_annotations.setText(short_xml_file) # if annotations were loaded without dataset if self.parent.overview.scene is None: self.parent.overview.update() if not self.annot.raters: self.new_rater() self.idx_rater.setText(self.annot.current_rater) self.display_eventtype() self.update_annotations() self.display_stats() self.epoch_length = self.annot.epoch_length
Display information about scores and raters.
def set_primary_key_auto(self, table): """ Analysis a table and set a primary key. Determine primary key by identifying a column with unique values or creating a new column. :param table: Table to alter :return: Primary Key column """ # Confirm no primary key exists pk = self.get_primary_key(table) if not pk: # Determine if there is a unique column that can become the PK unique_col = self.get_unique_column(table) # Set primary key if unique_col: self.set_primary_key(table, unique_col) # Create unique 'ID' column else: unique_col = self.add_column(table, primary_key=True) return unique_col else: return pk
Analysis a table and set a primary key. Determine primary key by identifying a column with unique values or creating a new column. :param table: Table to alter :return: Primary Key column
def copy_folder_content(src, dst): """ Copy all content in src directory to dst directory. The src and dst must exist. """ for file in os.listdir(src): file_path = os.path.join(src, file) dst_file_path = os.path.join(dst, file) if os.path.isdir(file_path): shutil.copytree(file_path, dst_file_path) else: shutil.copyfile(file_path, dst_file_path)
Copy all content in src directory to dst directory. The src and dst must exist.
def cdsthreads(self): """ Determines which core genes from a pre-calculated database are present in each strain """ # Create and start threads for i in range(self.cpus): # Send the threads to the appropriate destination function threads = Thread(target=self.cds, args=()) # Set the daemon to true - something to do with thread management threads.setDaemon(True) # Start the threading threads.start() for sample in self.metadata.samples: # sample[self.analysistype].corepresence = dict() self.cdsqueue.put(sample) self.cdsqueue.join()
Determines which core genes from a pre-calculated database are present in each strain
def get_email_context(self, activation_key): """ Build the template context used for the activation email. """ scheme = 'https' if self.request.is_secure() else 'http' return { 'scheme': scheme, 'activation_key': activation_key, 'expiration_days': settings.ACCOUNT_ACTIVATION_DAYS, 'site': get_current_site(self.request) }
Build the template context used for the activation email.
def get_middle_point(self): """ Return the middle point of the mesh. :returns: An instance of :class:`~openquake.hazardlib.geo.point.Point`. The middle point is taken from the middle row and a middle column of the mesh if there are odd number of both. Otherwise the geometric mean point of two or four middle points. """ num_rows, num_cols = self.lons.shape mid_row = num_rows // 2 depth = 0 if num_rows & 1 == 1: # there are odd number of rows mid_col = num_cols // 2 if num_cols & 1 == 1: # odd number of columns, we can easily take # the middle point depth = self.depths[mid_row, mid_col] return Point(self.lons[mid_row, mid_col], self.lats[mid_row, mid_col], depth) else: # even number of columns, need to take two middle # points on the middle row lon1, lon2 = self.lons[mid_row, mid_col - 1: mid_col + 1] lat1, lat2 = self.lats[mid_row, mid_col - 1: mid_col + 1] depth1 = self.depths[mid_row, mid_col - 1] depth2 = self.depths[mid_row, mid_col] else: # there are even number of rows. take the row just above # and the one just below the middle and find middle point # of each submesh1 = self[mid_row - 1: mid_row] submesh2 = self[mid_row: mid_row + 1] p1, p2 = submesh1.get_middle_point(), submesh2.get_middle_point() lon1, lat1, depth1 = p1.longitude, p1.latitude, p1.depth lon2, lat2, depth2 = p2.longitude, p2.latitude, p2.depth # we need to find the middle between two points depth = (depth1 + depth2) / 2.0 lon, lat = geo_utils.get_middle_point(lon1, lat1, lon2, lat2) return Point(lon, lat, depth)
Return the middle point of the mesh. :returns: An instance of :class:`~openquake.hazardlib.geo.point.Point`. The middle point is taken from the middle row and a middle column of the mesh if there are odd number of both. Otherwise the geometric mean point of two or four middle points.
def get_suppressions(relative_filepaths, root, messages): """ Given every message which was emitted by the tools, and the list of files to inspect, create a list of files to ignore, and a map of filepath -> line-number -> codes to ignore """ paths_to_ignore = set() lines_to_ignore = defaultdict(set) messages_to_ignore = defaultdict(lambda: defaultdict(set)) # first deal with 'noqa' style messages for filepath in relative_filepaths: abspath = os.path.join(root, filepath) try: file_contents = encoding.read_py_file(abspath).split('\n') except encoding.CouldNotHandleEncoding as err: # TODO: this output will break output formats such as JSON warnings.warn('{0}: {1}'.format(err.path, err.cause), ImportWarning) continue ignore_file, ignore_lines = get_noqa_suppressions(file_contents) if ignore_file: paths_to_ignore.add(filepath) lines_to_ignore[filepath] |= ignore_lines # now figure out which messages were suppressed by pylint pylint_ignore_files, pylint_ignore_messages = _parse_pylint_informational(messages) paths_to_ignore |= pylint_ignore_files for filepath, line in pylint_ignore_messages.items(): for line_number, codes in line.items(): for code in codes: messages_to_ignore[filepath][line_number].add(('pylint', code)) if code in _PYLINT_EQUIVALENTS: for equivalent in _PYLINT_EQUIVALENTS[code]: messages_to_ignore[filepath][line_number].add(equivalent) return paths_to_ignore, lines_to_ignore, messages_to_ignore
Given every message which was emitted by the tools, and the list of files to inspect, create a list of files to ignore, and a map of filepath -> line-number -> codes to ignore
def osm_net_download(lat_min=None, lng_min=None, lat_max=None, lng_max=None, network_type='walk', timeout=180, memory=None, max_query_area_size=50*1000*50*1000, custom_osm_filter=None): """ Download OSM ways and nodes within a bounding box from the Overpass API. Parameters ---------- lat_min : float southern latitude of bounding box lng_min : float eastern longitude of bounding box lat_max : float northern latitude of bounding box lng_max : float western longitude of bounding box network_type : string Specify the network type where value of 'walk' includes roadways where pedestrians are allowed and pedestrian pathways and 'drive' includes driveable roadways. timeout : int the timeout interval for requests and to pass to Overpass API memory : int server memory allocation size for the query, in bytes. If none, server will use its default allocation size max_query_area_size : float max area for any part of the geometry, in the units the geometry is in: any polygon bigger will get divided up for multiple queries to Overpass API (default is 50,000 * 50,000 units (ie, 50km x 50km in area, if units are meters)) custom_osm_filter : string, optional specify custom arguments for the way["highway"] query to OSM. Must follow Overpass API schema. For example to request highway ways that are service roads use: '["highway"="service"]' Returns ------- response_json : dict """ # create a filter to exclude certain kinds of ways based on the requested # network_type if custom_osm_filter is None: request_filter = osm_filter(network_type) else: request_filter = custom_osm_filter response_jsons_list = [] response_jsons = [] # server memory allocation in bytes formatted for Overpass API query if memory is None: maxsize = '' else: maxsize = '[maxsize:{}]'.format(memory) # define the Overpass API query # way["highway"] denotes ways with highway keys and {filters} returns # ways with the requested key/value. the '>' makes it recurse so we get # ways and way nodes. maxsize is in bytes. # turn bbox into a polygon and project to local UTM polygon = Polygon([(lng_max, lat_min), (lng_min, lat_min), (lng_min, lat_max), (lng_max, lat_max)]) geometry_proj, crs_proj = project_geometry(polygon, crs={'init': 'epsg:4326'}) # subdivide the bbox area poly if it exceeds the max area size # (in meters), then project back to WGS84 geometry_proj_consolidated_subdivided = consolidate_subdivide_geometry( geometry_proj, max_query_area_size=max_query_area_size) geometry, crs = project_geometry(geometry_proj_consolidated_subdivided, crs=crs_proj, to_latlong=True) log('Requesting network data within bounding box from Overpass API ' 'in {:,} request(s)'.format(len(geometry))) start_time = time.time() # loop through each polygon in the geometry for poly in geometry: # represent bbox as lng_max, lat_min, lng_min, lat_max and round # lat-longs to 8 decimal places to create # consistent URL strings lng_max, lat_min, lng_min, lat_max = poly.bounds query_template = '[out:json][timeout:{timeout}]{maxsize};' \ '(way["highway"]' \ '{filters}({lat_min:.8f},{lng_max:.8f},' \ '{lat_max:.8f},{lng_min:.8f});>;);out;' query_str = query_template.format(lat_max=lat_max, lat_min=lat_min, lng_min=lng_min, lng_max=lng_max, filters=request_filter, timeout=timeout, maxsize=maxsize) response_json = overpass_request(data={'data': query_str}, timeout=timeout) response_jsons_list.append(response_json) log('Downloaded OSM network data within bounding box from Overpass ' 'API in {:,} request(s) and' ' {:,.2f} seconds'.format(len(geometry), time.time()-start_time)) # stitch together individual json results for json in response_jsons_list: try: response_jsons.extend(json['elements']) except KeyError: pass # remove duplicate records resulting from the json stitching start_time = time.time() record_count = len(response_jsons) if record_count == 0: raise Exception('Query resulted in no data. Check your query ' 'parameters: {}'.format(query_str)) else: response_jsons_df = pd.DataFrame.from_records(response_jsons, index='id') nodes = response_jsons_df[response_jsons_df['type'] == 'node'] nodes = nodes[~nodes.index.duplicated(keep='first')] ways = response_jsons_df[response_jsons_df['type'] == 'way'] ways = ways[~ways.index.duplicated(keep='first')] response_jsons_df = pd.concat([nodes, ways], axis=0) response_jsons_df.reset_index(inplace=True) response_jsons = response_jsons_df.to_dict(orient='records') if record_count - len(response_jsons) > 0: log('{:,} duplicate records removed. Took {:,.2f} seconds'.format( record_count - len(response_jsons), time.time() - start_time)) return {'elements': response_jsons}
Download OSM ways and nodes within a bounding box from the Overpass API. Parameters ---------- lat_min : float southern latitude of bounding box lng_min : float eastern longitude of bounding box lat_max : float northern latitude of bounding box lng_max : float western longitude of bounding box network_type : string Specify the network type where value of 'walk' includes roadways where pedestrians are allowed and pedestrian pathways and 'drive' includes driveable roadways. timeout : int the timeout interval for requests and to pass to Overpass API memory : int server memory allocation size for the query, in bytes. If none, server will use its default allocation size max_query_area_size : float max area for any part of the geometry, in the units the geometry is in: any polygon bigger will get divided up for multiple queries to Overpass API (default is 50,000 * 50,000 units (ie, 50km x 50km in area, if units are meters)) custom_osm_filter : string, optional specify custom arguments for the way["highway"] query to OSM. Must follow Overpass API schema. For example to request highway ways that are service roads use: '["highway"="service"]' Returns ------- response_json : dict
def compute_before_after(self): """Compute the list of lines before and after the proposed docstring changes. :return: tuple of before,after where each is a list of lines of python code. """ if not self.parsed: self._parse() list_from = self.input_lines list_to = [] last = 0 for e in self.docs_list: start, end = e['location'] if start <= 0: start, end = -start, -end list_to.extend(list_from[last:start + 1]) else: list_to.extend(list_from[last:start]) docs = e['docs'].get_raw_docs() list_docs = [l + '\n' for l in docs.splitlines()] list_to.extend(list_docs) last = end + 1 if last < len(list_from): list_to.extend(list_from[last:]) return list_from, list_to
Compute the list of lines before and after the proposed docstring changes. :return: tuple of before,after where each is a list of lines of python code.
def _get_node_column(cls, node, column_name): """Given a ParsedNode, add some fields that might be missing. Return a reference to the dict that refers to the given column, creating it if it doesn't yet exist. """ if not hasattr(node, 'columns'): node.set('columns', {}) if column_name in node.columns: column = node.columns[column_name] else: column = {'name': column_name, 'description': ''} node.columns[column_name] = column return column
Given a ParsedNode, add some fields that might be missing. Return a reference to the dict that refers to the given column, creating it if it doesn't yet exist.
def get_active_project_path(self): """Get path of the active project""" active_project_path = None if self.current_active_project: active_project_path = self.current_active_project.root_path return active_project_path
Get path of the active project
def child_allocation(self): """ The sum of all child asset classes' allocations """ sum = Decimal(0) if self.classes: for child in self.classes: sum += child.child_allocation else: # This is not a branch but a leaf. Return own allocation. sum = self.allocation return sum
The sum of all child asset classes' allocations
def get_index_by_alias(self, alias): """Get index name for given alias. If there is no alias assume it's an index. :param alias: alias name """ try: info = self.es.indices.get_alias(name=alias) return next(iter(info.keys())) except elasticsearch.exceptions.NotFoundError: return alias
Get index name for given alias. If there is no alias assume it's an index. :param alias: alias name
def strings(self, otherchar=None): ''' Each time next() is called on this iterator, a new string is returned which will the present lego piece can match. StopIteration is raised once all such strings have been returned, although a regex with a * in may match infinitely many strings. ''' # In the case of a regex like "[^abc]", there are infinitely many (well, a # very large finite number of) single characters which will match. It's not # productive to iterate over all of these giving every single example. # You must supply your own "otherchar" to stand in for all of these # possibilities. for string in self.to_fsm().strings(): # Have to represent `fsm.anything_else` somehow. if fsm.anything_else in string: if otherchar == None: raise Exception("Please choose an 'otherchar'") string = [ otherchar if char == fsm.anything_else else char for char in string ] yield "".join(string)
Each time next() is called on this iterator, a new string is returned which will the present lego piece can match. StopIteration is raised once all such strings have been returned, although a regex with a * in may match infinitely many strings.
def get_element_name(parent, ns): # type: (_Element, str) -> str """Get element short name.""" name = parent.find('./' + ns + 'SHORT-NAME') if name is not None and name.text is not None: return name.text return ""
Get element short name.
def get_config_groups(self, groups_conf, groups_pillar_name): ''' get info from groups in config, and from the named pillar todo: add specification for the minion to use to recover pillar ''' # Get groups # Default to returning something that'll never match ret_groups = { 'default': { 'users': set(), 'commands': set(), 'aliases': {}, 'default_target': {}, 'targets': {} } } # allow for empty groups in the config file, and instead let some/all of this come # from pillar data. if not groups_conf: use_groups = {} else: use_groups = groups_conf # First obtain group lists from pillars, then in case there is any overlap, iterate over the groups # that come from pillars. The configuration in files on disk/from startup # will override any configs from pillars. They are meant to be complementary not to provide overrides. log.debug('use_groups %s', use_groups) try: groups_gen = itertools.chain(self._groups_from_pillar(groups_pillar_name).items(), use_groups.items()) except AttributeError: log.warning('Failed to get groups from %s: %s or from config: %s', groups_pillar_name, self._groups_from_pillar(groups_pillar_name), use_groups ) groups_gen = [] for name, config in groups_gen: log.info('Trying to get %s and %s to be useful', name, config) ret_groups.setdefault(name, { 'users': set(), 'commands': set(), 'aliases': {}, 'default_target': {}, 'targets': {} }) try: ret_groups[name]['users'].update(set(config.get('users', []))) ret_groups[name]['commands'].update(set(config.get('commands', []))) ret_groups[name]['aliases'].update(config.get('aliases', {})) ret_groups[name]['default_target'].update(config.get('default_target', {})) ret_groups[name]['targets'].update(config.get('targets', {})) except (IndexError, AttributeError): log.warning("Couldn't use group %s. Check that targets is a dictionary and not a list", name) log.debug('Got the groups: %s', ret_groups) return ret_groups
get info from groups in config, and from the named pillar todo: add specification for the minion to use to recover pillar
def _clean(self, rmConnetions=True, lockNonExternal=True): """ Remove all signals from this interface (used after unit is synthesized and its parent is connecting its interface to this unit) """ if self._interfaces: for i in self._interfaces: i._clean(rmConnetions=rmConnetions, lockNonExternal=lockNonExternal) else: self._sigInside = self._sig del self._sig if lockNonExternal and not self._isExtern: self._isAccessible = False
Remove all signals from this interface (used after unit is synthesized and its parent is connecting its interface to this unit)
def getMetricDetails(self, metricLabel): """ Gets detailed info about a given metric, in addition to its value. This may including any statistics or auxilary data that are computed for a given metric. :param metricLabel: (string) label of the given metric (see :class:`~nupic.frameworks.opf.metrics.MetricSpec`) :returns: (dict) of metric information, as returned by :meth:`nupic.frameworks.opf.metrics.MetricsIface.getMetric`. """ try: metricIndex = self.__metricLabels.index(metricLabel) except IndexError: return None return self.__metrics[metricIndex].getMetric()
Gets detailed info about a given metric, in addition to its value. This may including any statistics or auxilary data that are computed for a given metric. :param metricLabel: (string) label of the given metric (see :class:`~nupic.frameworks.opf.metrics.MetricSpec`) :returns: (dict) of metric information, as returned by :meth:`nupic.frameworks.opf.metrics.MetricsIface.getMetric`.
def _parse_group(self, group_name, group): """ Parse a group definition from a dynamic inventory. These are top-level elements which are not '_meta(data)'. """ if type(group) == dict: # Example: # { # "mgmt": { # "hosts": [ "mgmt01", "mgmt02" ], # "vars": { # "eth0": { # "onboot": "yes", # "nm_controlled": "no" # } # } # } # } # hostnames_in_group = set() # Group member with hosts and variable definitions. for hostname in group.get('hosts', []): self._get_host(hostname)['groups'].add(group_name) hostnames_in_group.add(hostname) # Apply variables to all hosts in group for var_key, var_val in group.get('vars', {}).items(): for hostname in hostnames_in_group: self._get_host(hostname)['hostvars'][var_key] = var_val elif type(group) == list: # List of hostnames for this group for hostname in group: self._get_host(hostname)['groups'].add(group_name) else: self.log.warning("Invalid element found in dynamic inventory output: {0}".format(type(group)))
Parse a group definition from a dynamic inventory. These are top-level elements which are not '_meta(data)'.
def frets_to_NoteContainer(self, fingering): """Convert a list such as returned by find_fret to a NoteContainer.""" res = [] for (string, fret) in enumerate(fingering): if fret is not None: res.append(self.get_Note(string, fret)) return NoteContainer(res)
Convert a list such as returned by find_fret to a NoteContainer.
def _assemble_active_form(self, stmt): """Example: p(HGNC:ELK1, pmod(Ph)) => act(p(HGNC:ELK1), ma(tscript))""" act_agent = Agent(stmt.agent.name, db_refs=stmt.agent.db_refs) act_agent.activity = ActivityCondition(stmt.activity, True) activates = stmt.is_active relation = get_causal_edge(stmt, activates) self._add_nodes_edges(stmt.agent, act_agent, relation, stmt.evidence)
Example: p(HGNC:ELK1, pmod(Ph)) => act(p(HGNC:ELK1), ma(tscript))
def connectQ2Q(self, fromAddress, toAddress, protocolName, protocolFactory, usePrivateCertificate=None, fakeFromDomain=None, chooser=None): """ Connect a named protocol factory from a resource@domain to a resource@domain. This is analagous to something like connectTCP, in that it creates a connection-oriented transport for each connection, except instead of specifying your credentials with an application-level (username, password) and your endpoint with a framework-level (host, port), you specify both at once, in the form of your ID (user@my-domain), their ID (user@their-domain) and the desired protocol. This provides several useful features: - All connections are automatically authenticated via SSL certificates, although not authorized for any particular activities, based on their transport interface rather than having to have protocol logic to authenticate. - User-meaningful protocol nicknames are attached to implementations of protocol logic, rather than arbitrary numbering. - Endpoints can specify a variety of transport mechanisms transparently to the application: for example, you might be connecting to an authorized user-agent on the user's server or to the user directly using a NAT-circumvention handshake. All the application has to know is that it wants to establish a TCP-like connection. XXX Really, really should return an IConnector implementor for symmetry with other connection-oriented transport APIs, but currently does not. The 'resource' parameters are so named (rather than beginning with 'user', for example) because they are sometimes used to refer to abstract entities or roles, such as 'payments', or groups of users (communities) but generally the convention is to document them as individual users for simplicity's sake. The parameters are described as if Alice <[email protected]> were trying try connect to Bob <[email protected]> to transfer a file over HTTP. @param fromAddress: The address of the connecting user: in this case, Q2QAddress("divmod.com", "alice") @param toAddress: The address of the user connected to: in this case, Q2QAddress("notdivmod.com", "bob") @param protocolName: The name of the protocol, by convention observing similar names to http://www.iana.org/assignments/port-numbers when appropriate. In this case, 'http'. @param protocolFactory: An implementation of L{twisted.internet.interfaces.IProtocolFactory} @param usePrivateCertificate: Use a different private certificate for initiating the 'secure' call. Mostly for testing different invalid certificate attacks. @param fakeFromDomain: This domain name will be used for an argument to the 'connect' command, but NOT as an argument to the SECURE command. This is to test a particular kind of invalid cert attack. @param chooser: a function taking a list of connection-describing objects and returning another list. Those items in the remaining list will be attempted as connections and buildProtocol called on the client factory. May return a Deferred. @default chooser: C{lambda x: x and [x[0]]} @return: """ if chooser is None: chooser = lambda x: x and [x[0]] def onSecureConnection(protocol): if fakeFromDomain: connectFromAddress = Q2QAddress( fakeFromDomain, toAddress.resource ) else: connectFromAddress = fromAddress return protocol.connect(connectFromAddress, toAddress, protocolName, protocolFactory, chooser) def onSecureConnectionFailure(reason): protocolFactory.clientConnectionFailed(None, reason) return reason return self.getSecureConnection( fromAddress, toAddress, port, usePrivateCertificate).addCallback( onSecureConnection).addErrback(onSecureConnectionFailure)
Connect a named protocol factory from a resource@domain to a resource@domain. This is analagous to something like connectTCP, in that it creates a connection-oriented transport for each connection, except instead of specifying your credentials with an application-level (username, password) and your endpoint with a framework-level (host, port), you specify both at once, in the form of your ID (user@my-domain), their ID (user@their-domain) and the desired protocol. This provides several useful features: - All connections are automatically authenticated via SSL certificates, although not authorized for any particular activities, based on their transport interface rather than having to have protocol logic to authenticate. - User-meaningful protocol nicknames are attached to implementations of protocol logic, rather than arbitrary numbering. - Endpoints can specify a variety of transport mechanisms transparently to the application: for example, you might be connecting to an authorized user-agent on the user's server or to the user directly using a NAT-circumvention handshake. All the application has to know is that it wants to establish a TCP-like connection. XXX Really, really should return an IConnector implementor for symmetry with other connection-oriented transport APIs, but currently does not. The 'resource' parameters are so named (rather than beginning with 'user', for example) because they are sometimes used to refer to abstract entities or roles, such as 'payments', or groups of users (communities) but generally the convention is to document them as individual users for simplicity's sake. The parameters are described as if Alice <[email protected]> were trying try connect to Bob <[email protected]> to transfer a file over HTTP. @param fromAddress: The address of the connecting user: in this case, Q2QAddress("divmod.com", "alice") @param toAddress: The address of the user connected to: in this case, Q2QAddress("notdivmod.com", "bob") @param protocolName: The name of the protocol, by convention observing similar names to http://www.iana.org/assignments/port-numbers when appropriate. In this case, 'http'. @param protocolFactory: An implementation of L{twisted.internet.interfaces.IProtocolFactory} @param usePrivateCertificate: Use a different private certificate for initiating the 'secure' call. Mostly for testing different invalid certificate attacks. @param fakeFromDomain: This domain name will be used for an argument to the 'connect' command, but NOT as an argument to the SECURE command. This is to test a particular kind of invalid cert attack. @param chooser: a function taking a list of connection-describing objects and returning another list. Those items in the remaining list will be attempted as connections and buildProtocol called on the client factory. May return a Deferred. @default chooser: C{lambda x: x and [x[0]]} @return:
def get(self): 'Retrieve the most recent value generated' # If you attempt to use a generator comprehension below, it will # consume the StopIteration exception and just return an empty tuple, # instead of stopping iteration normally return tuple([(x.name(), x.get()) for x in self._generators])
Retrieve the most recent value generated
def report(self, event, metadata=None, block=None): """ Reports an event to Alooma by formatting it properly and placing it in the buffer to be sent by the Sender instance :param event: A dict / string representing an event :param metadata: (Optional) A dict with extra metadata to be attached to the event :param block: (Optional) If True, the function will block the thread until the event buffer has space for the event. If False, reported events are discarded if the queue is full. Defaults to None, which uses the global `block` parameter given in the `init`. :return: True if the event was successfully enqueued, else False """ # Don't allow reporting if the underlying sender is terminated if self._sender.is_terminated: self._notify(logging.ERROR, consts.LOG_MSG_REPORT_AFTER_TERMINATION) return False # Send the event to the queue if it is a dict or a string. if isinstance(event, (dict,) + py2to3.basestring): formatted_event = self._format_event(event, metadata) should_block = block if block is not None else self.is_blocking return self._sender.enqueue_event(formatted_event, should_block) else: # Event is not a dict nor a string. Deny it. error_message = (consts.LOG_MSG_BAD_EVENT % (type(event), event)) self._notify(logging.ERROR, error_message) return False
Reports an event to Alooma by formatting it properly and placing it in the buffer to be sent by the Sender instance :param event: A dict / string representing an event :param metadata: (Optional) A dict with extra metadata to be attached to the event :param block: (Optional) If True, the function will block the thread until the event buffer has space for the event. If False, reported events are discarded if the queue is full. Defaults to None, which uses the global `block` parameter given in the `init`. :return: True if the event was successfully enqueued, else False
def network_security_group_delete(name, resource_group, **kwargs): ''' .. versionadded:: 2019.2.0 Delete a network security group within a resource group. :param name: The name of the network security group to delete. :param resource_group: The resource group name assigned to the network security group. CLI Example: .. code-block:: bash salt-call azurearm_network.network_security_group_delete testnsg testgroup ''' result = False netconn = __utils__['azurearm.get_client']('network', **kwargs) try: secgroup = netconn.network_security_groups.delete( resource_group_name=resource_group, network_security_group_name=name ) secgroup.wait() result = True except CloudError as exc: __utils__['azurearm.log_cloud_error']('network', str(exc), **kwargs) return result
.. versionadded:: 2019.2.0 Delete a network security group within a resource group. :param name: The name of the network security group to delete. :param resource_group: The resource group name assigned to the network security group. CLI Example: .. code-block:: bash salt-call azurearm_network.network_security_group_delete testnsg testgroup
def _delete(self, state=None): """Helper for :meth:`delete` Adds a delete mutation (for the entire row) to the accumulated mutations. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type state: bool :param state: (Optional) The state that is passed along to :meth:`_get_mutations`. """ mutation_val = data_v2_pb2.Mutation.DeleteFromRow() mutation_pb = data_v2_pb2.Mutation(delete_from_row=mutation_val) self._get_mutations(state).append(mutation_pb)
Helper for :meth:`delete` Adds a delete mutation (for the entire row) to the accumulated mutations. ``state`` is unused by :class:`DirectRow` but is used by subclasses. :type state: bool :param state: (Optional) The state that is passed along to :meth:`_get_mutations`.
def p(self, value, event): """Return the conditional probability P(X=value | parents=parent_values), where parent_values are the values of parents in event. (event must assign each parent a value.) >>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625}) >>> bn.p(False, {'Burglary': False, 'Earthquake': True}) 0.375""" assert isinstance(value, bool) ptrue = self.cpt[event_values(event, self.parents)] return if_(value, ptrue, 1 - ptrue)
Return the conditional probability P(X=value | parents=parent_values), where parent_values are the values of parents in event. (event must assign each parent a value.) >>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625}) >>> bn.p(False, {'Burglary': False, 'Earthquake': True}) 0.375
def configure(self, options, conf): """ Configure plugin. """ super(LeakDetectorPlugin, self).configure(options, conf) if options.leak_detector_level: self.reporting_level = int(options.leak_detector_level) self.report_delta = options.leak_detector_report_delta self.patch_mock = options.leak_detector_patch_mock self.ignore_patterns = options.leak_detector_ignore_patterns self.save_traceback = options.leak_detector_save_traceback self.multiprocessing_enabled = bool(getattr(options, 'multiprocess_workers', False))
Configure plugin.
def lock(self): # type: () -> Installer """ Prepare the installer for locking only. """ self.update() self.execute_operations(False) self._lock = True return self
Prepare the installer for locking only.
def downgrade(): """Downgrade database.""" # Remove 'created' and 'updated' columns op.drop_column('oauthclient_remoteaccount', 'created') op.drop_column('oauthclient_remoteaccount', 'updated') op.drop_column('oauthclient_remotetoken', 'created') op.drop_column('oauthclient_remotetoken', 'updated') op.drop_column('oauthclient_useridentity', 'created') op.drop_column('oauthclient_useridentity', 'updated')
Downgrade database.
def solve_gamlasso(self, lam): '''Solves the Graph-fused gamma lasso via POSE (Taddy, 2013)''' weights = lam / (1 + self.gamma * np.abs(self.beta[self.trails[::2]] - self.beta[self.trails[1::2]])) s = self.solve_gfl(u) self.steps.append(s) return self.beta
Solves the Graph-fused gamma lasso via POSE (Taddy, 2013)
def compute_pixels(orb, sgeom, times, rpy=(0.0, 0.0, 0.0)): """Compute cartesian coordinates of the pixels in instrument scan.""" if isinstance(orb, (list, tuple)): tle1, tle2 = orb orb = Orbital("mysatellite", line1=tle1, line2=tle2) # get position and velocity for each time of each pixel pos, vel = orb.get_position(times, normalize=False) # now, get the vectors pointing to each pixel vectors = sgeom.vectors(pos, vel, *rpy) # compute intersection of lines (directed by vectors and passing through # (0, 0, 0)) and ellipsoid. Derived from: # http://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection # do the computation between line and ellipsoid (WGS 84) # NB: AAPP uses GRS 80... centre = -pos a__ = 6378.137 # km # b__ = 6356.75231414 # km, GRS80 b__ = 6356.752314245 # km, WGS84 radius = np.array([[1 / a__, 1 / a__, 1 / b__]]).T shape = vectors.shape xr_ = vectors.reshape([3, -1]) * radius cr_ = centre.reshape([3, -1]) * radius ldotc = np.einsum("ij,ij->j", xr_, cr_) lsq = np.einsum("ij,ij->j", xr_, xr_) csq = np.einsum("ij,ij->j", cr_, cr_) d1_ = (ldotc - np.sqrt(ldotc ** 2 - csq * lsq + lsq)) / lsq # return the actual pixel positions return vectors * d1_.reshape(shape[1:]) - centre
Compute cartesian coordinates of the pixels in instrument scan.